ladybird/Libraries/LibCrypto/NumberTheory/ModularFunctions.cpp

234 lines
7.9 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2020, Ali Mohammad Pur <mpfard@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Debug.h>
#include <AK/Random.h>
#include <LibCrypto/BigInt/Algorithms/UnsignedBigIntegerAlgorithms.h>
#include <LibCrypto/NumberTheory/ModularFunctions.h>
namespace Crypto::NumberTheory {
UnsignedBigInteger Mod(UnsignedBigInteger const& a, UnsignedBigInteger const& b)
{
UnsignedBigInteger result;
result.set_to(a);
result.set_to(result.divided_by(b).remainder);
return result;
}
2022-04-01 17:58:27 +00:00
UnsignedBigInteger ModularInverse(UnsignedBigInteger const& a_, UnsignedBigInteger const& b)
{
if (b == 1)
return { 1 };
UnsignedBigInteger temp_1;
UnsignedBigInteger temp_minus;
UnsignedBigInteger temp_quotient;
UnsignedBigInteger temp_d;
UnsignedBigInteger temp_u;
UnsignedBigInteger temp_v;
UnsignedBigInteger temp_x;
UnsignedBigInteger result;
UnsignedBigIntegerAlgorithms::modular_inverse_without_allocation(a_, b, temp_1, temp_minus, temp_quotient, temp_d, temp_u, temp_v, temp_x, result);
return result;
}
2022-04-01 17:58:27 +00:00
UnsignedBigInteger ModularPower(UnsignedBigInteger const& b, UnsignedBigInteger const& e, UnsignedBigInteger const& m)
{
if (m == 1)
return 0;
if (m.is_odd()) {
UnsignedBigInteger temp_z0 { 0 };
UnsignedBigInteger temp_rr { 0 };
UnsignedBigInteger temp_one { 0 };
UnsignedBigInteger temp_z { 0 };
UnsignedBigInteger temp_zz { 0 };
UnsignedBigInteger temp_x { 0 };
UnsignedBigInteger temp_extra { 0 };
UnsignedBigInteger result;
UnsignedBigIntegerAlgorithms::montgomery_modular_power_with_minimal_allocations(b, e, m, temp_z0, temp_rr, temp_one, temp_z, temp_zz, temp_x, temp_extra, result);
return result;
}
UnsignedBigInteger ep { e };
UnsignedBigInteger base { b };
UnsignedBigInteger result;
UnsignedBigInteger temp_1;
UnsignedBigInteger temp_2;
UnsignedBigInteger temp_3;
UnsignedBigInteger temp_multiply;
UnsignedBigInteger temp_quotient;
UnsignedBigInteger temp_remainder;
UnsignedBigIntegerAlgorithms::destructive_modular_power_without_allocation(ep, base, m, temp_1, temp_2, temp_3, temp_multiply, temp_quotient, temp_remainder, result);
return result;
}
2022-04-01 17:58:27 +00:00
UnsignedBigInteger GCD(UnsignedBigInteger const& a, UnsignedBigInteger const& b)
{
UnsignedBigInteger temp_a { a };
UnsignedBigInteger temp_b { b };
UnsignedBigInteger temp_quotient;
UnsignedBigInteger temp_remainder;
UnsignedBigInteger output;
UnsignedBigIntegerAlgorithms::destructive_GCD_without_allocation(temp_a, temp_b, temp_quotient, temp_remainder, output);
return output;
}
2022-04-01 17:58:27 +00:00
UnsignedBigInteger LCM(UnsignedBigInteger const& a, UnsignedBigInteger const& b)
{
UnsignedBigInteger temp_a { a };
UnsignedBigInteger temp_b { b };
UnsignedBigInteger temp_1;
UnsignedBigInteger temp_2;
UnsignedBigInteger temp_3;
UnsignedBigInteger temp_quotient;
UnsignedBigInteger temp_remainder;
UnsignedBigInteger gcd_output;
UnsignedBigInteger output { 0 };
UnsignedBigIntegerAlgorithms::destructive_GCD_without_allocation(temp_a, temp_b, temp_quotient, temp_remainder, gcd_output);
if (gcd_output == 0) {
dbgln_if(NT_DEBUG, "GCD is zero");
return output;
}
// output = (a / gcd_output) * b
UnsignedBigIntegerAlgorithms::divide_without_allocation(a, gcd_output, temp_quotient, temp_remainder);
UnsignedBigIntegerAlgorithms::multiply_without_allocation(temp_quotient, b, temp_1, temp_2, temp_3, output);
dbgln_if(NT_DEBUG, "quot: {} rem: {} out: {}", temp_quotient, temp_remainder, output);
return output;
}
2022-04-01 17:58:27 +00:00
static bool MR_primality_test(UnsignedBigInteger n, Vector<UnsignedBigInteger, 256> const& tests)
{
// Written using Wikipedia:
// https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Miller%E2%80%93Rabin_test
VERIFY(!(n < 4));
auto predecessor = n.minus({ 1 });
auto d = predecessor;
size_t r = 0;
{
auto div_result = d.divided_by(2);
while (div_result.remainder == 0) {
d = div_result.quotient;
div_result = d.divided_by(2);
++r;
}
}
if (r == 0) {
// n - 1 is odd, so n was even. But there is only one even prime:
return n == 2;
}
for (auto& a : tests) {
// Technically: VERIFY(2 <= a && a <= n - 2)
VERIFY(a < n);
auto x = ModularPower(a, d, n);
if (x == 1 || x == predecessor)
continue;
bool skip_this_witness = false;
// r 1 iterations.
for (size_t i = 0; i < r - 1; ++i) {
x = ModularPower(x, 2, n);
if (x == predecessor) {
skip_this_witness = true;
break;
}
}
if (skip_this_witness)
continue;
return false; // "composite"
}
return true; // "probably prime"
}
2022-04-01 17:58:27 +00:00
UnsignedBigInteger random_number(UnsignedBigInteger const& min, UnsignedBigInteger const& max_excluded)
{
VERIFY(min < max_excluded);
auto range = max_excluded.minus(min);
UnsignedBigInteger base;
auto size = range.trimmed_length() * sizeof(u32) + 2;
// "+2" is intentional (see below).
auto buffer = ByteBuffer::create_uninitialized(size).release_value_but_fixme_should_propagate_errors(); // FIXME: Handle possible OOM situation.
auto* buf = buffer.data();
fill_with_random(buffer);
UnsignedBigInteger random { buf, size };
// At this point, `random` is a large number, in the range [0, 256^size).
// To get down to the actual range, we could just compute random % range.
// This introduces "modulo bias". However, since we added 2 to `size`,
// we know that the generated range is at least 65536 times as large as the
// required range! This means that the modulo bias is only 0.0015%, if all
// inputs are chosen adversarially. Let's hope this is good enough.
auto divmod = random.divided_by(range);
// The proper way to fix this is to restart if `divmod.quotient` is maximal.
return divmod.remainder.plus(min);
}
2022-04-01 17:58:27 +00:00
bool is_probably_prime(UnsignedBigInteger const& p)
{
// Is it a small number?
if (p < 49) {
u32 p_value = p.words()[0];
// Is it a very small prime?
if (p_value == 2 || p_value == 3 || p_value == 5 || p_value == 7)
return true;
// Is it the multiple of a very small prime?
if (p_value % 2 == 0 || p_value % 3 == 0 || p_value % 5 == 0 || p_value % 7 == 0)
return false;
// Then it must be a prime, but not a very small prime, like 37.
return true;
}
Vector<UnsignedBigInteger, 256> tests;
// Make some good initial guesses that are guaranteed to find all primes < 2^64.
tests.append(UnsignedBigInteger(2));
tests.append(UnsignedBigInteger(3));
tests.append(UnsignedBigInteger(5));
tests.append(UnsignedBigInteger(7));
tests.append(UnsignedBigInteger(11));
tests.append(UnsignedBigInteger(13));
UnsignedBigInteger seventeen { 17 };
for (size_t i = tests.size(); i < 256; ++i) {
tests.append(random_number(seventeen, p.minus(2)));
}
// Miller-Rabin's "error" is 8^-k. In adversarial cases, it's 4^-k.
// With 200 random numbers, this would mean an error of about 2^-400.
// So we don't need to worry too much about the quality of the random numbers.
return MR_primality_test(p, tests);
}
UnsignedBigInteger random_big_prime(size_t bits)
{
VERIFY(bits >= 33);
UnsignedBigInteger min = "6074001000"_bigint.shift_left(bits - 33);
UnsignedBigInteger max = UnsignedBigInteger { 1 }.shift_left(bits).minus(1);
for (;;) {
auto p = random_number(min, max);
if ((p.words()[0] & 1) == 0) {
// An even number is definitely not a large prime.
continue;
}
if (is_probably_prime(p))
return p;
}
}
}