ladybird/Userland/Libraries/LibGfx/Painter.cpp

1721 lines
65 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
2018-10-10 14:49:36 +00:00
#include "Painter.h"
#include "Bitmap.h"
#include "Emoji.h"
2018-10-11 21:45:57 +00:00
#include "Font.h"
#include "FontDatabase.h"
#include "Gamma.h"
2018-10-10 14:49:36 +00:00
#include <AK/Assertions.h>
#include <AK/Debug.h>
#include <AK/Function.h>
#include <AK/Memory.h>
#include <AK/QuickSort.h>
#include <AK/StdLibExtras.h>
#include <AK/StringBuilder.h>
#include <AK/Utf32View.h>
#include <AK/Utf8View.h>
2020-02-06 11:04:00 +00:00
#include <LibGfx/CharacterBitmap.h>
#include <LibGfx/Palette.h>
#include <LibGfx/Path.h>
#include <math.h>
2019-06-05 16:22:11 +00:00
#include <stdio.h>
2020-01-30 23:59:03 +00:00
#if defined(__GNUC__) && !defined(__clang__)
# pragma GCC optimize("O3")
2020-01-30 23:59:03 +00:00
#endif
namespace Gfx {
template<BitmapFormat format = BitmapFormat::Invalid>
ALWAYS_INLINE Color get_pixel(const Gfx::Bitmap& bitmap, int x, int y)
{
if constexpr (format == BitmapFormat::Indexed8)
return bitmap.palette_color(bitmap.scanline_u8(y)[x]);
if constexpr (format == BitmapFormat::Indexed4)
return bitmap.palette_color(bitmap.scanline_u8(y)[x]);
if constexpr (format == BitmapFormat::Indexed2)
return bitmap.palette_color(bitmap.scanline_u8(y)[x]);
if constexpr (format == BitmapFormat::Indexed1)
return bitmap.palette_color(bitmap.scanline_u8(y)[x]);
if constexpr (format == BitmapFormat::RGB32)
return Color::from_rgb(bitmap.scanline(y)[x]);
if constexpr (format == BitmapFormat::RGBA32)
return Color::from_rgba(bitmap.scanline(y)[x]);
return bitmap.get_pixel(x, y);
}
Painter::Painter(Gfx::Bitmap& bitmap)
: m_target(bitmap)
{
int scale = bitmap.scale();
ASSERT(bitmap.format() == Gfx::BitmapFormat::RGB32 || bitmap.format() == Gfx::BitmapFormat::RGBA32);
ASSERT(bitmap.physical_width() % scale == 0);
ASSERT(bitmap.physical_height() % scale == 0);
m_state_stack.append(State());
state().font = &FontDatabase::default_font();
state().clip_rect = { { 0, 0 }, bitmap.size() };
state().scale = scale;
m_clip_origin = state().clip_rect;
}
2018-10-10 14:49:36 +00:00
Painter::~Painter()
{
}
2018-10-10 14:49:36 +00:00
void Painter::fill_rect_with_draw_op(const IntRect& a_rect, Color color)
{
ASSERT(scale() == 1); // FIXME: Add scaling support.
auto rect = a_rect.translated(translation()).intersected(clip_rect());
if (rect.is_empty())
return;
RGBA32* dst = m_target->scanline(rect.top()) + rect.left();
const size_t dst_skip = m_target->pitch() / sizeof(RGBA32);
for (int i = rect.height() - 1; i >= 0; --i) {
for (int j = 0; j < rect.width(); ++j)
set_physical_pixel_with_draw_op(dst[j], color);
dst += dst_skip;
}
}
void Painter::clear_rect(const IntRect& a_rect, Color color)
{
auto rect = a_rect.translated(translation()).intersected(clip_rect());
if (rect.is_empty())
return;
ASSERT(m_target->rect().contains(rect));
rect *= scale();
RGBA32* dst = m_target->scanline(rect.top()) + rect.left();
const size_t dst_skip = m_target->pitch() / sizeof(RGBA32);
for (int i = rect.height() - 1; i >= 0; --i) {
fast_u32_fill(dst, color.value(), rect.width());
dst += dst_skip;
}
}
void Painter::fill_physical_rect(const IntRect& physical_rect, Color color)
{
// Callers must do clipping.
RGBA32* dst = m_target->scanline(physical_rect.top()) + physical_rect.left();
const size_t dst_skip = m_target->pitch() / sizeof(RGBA32);
for (int i = physical_rect.height() - 1; i >= 0; --i) {
for (int j = 0; j < physical_rect.width(); ++j)
dst[j] = Color::from_rgba(dst[j]).blend(color).value();
dst += dst_skip;
}
}
void Painter::fill_rect(const IntRect& a_rect, Color color)
{
if (color.alpha() == 0)
return;
if (draw_op() != DrawOp::Copy) {
fill_rect_with_draw_op(a_rect, color);
return;
}
if (color.alpha() == 0xff) {
clear_rect(a_rect, color);
return;
}
auto rect = a_rect.translated(translation()).intersected(clip_rect());
if (rect.is_empty())
return;
ASSERT(m_target->rect().contains(rect));
fill_physical_rect(rect * scale(), color);
2018-10-10 14:49:36 +00:00
}
void Painter::fill_rect_with_dither_pattern(const IntRect& a_rect, Color color_a, Color color_b)
{
ASSERT(scale() == 1); // FIXME: Add scaling support.
auto rect = a_rect.translated(translation()).intersected(clip_rect());
if (rect.is_empty())
return;
RGBA32* dst = m_target->scanline(rect.top()) + rect.left();
const size_t dst_skip = m_target->pitch() / sizeof(RGBA32);
for (int i = 0; i < rect.height(); ++i) {
for (int j = 0; j < rect.width(); ++j) {
bool checkboard_use_a = (i & 1) ^ (j & 1);
if (checkboard_use_a && !color_a.alpha())
continue;
if (!checkboard_use_a && !color_b.alpha())
continue;
dst[j] = checkboard_use_a ? color_a.value() : color_b.value();
}
dst += dst_skip;
}
}
void Painter::fill_rect_with_checkerboard(const IntRect& a_rect, const IntSize& cell_size, Color color_dark, Color color_light)
{
ASSERT(scale() == 1); // FIXME: Add scaling support.
auto rect = a_rect.translated(translation()).intersected(clip_rect());
if (rect.is_empty())
return;
RGBA32* dst = m_target->scanline(rect.top()) + rect.left();
const size_t dst_skip = m_target->pitch() / sizeof(RGBA32);
for (int i = 0; i < rect.height(); ++i) {
for (int j = 0; j < rect.width(); ++j) {
int cell_row = i / cell_size.height();
int cell_col = j / cell_size.width();
dst[j] = ((cell_row % 2) ^ (cell_col % 2)) ? color_light.value() : color_dark.value();
}
dst += dst_skip;
}
}
void Painter::fill_rect_with_gradient(Orientation orientation, const IntRect& a_rect, Color gradient_start, Color gradient_end)
{
#ifdef NO_FPU
return fill_rect(a_rect, gradient_start);
#endif
auto rect = to_physical(a_rect);
auto clipped_rect = IntRect::intersection(rect, clip_rect() * scale());
if (clipped_rect.is_empty())
return;
int offset = clipped_rect.primary_offset_for_orientation(orientation) - rect.primary_offset_for_orientation(orientation);
RGBA32* dst = m_target->scanline(clipped_rect.top()) + clipped_rect.left();
const size_t dst_skip = m_target->pitch() / sizeof(RGBA32);
float increment = (1.0 / ((rect.primary_size_for_orientation(orientation))));
if (orientation == Orientation::Horizontal) {
for (int i = clipped_rect.height() - 1; i >= 0; --i) {
float c = offset * increment;
for (int j = 0; j < clipped_rect.width(); ++j) {
dst[j] = gamma_accurate_blend(gradient_start, gradient_end, c).value();
c += increment;
}
dst += dst_skip;
}
} else {
float c = offset * increment;
for (int i = clipped_rect.height() - 1; i >= 0; --i) {
auto color = gamma_accurate_blend(gradient_start, gradient_end, c);
for (int j = 0; j < clipped_rect.width(); ++j) {
dst[j] = color.value();
}
c += increment;
dst += dst_skip;
}
}
}
void Painter::fill_rect_with_gradient(const IntRect& a_rect, Color gradient_start, Color gradient_end)
{
return fill_rect_with_gradient(Orientation::Horizontal, a_rect, gradient_start, gradient_end);
}
void Painter::fill_ellipse(const IntRect& a_rect, Color color)
2020-05-24 18:03:48 +00:00
{
ASSERT(scale() == 1); // FIXME: Add scaling support.
2020-05-24 18:03:48 +00:00
auto rect = a_rect.translated(translation()).intersected(clip_rect());
if (rect.is_empty())
return;
ASSERT(m_target->rect().contains(rect));
RGBA32* dst = m_target->scanline(rect.top()) + rect.left() + rect.width() / 2;
const size_t dst_skip = m_target->pitch() / sizeof(RGBA32);
for (int i = 0; i < rect.height(); i++) {
double y = rect.height() * 0.5 - i;
double x = rect.width() * sqrt(0.25 - y * y / rect.height() / rect.height());
fast_u32_fill(dst - (int)x, color.value(), 2 * (int)x);
dst += dst_skip;
}
}
void Painter::draw_ellipse_intersecting(const IntRect& rect, Color color, int thickness)
{
ASSERT(scale() == 1); // FIXME: Add scaling support.
constexpr int number_samples = 100; // FIXME: dynamically work out the number of samples based upon the rect size
double increment = M_PI / number_samples;
auto ellipse_x = [&](double theta) -> int {
return (cos(theta) * rect.width() / sqrt(2)) + rect.center().x();
};
auto ellipse_y = [&](double theta) -> int {
return (sin(theta) * rect.height() / sqrt(2)) + rect.center().y();
};
for (float theta = 0; theta < 2 * M_PI; theta += increment) {
draw_line({ ellipse_x(theta), ellipse_y(theta) }, { ellipse_x(theta + increment), ellipse_y(theta + increment) }, color, thickness);
}
}
template<typename RectType, typename Callback>
static void for_each_pixel_around_rect_clockwise(const RectType& rect, Callback callback)
{
if (rect.is_empty())
return;
for (auto x = rect.left(); x <= rect.right(); ++x) {
callback(x, rect.top());
}
for (auto y = rect.top() + 1; y <= rect.bottom(); ++y) {
callback(rect.right(), y);
}
for (auto x = rect.right() - 1; x >= rect.left(); --x) {
callback(x, rect.bottom());
}
for (auto y = rect.bottom() - 1; y > rect.top(); --y) {
callback(rect.left(), y);
}
}
void Painter::draw_focus_rect(const IntRect& rect, Color color)
{
ASSERT(scale() == 1); // FIXME: Add scaling support.
if (rect.is_empty())
return;
bool state = false;
for_each_pixel_around_rect_clockwise(rect, [&](auto x, auto y) {
if (state)
set_pixel(x, y, color);
state = !state;
});
}
void Painter::draw_rect(const IntRect& a_rect, Color color, bool rough)
2018-10-11 21:14:51 +00:00
{
IntRect rect = a_rect.translated(translation());
auto clipped_rect = rect.intersected(clip_rect());
if (clipped_rect.is_empty())
return;
2018-10-11 21:14:51 +00:00
int min_y = clipped_rect.top();
int max_y = clipped_rect.bottom();
int scale = this->scale();
if (rect.top() >= clipped_rect.top() && rect.top() <= clipped_rect.bottom()) {
int start_x = rough ? max(rect.x() + 1, clipped_rect.x()) : clipped_rect.x();
int width = rough ? min(rect.width() - 2, clipped_rect.width()) : clipped_rect.width();
for (int i = 0; i < scale; ++i)
fill_physical_scanline_with_draw_op(rect.top() * scale + i, start_x * scale, width * scale, color);
++min_y;
}
if (rect.bottom() >= clipped_rect.top() && rect.bottom() <= clipped_rect.bottom()) {
int start_x = rough ? max(rect.x() + 1, clipped_rect.x()) : clipped_rect.x();
int width = rough ? min(rect.width() - 2, clipped_rect.width()) : clipped_rect.width();
for (int i = 0; i < scale; ++i)
fill_physical_scanline_with_draw_op(max_y * scale + i, start_x * scale, width * scale, color);
--max_y;
}
bool draw_left_side = rect.left() >= clipped_rect.left();
bool draw_right_side = rect.right() == clipped_rect.right();
if (draw_left_side && draw_right_side) {
// Specialized loop when drawing both sides.
for (int y = min_y * scale; y <= max_y * scale; ++y) {
auto* bits = m_target->scanline(y);
for (int i = 0; i < scale; ++i)
set_physical_pixel_with_draw_op(bits[rect.left() * scale + i], color);
for (int i = 0; i < scale; ++i)
set_physical_pixel_with_draw_op(bits[rect.right() * scale + i], color);
}
} else {
for (int y = min_y * scale; y <= max_y * scale; ++y) {
auto* bits = m_target->scanline(y);
if (draw_left_side)
for (int i = 0; i < scale; ++i)
set_physical_pixel_with_draw_op(bits[rect.left() * scale + i], color);
if (draw_right_side)
for (int i = 0; i < scale; ++i)
set_physical_pixel_with_draw_op(bits[rect.right() * scale + i], color);
2018-10-11 21:14:51 +00:00
}
}
}
void Painter::draw_bitmap(const IntPoint& p, const CharacterBitmap& bitmap, Color color)
{
ASSERT(scale() == 1); // FIXME: Add scaling support.
auto rect = IntRect(p, bitmap.size()).translated(translation());
auto clipped_rect = rect.intersected(clip_rect());
if (clipped_rect.is_empty())
return;
const int first_row = clipped_rect.top() - rect.top();
const int last_row = clipped_rect.bottom() - rect.top();
const int first_column = clipped_rect.left() - rect.left();
const int last_column = clipped_rect.right() - rect.left();
RGBA32* dst = m_target->scanline(clipped_rect.y()) + clipped_rect.x();
const size_t dst_skip = m_target->pitch() / sizeof(RGBA32);
const char* bitmap_row = &bitmap.bits()[first_row * bitmap.width() + first_column];
const size_t bitmap_skip = bitmap.width();
for (int row = first_row; row <= last_row; ++row) {
for (int j = 0; j <= (last_column - first_column); ++j) {
char fc = bitmap_row[j];
if (fc == '#')
dst[j] = color.value();
}
bitmap_row += bitmap_skip;
dst += dst_skip;
}
}
void Painter::draw_bitmap(const IntPoint& p, const GlyphBitmap& bitmap, Color color)
{
auto dst_rect = IntRect(p, bitmap.size()).translated(translation());
auto clipped_rect = dst_rect.intersected(clip_rect());
if (clipped_rect.is_empty())
return;
const int first_row = clipped_rect.top() - dst_rect.top();
const int last_row = clipped_rect.bottom() - dst_rect.top();
const int first_column = clipped_rect.left() - dst_rect.left();
const int last_column = clipped_rect.right() - dst_rect.left();
int scale = this->scale();
RGBA32* dst = m_target->scanline(clipped_rect.y() * scale) + clipped_rect.x() * scale;
const size_t dst_skip = m_target->pitch() / sizeof(RGBA32);
if (scale == 1) {
for (int row = first_row; row <= last_row; ++row) {
for (int j = 0; j <= (last_column - first_column); ++j) {
if (bitmap.bit_at(j + first_column, row))
dst[j] = color.value();
}
dst += dst_skip;
}
} else {
for (int row = first_row; row <= last_row; ++row) {
for (int j = 0; j <= (last_column - first_column); ++j) {
if (bitmap.bit_at((j + first_column), row)) {
for (int iy = 0; iy < scale; ++iy)
for (int ix = 0; ix < scale; ++ix)
dst[j * scale + ix + iy * dst_skip] = color.value();
}
}
dst += dst_skip * scale;
}
}
}
void Painter::draw_triangle(const IntPoint& a, const IntPoint& b, const IntPoint& c, Color color)
{
ASSERT(scale() == 1); // FIXME: Add scaling support.
RGBA32 rgba = color.value();
IntPoint p0(a);
IntPoint p1(b);
IntPoint p2(c);
if (p0.y() > p1.y())
swap(p0, p1);
if (p0.y() > p2.y())
swap(p0, p2);
if (p1.y() > p2.y())
swap(p1, p2);
auto clip = clip_rect();
if (p0.y() >= clip.bottom())
return;
if (p2.y() < clip.top())
return;
float dx01 = (float)(p1.x() - p0.x()) / (p1.y() - p0.y());
float dx02 = (float)(p2.x() - p0.x()) / (p2.y() - p0.y());
float dx12 = (float)(p2.x() - p1.x()) / (p2.y() - p1.y());
float x01 = p0.x();
float x02 = p0.x();
int top = p0.y();
if (top < clip.top()) {
x01 += dx01 * (clip.top() - top);
x02 += dx02 * (clip.top() - top);
top = clip.top();
}
for (int y = top; y < p1.y() && y < clip.bottom(); ++y) { // XXX <=?
int start = x01 > x02 ? max((int)x02, clip.left()) : max((int)x01, clip.left());
int end = x01 > x02 ? min((int)x01, clip.right()) : min((int)x02, clip.right());
auto* scanline = m_target->scanline(y);
for (int x = start; x < end; x++) {
scanline[x] = rgba;
}
x01 += dx01;
x02 += dx02;
}
x02 = p0.x() + dx02 * (p1.y() - p0.y());
float x12 = p1.x();
top = p1.y();
if (top < clip.top()) {
x02 += dx02 * (clip.top() - top);
x12 += dx12 * (clip.top() - top);
top = clip.top();
}
for (int y = top; y < p2.y() && y < clip.bottom(); ++y) { // XXX <=?
int start = x12 > x02 ? max((int)x02, clip.left()) : max((int)x12, clip.left());
int end = x12 > x02 ? min((int)x12, clip.right()) : min((int)x02, clip.right());
auto* scanline = m_target->scanline(y);
for (int x = start; x < end; x++) {
scanline[x] = rgba;
}
x02 += dx02;
x12 += dx12;
}
}
void Painter::blit_with_opacity(const IntPoint& position, const Gfx::Bitmap& source, const IntRect& a_src_rect, float opacity)
{
ASSERT(scale() >= source.scale() && "painter doesn't support downsampling scale factors");
ASSERT(!m_target->has_alpha_channel());
if (!opacity)
return;
if (opacity >= 1.0f)
return blit(position, source, a_src_rect);
u8 alpha = 255 * opacity;
IntRect safe_src_rect = IntRect::intersection(a_src_rect, source.rect());
if (scale() != source.scale())
return draw_scaled_bitmap({ position, safe_src_rect.size() }, source, safe_src_rect, opacity);
auto dst_rect = IntRect(position, safe_src_rect.size()).translated(translation());
auto clipped_rect = IntRect::intersection(dst_rect, clip_rect());
if (clipped_rect.is_empty())
return;
int scale = this->scale();
auto src_rect = a_src_rect * scale;
clipped_rect *= scale;
dst_rect *= scale;
const int first_row = clipped_rect.top() - dst_rect.top();
const int last_row = clipped_rect.bottom() - dst_rect.top();
const int first_column = clipped_rect.left() - dst_rect.left();
const int last_column = clipped_rect.right() - dst_rect.left();
RGBA32* dst = m_target->scanline(clipped_rect.y()) + clipped_rect.x();
const RGBA32* src = source.scanline(src_rect.top() + first_row) + src_rect.left() + first_column;
const size_t dst_skip = m_target->pitch() / sizeof(RGBA32);
const unsigned src_skip = source.pitch() / sizeof(RGBA32);
// FIXME: This does the wrong thing if source has an alpha channel: It ignores it and pretends that every pixel in source is fully opaque.
// Maybe just punt to draw_scaled_bitmap() in that case too?
for (int row = first_row; row <= last_row; ++row) {
for (int x = 0; x <= (last_column - first_column); ++x) {
Color src_color_with_alpha = Color::from_rgb(src[x]);
src_color_with_alpha.set_alpha(alpha);
Color dst_color = Color::from_rgb(dst[x]);
dst[x] = dst_color.blend(src_color_with_alpha).value();
}
dst += dst_skip;
src += src_skip;
}
}
void Painter::blit_filtered(const IntPoint& position, const Gfx::Bitmap& source, const IntRect& src_rect, Function<Color(Color)> filter)
{
ASSERT(scale() == 1); // FIXME: Add scaling support.
IntRect safe_src_rect = src_rect.intersected(source.rect());
auto dst_rect = IntRect(position, safe_src_rect.size()).translated(translation());
auto clipped_rect = dst_rect.intersected(clip_rect());
if (clipped_rect.is_empty())
return;
const int first_row = clipped_rect.top() - dst_rect.top();
const int last_row = clipped_rect.bottom() - dst_rect.top();
const int first_column = clipped_rect.left() - dst_rect.left();
const int last_column = clipped_rect.right() - dst_rect.left();
RGBA32* dst = m_target->scanline(clipped_rect.y()) + clipped_rect.x();
const RGBA32* src = source.scanline(src_rect.top() + first_row) + src_rect.left() + first_column;
const size_t dst_skip = m_target->pitch() / sizeof(RGBA32);
const size_t src_skip = source.pitch() / sizeof(RGBA32);
for (int row = first_row; row <= last_row; ++row) {
for (int x = 0; x <= (last_column - first_column); ++x) {
u8 alpha = Color::from_rgba(src[x]).alpha();
if (alpha == 0xff)
dst[x] = filter(Color::from_rgba(src[x])).value();
else if (!alpha)
continue;
else
dst[x] = Color::from_rgba(dst[x]).blend(filter(Color::from_rgba(src[x]))).value();
}
dst += dst_skip;
src += src_skip;
}
}
void Painter::blit_brightened(const IntPoint& position, const Gfx::Bitmap& source, const IntRect& src_rect)
{
return blit_filtered(position, source, src_rect, [](Color src) {
return src.lightened();
});
}
void Painter::blit_dimmed(const IntPoint& position, const Gfx::Bitmap& source, const IntRect& src_rect)
{
return blit_filtered(position, source, src_rect, [](Color src) {
return src.to_grayscale().lightened();
});
}
void Painter::draw_tiled_bitmap(const IntRect& a_dst_rect, const Gfx::Bitmap& source)
{
ASSERT((source.scale() == 1 || source.scale() == scale()) && "draw_tiled_bitmap only supports integer upsampling");
auto dst_rect = a_dst_rect.translated(translation());
auto clipped_rect = dst_rect.intersected(clip_rect());
if (clipped_rect.is_empty())
return;
int scale = this->scale();
clipped_rect *= scale;
dst_rect *= scale;
const int first_row = (clipped_rect.top() - dst_rect.top());
const int last_row = (clipped_rect.bottom() - dst_rect.top());
const int first_column = (clipped_rect.left() - dst_rect.left());
RGBA32* dst = m_target->scanline(clipped_rect.y()) + clipped_rect.x();
const size_t dst_skip = m_target->pitch() / sizeof(RGBA32);
if (source.format() == BitmapFormat::RGB32 || source.format() == BitmapFormat::RGBA32) {
int s = scale / source.scale();
if (s == 1) {
int x_start = first_column + a_dst_rect.left() * scale;
for (int row = first_row; row <= last_row; ++row) {
const RGBA32* sl = source.scanline((row + a_dst_rect.top() * scale) % source.physical_height());
for (int x = x_start; x < clipped_rect.width() + x_start; ++x) {
dst[x - x_start] = sl[x % source.physical_width()];
}
dst += dst_skip;
}
} else {
int x_start = first_column + a_dst_rect.left() * scale;
for (int row = first_row; row <= last_row; ++row) {
const RGBA32* sl = source.scanline(((row + a_dst_rect.top() * scale) / s) % source.physical_height());
for (int x = x_start; x < clipped_rect.width() + x_start; ++x) {
dst[x - x_start] = sl[(x / s) % source.physical_width()];
}
dst += dst_skip;
}
}
return;
}
ASSERT_NOT_REACHED();
}
void Painter::blit_offset(const IntPoint& a_position, const Gfx::Bitmap& source, const IntRect& a_src_rect, const IntPoint& offset)
2019-05-27 03:10:23 +00:00
{
auto src_rect = IntRect { a_src_rect.location() - offset, a_src_rect.size() };
auto position = a_position;
if (src_rect.x() < 0) {
position.set_x(position.x() - src_rect.x());
src_rect.set_x(0);
2019-05-27 03:10:23 +00:00
}
if (src_rect.y() < 0) {
position.set_y(position.y() - src_rect.y());
src_rect.set_y(0);
}
blit(position, source, src_rect);
2019-05-27 03:10:23 +00:00
}
void Painter::blit_with_alpha(const IntPoint& position, const Gfx::Bitmap& source, const IntRect& a_src_rect)
{
auto safe_src_rect = a_src_rect.intersected(source.rect());
if (scale() != source.scale())
return draw_scaled_bitmap({ position, safe_src_rect.size() }, source, safe_src_rect);
ASSERT(source.has_alpha_channel());
auto dst_rect = IntRect(position, safe_src_rect.size()).translated(translation());
auto clipped_rect = dst_rect.intersected(clip_rect());
if (clipped_rect.is_empty())
return;
int scale = this->scale();
auto src_rect = a_src_rect * scale;
clipped_rect *= scale;
dst_rect *= scale;
const int first_row = clipped_rect.top() - dst_rect.top();
const int last_row = clipped_rect.bottom() - dst_rect.top();
const int first_column = clipped_rect.left() - dst_rect.left();
const int last_column = clipped_rect.right() - dst_rect.left();
RGBA32* dst = m_target->scanline(clipped_rect.y()) + clipped_rect.x();
const RGBA32* src = source.scanline(src_rect.top() + first_row) + src_rect.left() + first_column;
const size_t dst_skip = m_target->pitch() / sizeof(RGBA32);
const size_t src_skip = source.pitch() / sizeof(RGBA32);
for (int row = first_row; row <= last_row; ++row) {
for (int x = 0; x <= (last_column - first_column); ++x) {
u8 alpha = Color::from_rgba(src[x]).alpha();
if (alpha == 0xff)
dst[x] = src[x];
else if (!alpha)
continue;
else
dst[x] = Color::from_rgba(dst[x]).blend(Color::from_rgba(src[x])).value();
}
dst += dst_skip;
src += src_skip;
}
}
void Painter::blit(const IntPoint& position, const Gfx::Bitmap& source, const IntRect& a_src_rect, float opacity)
{
ASSERT(scale() >= source.scale() && "painter doesn't support downsampling scale factors");
if (opacity < 1.0f)
return blit_with_opacity(position, source, a_src_rect, opacity);
if (source.has_alpha_channel())
return blit_with_alpha(position, source, a_src_rect);
auto safe_src_rect = a_src_rect.intersected(source.rect());
if (scale() != source.scale())
return draw_scaled_bitmap({ position, safe_src_rect.size() }, source, safe_src_rect, opacity);
// If we get here, the Painter might have a scale factor, but the source bitmap has the same scale factor.
// We need to transform from logical to physical coordinates, but we can just copy pixels without resampling.
auto dst_rect = IntRect(position, safe_src_rect.size()).translated(translation());
auto clipped_rect = dst_rect.intersected(clip_rect());
if (clipped_rect.is_empty())
return;
// All computations below are in physical coordinates.
int scale = this->scale();
auto src_rect = a_src_rect * scale;
clipped_rect *= scale;
dst_rect *= scale;
const int first_row = clipped_rect.top() - dst_rect.top();
const int last_row = clipped_rect.bottom() - dst_rect.top();
const int first_column = clipped_rect.left() - dst_rect.left();
RGBA32* dst = m_target->scanline(clipped_rect.y()) + clipped_rect.x();
const size_t dst_skip = m_target->pitch() / sizeof(RGBA32);
if (source.format() == BitmapFormat::RGB32 || source.format() == BitmapFormat::RGBA32) {
const RGBA32* src = source.scanline(src_rect.top() + first_row) + src_rect.left() + first_column;
const size_t src_skip = source.pitch() / sizeof(RGBA32);
for (int row = first_row; row <= last_row; ++row) {
fast_u32_copy(dst, src, clipped_rect.width());
dst += dst_skip;
src += src_skip;
}
return;
}
if (Bitmap::is_indexed(source.format())) {
const u8* src = source.scanline_u8(src_rect.top() + first_row) + src_rect.left() + first_column;
const size_t src_skip = source.pitch();
for (int row = first_row; row <= last_row; ++row) {
for (int i = 0; i < clipped_rect.width(); ++i)
dst[i] = source.palette_color(src[i]).value();
dst += dst_skip;
src += src_skip;
}
return;
}
ASSERT_NOT_REACHED();
}
template<bool has_alpha_channel, typename GetPixel>
ALWAYS_INLINE static void do_draw_integer_scaled_bitmap(Gfx::Bitmap& target, const IntRect& dst_rect, const IntRect& src_rect, const Gfx::Bitmap& source, int hfactor, int vfactor, GetPixel get_pixel, float opacity)
{
bool has_opacity = opacity != 1.0f;
for (int y = 0; y < src_rect.height(); ++y) {
int dst_y = dst_rect.y() + y * vfactor;
for (int x = 0; x < src_rect.width(); ++x) {
auto src_pixel = get_pixel(source, x + src_rect.left(), y + src_rect.top());
if (has_opacity)
src_pixel.set_alpha(src_pixel.alpha() * opacity);
for (int yo = 0; yo < vfactor; ++yo) {
auto* scanline = (Color*)target.scanline(dst_y + yo);
int dst_x = dst_rect.x() + x * hfactor;
for (int xo = 0; xo < hfactor; ++xo) {
if constexpr (has_alpha_channel)
scanline[dst_x + xo] = scanline[dst_x + xo].blend(src_pixel);
else
scanline[dst_x + xo] = src_pixel;
}
}
}
}
}
template<bool has_alpha_channel, typename GetPixel>
ALWAYS_INLINE static void do_draw_scaled_bitmap(Gfx::Bitmap& target, const IntRect& dst_rect, const IntRect& clipped_rect, const Gfx::Bitmap& source, const FloatRect& src_rect, GetPixel get_pixel, float opacity)
{
IntRect int_src_rect = enclosing_int_rect(src_rect);
if (dst_rect == clipped_rect && int_src_rect == src_rect && !(dst_rect.width() % int_src_rect.width()) && !(dst_rect.height() % int_src_rect.height())) {
int hfactor = dst_rect.width() / int_src_rect.width();
int vfactor = dst_rect.height() / int_src_rect.height();
if (hfactor == 2 && vfactor == 2)
return do_draw_integer_scaled_bitmap<has_alpha_channel>(target, dst_rect, int_src_rect, source, 2, 2, get_pixel, opacity);
if (hfactor == 3 && vfactor == 3)
return do_draw_integer_scaled_bitmap<has_alpha_channel>(target, dst_rect, int_src_rect, source, 3, 3, get_pixel, opacity);
if (hfactor == 4 && vfactor == 4)
return do_draw_integer_scaled_bitmap<has_alpha_channel>(target, dst_rect, int_src_rect, source, 4, 4, get_pixel, opacity);
return do_draw_integer_scaled_bitmap<has_alpha_channel>(target, dst_rect, int_src_rect, source, hfactor, vfactor, get_pixel, opacity);
}
bool has_opacity = opacity != 1.0f;
int hscale = (src_rect.width() * (1 << 16)) / dst_rect.width();
int vscale = (src_rect.height() * (1 << 16)) / dst_rect.height();
int src_left = src_rect.left() * (1 << 16);
int src_top = src_rect.top() * (1 << 16);
for (int y = clipped_rect.top(); y <= clipped_rect.bottom(); ++y) {
auto* scanline = (Color*)target.scanline(y);
for (int x = clipped_rect.left(); x <= clipped_rect.right(); ++x) {
auto scaled_x = ((x - dst_rect.x()) * hscale + src_left) >> 16;
auto scaled_y = ((y - dst_rect.y()) * vscale + src_top) >> 16;
auto src_pixel = get_pixel(source, scaled_x, scaled_y);
if (has_opacity)
src_pixel.set_alpha(src_pixel.alpha() * opacity);
if constexpr (has_alpha_channel) {
scanline[x] = scanline[x].blend(src_pixel);
} else
scanline[x] = src_pixel;
}
}
}
void Painter::draw_scaled_bitmap(const IntRect& a_dst_rect, const Gfx::Bitmap& source, const IntRect& a_src_rect, float opacity)
{
draw_scaled_bitmap(a_dst_rect, source, FloatRect { a_src_rect }, opacity);
}
void Painter::draw_scaled_bitmap(const IntRect& a_dst_rect, const Gfx::Bitmap& source, const FloatRect& a_src_rect, float opacity)
{
IntRect int_src_rect = enclosing_int_rect(a_src_rect);
if (scale() == source.scale() && a_src_rect == int_src_rect && a_dst_rect.size() == int_src_rect.size())
return blit(a_dst_rect.location(), source, int_src_rect, opacity);
auto dst_rect = to_physical(a_dst_rect);
auto src_rect = a_src_rect * source.scale();
auto clipped_rect = dst_rect.intersected(clip_rect() * scale());
if (clipped_rect.is_empty())
return;
if (source.has_alpha_channel()) {
switch (source.format()) {
case BitmapFormat::RGB32:
do_draw_scaled_bitmap<true>(*m_target, dst_rect, clipped_rect, source, src_rect, get_pixel<BitmapFormat::RGB32>, opacity);
2019-06-05 16:22:11 +00:00
break;
case BitmapFormat::RGBA32:
do_draw_scaled_bitmap<true>(*m_target, dst_rect, clipped_rect, source, src_rect, get_pixel<BitmapFormat::RGBA32>, opacity);
2019-06-05 16:22:11 +00:00
break;
case BitmapFormat::Indexed8:
do_draw_scaled_bitmap<true>(*m_target, dst_rect, clipped_rect, source, src_rect, get_pixel<BitmapFormat::Indexed8>, opacity);
2019-06-05 16:22:11 +00:00
break;
case BitmapFormat::Indexed4:
do_draw_scaled_bitmap<true>(*m_target, dst_rect, clipped_rect, source, src_rect, get_pixel<BitmapFormat::Indexed4>, opacity);
break;
case BitmapFormat::Indexed2:
do_draw_scaled_bitmap<true>(*m_target, dst_rect, clipped_rect, source, src_rect, get_pixel<BitmapFormat::Indexed2>, opacity);
break;
case BitmapFormat::Indexed1:
do_draw_scaled_bitmap<true>(*m_target, dst_rect, clipped_rect, source, src_rect, get_pixel<BitmapFormat::Indexed1>, opacity);
break;
2019-06-05 16:22:11 +00:00
default:
do_draw_scaled_bitmap<true>(*m_target, dst_rect, clipped_rect, source, src_rect, get_pixel<BitmapFormat::Invalid>, opacity);
2019-06-05 16:22:11 +00:00
break;
}
} else {
switch (source.format()) {
case BitmapFormat::RGB32:
do_draw_scaled_bitmap<false>(*m_target, dst_rect, clipped_rect, source, src_rect, get_pixel<BitmapFormat::RGB32>, opacity);
2019-06-05 16:22:11 +00:00
break;
case BitmapFormat::RGBA32:
do_draw_scaled_bitmap<false>(*m_target, dst_rect, clipped_rect, source, src_rect, get_pixel<BitmapFormat::RGBA32>, opacity);
2019-06-05 16:22:11 +00:00
break;
case BitmapFormat::Indexed8:
do_draw_scaled_bitmap<false>(*m_target, dst_rect, clipped_rect, source, src_rect, get_pixel<BitmapFormat::Indexed8>, opacity);
2019-06-05 16:22:11 +00:00
break;
default:
do_draw_scaled_bitmap<false>(*m_target, dst_rect, clipped_rect, source, src_rect, get_pixel<BitmapFormat::Invalid>, opacity);
2019-06-05 16:22:11 +00:00
break;
}
}
}
FLATTEN void Painter::draw_glyph(const IntPoint& point, u32 code_point, Color color)
{
draw_glyph(point, code_point, font(), color);
}
FLATTEN void Painter::draw_glyph(const IntPoint& point, u32 code_point, const Font& font, Color color)
{
draw_bitmap(point, font.glyph_bitmap(code_point), color);
}
void Painter::draw_emoji(const IntPoint& point, const Gfx::Bitmap& emoji, const Font& font)
{
if (!font.is_fixed_width())
blit(point, emoji, emoji.rect());
else {
IntRect dst_rect {
point.x(),
point.y(),
font.glyph_width('x'),
font.glyph_height()
};
draw_scaled_bitmap(dst_rect, emoji, emoji.rect());
}
}
void Painter::draw_glyph_or_emoji(const IntPoint& point, u32 code_point, const Font& font, Color color)
{
if (code_point < (u32)font.glyph_count()) {
// This looks like a regular character.
draw_glyph(point, (size_t)code_point, font, color);
return;
}
// Perhaps it's an emoji?
auto* emoji = Emoji::emoji_for_code_point(code_point);
if (emoji == nullptr) {
dbgln<debug_emoji>("Failed to find an emoji for code_point {}", code_point);
draw_glyph(point, '?', font, color);
return;
}
draw_emoji(point, *emoji, font);
}
static void apply_elision(Utf8View& final_text, String& elided_text, size_t offset)
{
StringBuilder builder;
builder.append(final_text.substring_view(0, offset).as_string());
builder.append("...");
elided_text = builder.to_string();
final_text = Utf8View { elided_text };
}
static void apply_elision(Utf32View& final_text, Vector<u32>& elided_text, size_t offset)
{
elided_text.append(final_text.code_points(), offset);
elided_text.append('.');
elided_text.append('.');
elided_text.append('.');
final_text = Utf32View { elided_text.data(), elided_text.size() };
}
template<typename TextType>
struct ElidedText {
};
template<>
struct ElidedText<Utf8View> {
typedef String Type;
};
template<>
struct ElidedText<Utf32View> {
typedef Vector<u32> Type;
};
template<typename TextType, typename DrawGlyphFunction>
void draw_text_line(const IntRect& a_rect, const TextType& text, const Font& font, TextAlignment alignment, TextElision elision, DrawGlyphFunction draw_glyph)
{
auto rect = a_rect;
TextType final_text(text);
typename ElidedText<TextType>::Type elided_text;
if (elision == TextElision::Right) {
int text_width = font.width(final_text);
if (font.width(final_text) > rect.width()) {
int glyph_spacing = font.glyph_spacing();
int new_width = font.width("...");
if (new_width < text_width) {
size_t offset = 0;
for (auto it = text.begin(); it != text.end(); ++it) {
auto code_point = *it;
int glyph_width = font.glyph_or_emoji_width(code_point);
// NOTE: Glyph spacing should not be added after the last glyph on the line,
// but since we are here because the last glyph does not actually fit on the line,
// we don't have to worry about spacing.
int width_with_this_glyph_included = new_width + glyph_width + glyph_spacing;
if (width_with_this_glyph_included > rect.width())
break;
new_width += glyph_width + glyph_spacing;
offset = text.iterator_offset(it);
}
apply_elision(final_text, elided_text, offset);
}
}
}
switch (alignment) {
case TextAlignment::TopLeft:
case TextAlignment::CenterLeft:
break;
case TextAlignment::TopRight:
case TextAlignment::CenterRight:
2020-08-21 14:52:39 +00:00
case TextAlignment::BottomRight:
rect.set_x(rect.right() - font.width(final_text));
break;
case TextAlignment::Center: {
auto shrunken_rect = rect;
shrunken_rect.set_width(font.width(final_text));
shrunken_rect.center_within(rect);
rect = shrunken_rect;
break;
}
default:
2018-10-10 23:48:09 +00:00
ASSERT_NOT_REACHED();
}
if (is_vertically_centered_text_alignment(alignment)) {
int distance_from_baseline_to_bottom = (font.glyph_height() - 1) - font.baseline();
rect.move_by(0, distance_from_baseline_to_bottom / 2);
}
auto point = rect.location();
int space_width = font.glyph_width(' ') + font.glyph_spacing();
for (u32 code_point : final_text) {
if (code_point == ' ') {
point.move_by(space_width, 0);
continue;
}
IntSize glyph_size(font.glyph_or_emoji_width(code_point) + font.glyph_spacing(), font.glyph_height());
draw_glyph({ point, glyph_size }, code_point);
point.move_by(glyph_size.width(), 0);
}
}
static inline size_t draw_text_iterator_offset(const Utf8View& text, const Utf8View::Iterator& it)
{
return text.byte_offset_of(it);
}
static inline size_t draw_text_iterator_offset(const Utf32View& text, const Utf32View::Iterator& it)
{
return it - text.begin();
}
static inline size_t draw_text_get_length(const Utf8View& text)
{
return text.byte_length();
}
static inline size_t draw_text_get_length(const Utf32View& text)
{
return text.length();
}
template<typename TextType, typename DrawGlyphFunction>
void do_draw_text(const IntRect& rect, const TextType& text, const Font& font, TextAlignment alignment, TextElision elision, DrawGlyphFunction draw_glyph)
{
Vector<TextType, 32> lines;
size_t start_of_current_line = 0;
for (auto it = text.begin(); it != text.end(); ++it) {
u32 code_point = *it;
if (code_point == '\n') {
auto offset = draw_text_iterator_offset(text, it);
TextType line = text.substring_view(start_of_current_line, offset - start_of_current_line);
lines.append(line);
start_of_current_line = offset + 1;
}
}
if (start_of_current_line != draw_text_get_length(text)) {
TextType line = text.substring_view(start_of_current_line, draw_text_get_length(text) - start_of_current_line);
lines.append(line);
}
static const int line_spacing = 4;
int line_height = font.glyph_height() + line_spacing;
IntRect bounding_rect { 0, 0, 0, (static_cast<int>(lines.size()) * line_height) - line_spacing };
for (auto& line : lines) {
auto line_width = font.width(line);
if (line_width > bounding_rect.width())
bounding_rect.set_width(line_width);
}
switch (alignment) {
case TextAlignment::TopLeft:
bounding_rect.set_location(rect.location());
break;
case TextAlignment::TopRight:
bounding_rect.set_location({ (rect.right() + 1) - bounding_rect.width(), rect.y() });
break;
case TextAlignment::CenterLeft:
bounding_rect.set_location({ rect.x(), rect.center().y() - (bounding_rect.height() / 2) });
break;
case TextAlignment::CenterRight:
bounding_rect.set_location({ (rect.right() + 1) - bounding_rect.width(), rect.center().y() - (bounding_rect.height() / 2) });
break;
case TextAlignment::Center:
bounding_rect.center_within(rect);
break;
case TextAlignment::BottomRight:
bounding_rect.set_location({ (rect.right() + 1) - bounding_rect.width(), (rect.bottom() + 1) - bounding_rect.height() });
break;
default:
ASSERT_NOT_REACHED();
}
for (size_t i = 0; i < lines.size(); ++i) {
auto& line = lines[i];
IntRect line_rect { bounding_rect.x(), bounding_rect.y() + static_cast<int>(i) * line_height, bounding_rect.width(), line_height };
line_rect.intersect(rect);
draw_text_line(line_rect, line, font, alignment, elision, draw_glyph);
}
}
void Painter::draw_text(const IntRect& rect, const StringView& text, TextAlignment alignment, Color color, TextElision elision)
{
draw_text(rect, text, font(), alignment, color, elision);
}
void Painter::draw_text(const IntRect& rect, const Utf32View& text, TextAlignment alignment, Color color, TextElision elision)
{
draw_text(rect, text, font(), alignment, color, elision);
}
void Painter::draw_text(const IntRect& rect, const StringView& raw_text, const Font& font, TextAlignment alignment, Color color, TextElision elision)
{
Utf8View text { raw_text };
do_draw_text(rect, Utf8View(text), font, alignment, elision, [&](const IntRect& r, u32 code_point) {
draw_glyph_or_emoji(r.location(), code_point, font, color);
});
}
void Painter::draw_text(const IntRect& rect, const Utf32View& text, const Font& font, TextAlignment alignment, Color color, TextElision elision)
{
do_draw_text(rect, text, font, alignment, elision, [&](const IntRect& r, u32 code_point) {
draw_glyph_or_emoji(r.location(), code_point, font, color);
});
}
void Painter::draw_text(Function<void(const IntRect&, u32)> draw_one_glyph, const IntRect& rect, const StringView& raw_text, const Font& font, TextAlignment alignment, TextElision elision)
{
ASSERT(scale() == 1); // FIXME: Add scaling support.
Utf8View text { raw_text };
do_draw_text(rect, text, font, alignment, elision, [&](const IntRect& r, u32 code_point) {
draw_one_glyph(r, code_point);
});
}
void Painter::draw_text(Function<void(const IntRect&, u32)> draw_one_glyph, const IntRect& rect, const Utf8View& text, const Font& font, TextAlignment alignment, TextElision elision)
{
ASSERT(scale() == 1); // FIXME: Add scaling support.
do_draw_text(rect, text, font, alignment, elision, [&](const IntRect& r, u32 code_point) {
draw_one_glyph(r, code_point);
});
}
void Painter::draw_text(Function<void(const IntRect&, u32)> draw_one_glyph, const IntRect& rect, const Utf32View& text, const Font& font, TextAlignment alignment, TextElision elision)
{
ASSERT(scale() == 1); // FIXME: Add scaling support.
do_draw_text(rect, text, font, alignment, elision, [&](const IntRect& r, u32 code_point) {
draw_one_glyph(r, code_point);
});
}
void Painter::set_pixel(const IntPoint& p, Color color)
{
ASSERT(scale() == 1); // FIXME: Add scaling support.
auto point = p;
point.move_by(state().translation);
if (!clip_rect().contains(point))
return;
m_target->scanline(point.y())[point.x()] = color.value();
}
ALWAYS_INLINE void Painter::set_physical_pixel_with_draw_op(u32& pixel, const Color& color)
{
// This always sets a single physical pixel, independent of scale().
// This should only be called by routines that already handle scale.
switch (draw_op()) {
case DrawOp::Copy:
pixel = color.value();
break;
case DrawOp::Xor:
pixel = color.xored(Color::from_rgba(pixel)).value();
break;
case DrawOp::Invert:
pixel = Color::from_rgba(pixel).inverted().value();
break;
}
}
ALWAYS_INLINE void Painter::fill_physical_scanline_with_draw_op(int y, int x, int width, const Color& color)
{
// This always draws a single physical scanline, independent of scale().
// This should only be called by routines that already handle scale.
switch (draw_op()) {
case DrawOp::Copy:
fast_u32_fill(m_target->scanline(y) + x, color.value(), width);
break;
case DrawOp::Xor: {
auto* pixel = m_target->scanline(y) + x;
auto* end = pixel + width;
while (pixel < end) {
*pixel = Color::from_rgba(*pixel).xored(color).value();
pixel++;
}
break;
}
case DrawOp::Invert: {
auto* pixel = m_target->scanline(y) + x;
auto* end = pixel + width;
while (pixel < end) {
*pixel = Color::from_rgba(*pixel).inverted().value();
pixel++;
}
break;
}
}
}
void Painter::draw_physical_pixel(const IntPoint& physical_position, Color color, int thickness)
{
// This always draws a single physical pixel, independent of scale().
// This should only be called by routines that already handle scale
// (including scaling thickness).
ASSERT(draw_op() == DrawOp::Copy);
if (thickness == 1) { // Implies scale() == 1.
auto& pixel = m_target->scanline(physical_position.y())[physical_position.x()];
return set_physical_pixel_with_draw_op(pixel, Color::from_rgba(pixel).blend(color));
}
IntRect rect { physical_position, { thickness, thickness } };
fill_physical_rect(rect, color);
}
void Painter::draw_line(const IntPoint& p1, const IntPoint& p2, Color color, int thickness, LineStyle style)
{
if (color.alpha() == 0)
return;
auto clip_rect = this->clip_rect() * scale();
auto point1 = to_physical(p1);
auto point2 = to_physical(p2);
thickness *= scale();
// Special case: vertical line.
if (point1.x() == point2.x()) {
const int x = point1.x();
if (x < clip_rect.left() || x > clip_rect.right())
return;
if (point1.y() > point2.y())
2019-01-10 21:52:14 +00:00
swap(point1, point2);
if (point1.y() > clip_rect.bottom())
return;
if (point2.y() < clip_rect.top())
return;
int min_y = max(point1.y(), clip_rect.top());
int max_y = min(point2.y(), clip_rect.bottom());
if (style == LineStyle::Dotted) {
for (int y = min_y; y <= max_y; y += thickness * 2)
draw_physical_pixel({ x, y }, color, thickness);
} else if (style == LineStyle::Dashed) {
for (int y = min_y; y <= max_y; y += thickness * 6) {
draw_physical_pixel({ x, y }, color, thickness);
draw_physical_pixel({ x, min(y + thickness, max_y) }, color, thickness);
draw_physical_pixel({ x, min(y + thickness * 2, max_y) }, color, thickness);
}
} else {
for (int y = min_y; y <= max_y; y += thickness)
draw_physical_pixel({ x, y }, color, thickness);
}
return;
}
// Special case: horizontal line.
if (point1.y() == point2.y()) {
const int y = point1.y();
if (y < clip_rect.top() || y > clip_rect.bottom())
return;
if (point1.x() > point2.x())
2019-01-10 21:52:14 +00:00
swap(point1, point2);
if (point1.x() > clip_rect.right())
return;
if (point2.x() < clip_rect.left())
return;
int min_x = max(point1.x(), clip_rect.left());
int max_x = min(point2.x(), clip_rect.right());
if (style == LineStyle::Dotted) {
for (int x = min_x; x <= max_x; x += thickness * 2)
draw_physical_pixel({ x, y }, color, thickness);
} else if (style == LineStyle::Dashed) {
for (int x = min_x; x <= max_x; x += thickness * 6) {
draw_physical_pixel({ x, y }, color, thickness);
draw_physical_pixel({ min(x + thickness, max_x), y }, color, thickness);
draw_physical_pixel({ min(x + thickness * 2, max_x), y }, color, thickness);
}
} else {
for (int x = min_x; x <= max_x; x += thickness)
draw_physical_pixel({ x, y }, color, thickness);
}
return;
}
// FIXME: Implement dotted/dashed diagonal lines.
ASSERT(style == LineStyle::Solid);
const double adx = abs(point2.x() - point1.x());
const double ady = abs(point2.y() - point1.y());
if (adx > ady) {
if (point1.x() > point2.x())
swap(point1, point2);
} else {
if (point1.y() > point2.y())
swap(point1, point2);
}
// FIXME: Implement clipping below.
const double dx = point2.x() - point1.x();
const double dy = point2.y() - point1.y();
double error = 0;
if (dx > dy) {
const double y_step = dy == 0 ? 0 : (dy > 0 ? 1 : -1);
const double delta_error = fabs(dy / dx);
int y = point1.y();
for (int x = point1.x(); x <= point2.x(); ++x) {
if (clip_rect.contains(x, y))
draw_physical_pixel({ x, y }, color, thickness);
error += delta_error;
if (error >= 0.5) {
y = (double)y + y_step;
error -= 1.0;
}
}
} else {
const double x_step = dx == 0 ? 0 : (dx > 0 ? 1 : -1);
const double delta_error = fabs(dx / dy);
int x = point1.x();
for (int y = point1.y(); y <= point2.y(); ++y) {
if (clip_rect.contains(x, y))
draw_physical_pixel({ x, y }, color, thickness);
error += delta_error;
if (error >= 0.5) {
x = (double)x + x_step;
error -= 1.0;
}
}
}
}
2020-10-20 22:03:07 +00:00
static void split_quadratic_bezier_curve(const FloatPoint& original_control, const FloatPoint& p1, const FloatPoint& p2, Function<void(const FloatPoint&, const FloatPoint&)>& callback)
{
auto po1_midpoint = original_control + p1;
po1_midpoint /= 2;
auto po2_midpoint = original_control + p2;
po2_midpoint /= 2;
auto new_segment = po1_midpoint + po2_midpoint;
new_segment /= 2;
Painter::for_each_line_segment_on_bezier_curve(po1_midpoint, p1, new_segment, callback);
Painter::for_each_line_segment_on_bezier_curve(po2_midpoint, new_segment, p2, callback);
}
static bool can_approximate_bezier_curve(const FloatPoint& p1, const FloatPoint& p2, const FloatPoint& control)
{
constexpr static int tolerance = 15;
auto p1x = 3 * control.x() - 2 * p1.x() - p2.x();
auto p1y = 3 * control.y() - 2 * p1.y() - p2.y();
auto p2x = 3 * control.x() - 2 * p2.x() - p1.x();
auto p2y = 3 * control.y() - 2 * p2.y() - p1.y();
p1x = p1x * p1x;
p1y = p1y * p1y;
p2x = p2x * p2x;
p2y = p2y * p2y;
return max(p1x, p2x) + max(p1y, p2y) <= tolerance;
}
// static
void Painter::for_each_line_segment_on_bezier_curve(const FloatPoint& control_point, const FloatPoint& p1, const FloatPoint& p2, Function<void(const FloatPoint&, const FloatPoint&)>& callback)
{
2020-10-20 22:03:07 +00:00
if (can_approximate_bezier_curve(p1, p2, control_point)) {
callback(p1, p2);
} else {
split_quadratic_bezier_curve(control_point, p1, p2, callback);
}
}
void Painter::for_each_line_segment_on_bezier_curve(const FloatPoint& control_point, const FloatPoint& p1, const FloatPoint& p2, Function<void(const FloatPoint&, const FloatPoint&)>&& callback)
{
for_each_line_segment_on_bezier_curve(control_point, p1, p2, callback);
}
2020-07-22 06:46:15 +00:00
static void split_elliptical_arc(const FloatPoint& p1, const FloatPoint& p2, const FloatPoint& center, const FloatPoint radii, float x_axis_rotation, float theta_1, float theta_delta, Function<void(const FloatPoint&, const FloatPoint&)>& callback)
{
auto half_theta_delta = theta_delta / 2;
auto theta_mid = theta_1 + half_theta_delta;
auto xc = cosf(x_axis_rotation);
auto xs = sinf(x_axis_rotation);
auto tc = cosf(theta_1 + half_theta_delta);
auto ts = sinf(theta_1 + half_theta_delta);
auto x2 = xc * radii.x() * tc - xs * radii.y() * ts + center.x();
auto y2 = xs * radii.x() * tc + xc * radii.y() * ts + center.y();
FloatPoint mid_point = { x2, y2 };
Painter::for_each_line_segment_on_elliptical_arc(p1, mid_point, center, radii, x_axis_rotation, theta_1, half_theta_delta, callback);
Painter::for_each_line_segment_on_elliptical_arc(mid_point, p2, center, radii, x_axis_rotation, theta_mid, half_theta_delta, callback);
}
static bool can_approximate_elliptical_arc(const FloatPoint& p1, const FloatPoint& p2, const FloatPoint& center, const FloatPoint radii, float x_axis_rotation, float theta_1, float theta_delta)
{
constexpr static float tolerance = 1;
auto half_theta_delta = theta_delta / 2.0f;
auto xc = cosf(x_axis_rotation);
auto xs = sinf(x_axis_rotation);
auto tc = cosf(theta_1 + half_theta_delta);
auto ts = sinf(theta_1 + half_theta_delta);
auto x2 = xc * radii.x() * tc - xs * radii.y() * ts + center.x();
auto y2 = xs * radii.x() * tc + xc * radii.y() * ts + center.y();
auto ellipse_mid_point = FloatPoint { x2, y2 };
auto line_mid_point = p1 + (p2 - p1) / 2.0f;
return ellipse_mid_point.distance_from(line_mid_point) < tolerance;
}
void Painter::draw_quadratic_bezier_curve(const IntPoint& control_point, const IntPoint& p1, const IntPoint& p2, Color color, int thickness, LineStyle style)
{
ASSERT(scale() == 1); // FIXME: Add scaling support.
2020-07-22 06:46:15 +00:00
for_each_line_segment_on_bezier_curve(FloatPoint(control_point), FloatPoint(p1), FloatPoint(p2), [&](const FloatPoint& fp1, const FloatPoint& fp2) {
draw_line(IntPoint(fp1.x(), fp1.y()), IntPoint(fp2.x(), fp2.y()), color, thickness, style);
});
}
// static
2020-07-22 06:46:15 +00:00
void Painter::for_each_line_segment_on_elliptical_arc(const FloatPoint& p1, const FloatPoint& p2, const FloatPoint& center, const FloatPoint radii, float x_axis_rotation, float theta_1, float theta_delta, Function<void(const FloatPoint&, const FloatPoint&)>& callback)
{
if (can_approximate_elliptical_arc(p1, p2, center, radii, x_axis_rotation, theta_1, theta_delta)) {
2020-07-22 06:46:15 +00:00
callback(p1, p2);
} else {
split_elliptical_arc(p1, p2, center, radii, x_axis_rotation, theta_1, theta_delta, callback);
}
}
// static
2020-07-22 06:46:15 +00:00
void Painter::for_each_line_segment_on_elliptical_arc(const FloatPoint& p1, const FloatPoint& p2, const FloatPoint& center, const FloatPoint radii, float x_axis_rotation, float theta_1, float theta_delta, Function<void(const FloatPoint&, const FloatPoint&)>&& callback)
{
for_each_line_segment_on_elliptical_arc(p1, p2, center, radii, x_axis_rotation, theta_1, theta_delta, callback);
}
void Painter::draw_elliptical_arc(const IntPoint& p1, const IntPoint& p2, const IntPoint& center, const FloatPoint& radii, float x_axis_rotation, float theta_1, float theta_delta, Color color, int thickness, LineStyle style)
{
ASSERT(scale() == 1); // FIXME: Add scaling support.
2020-07-22 06:46:15 +00:00
for_each_line_segment_on_elliptical_arc(FloatPoint(p1), FloatPoint(p2), FloatPoint(center), radii, x_axis_rotation, theta_1, theta_delta, [&](const FloatPoint& fp1, const FloatPoint& fp2) {
draw_line(IntPoint(fp1.x(), fp1.y()), IntPoint(fp2.x(), fp2.y()), color, thickness, style);
});
}
void Painter::add_clip_rect(const IntRect& rect)
{
state().clip_rect.intersect(rect.translated(translation()));
state().clip_rect.intersect(m_target->rect()); // FIXME: This shouldn't be necessary?
}
void Painter::clear_clip_rect()
{
state().clip_rect = m_clip_origin;
}
PainterStateSaver::PainterStateSaver(Painter& painter)
: m_painter(painter)
{
m_painter.save();
}
PainterStateSaver::~PainterStateSaver()
{
m_painter.restore();
}
void Painter::stroke_path(const Path& path, Color color, int thickness)
{
ASSERT(scale() == 1); // FIXME: Add scaling support.
FloatPoint cursor;
for (auto& segment : path.segments()) {
2020-07-22 06:46:15 +00:00
switch (segment.type()) {
case Segment::Type::Invalid:
ASSERT_NOT_REACHED();
break;
2020-07-22 06:46:15 +00:00
case Segment::Type::MoveTo:
cursor = segment.point();
break;
case Segment::Type::LineTo:
draw_line(cursor.to_type<int>(), segment.point().to_type<int>(), color, thickness);
2020-07-22 06:46:15 +00:00
cursor = segment.point();
break;
2020-07-22 06:46:15 +00:00
case Segment::Type::QuadraticBezierCurveTo: {
auto& through = static_cast<const QuadraticBezierCurveSegment&>(segment).through();
draw_quadratic_bezier_curve(through.to_type<int>(), cursor.to_type<int>(), segment.point().to_type<int>(), color, thickness);
2020-07-22 06:46:15 +00:00
cursor = segment.point();
break;
2020-07-22 06:46:15 +00:00
}
case Segment::Type::EllipticalArcTo:
auto& arc = static_cast<const EllipticalArcSegment&>(segment);
draw_elliptical_arc(cursor.to_type<int>(), segment.point().to_type<int>(), arc.center().to_type<int>(), arc.radii(), arc.x_axis_rotation(), arc.theta_1(), arc.theta_delta(), color, thickness);
2020-07-22 06:46:15 +00:00
cursor = segment.point();
break;
}
}
}
//#define FILL_PATH_DEBUG
[[maybe_unused]] static void approximately_place_on_int_grid(FloatPoint ffrom, FloatPoint fto, IntPoint& from, IntPoint& to, Optional<IntPoint> previous_to)
{
auto diffs = fto - ffrom;
// Truncate all first (round down).
from = ffrom.to_type<int>();
to = fto.to_type<int>();
// There are 16 possible configurations, by deciding to round each
// coord up or down (and there are four coords, from.x from.y to.x to.y)
// we will simply choose one which most closely matches the correct slope
// with the following heuristic:
// - if the x diff is positive or zero (that is, a right-to-left slant), round 'from.x' up and 'to.x' down.
// - if the x diff is negative (that is, a left-to-right slant), round 'from.x' down and 'to.x' up.
// Note that we do not need to touch the 'y' attribute, as that is our scanline.
if (diffs.x() >= 0) {
from.set_x(from.x() + 1);
} else {
to.set_x(to.x() + 1);
}
if (previous_to.has_value() && from.x() != previous_to.value().x()) // The points have to line up, since we're using these lines to fill a shape.
from.set_x(previous_to.value().x());
}
void Painter::fill_path(Path& path, Color color, WindingRule winding_rule)
{
ASSERT(scale() == 1); // FIXME: Add scaling support.
const auto& segments = path.split_lines();
if (segments.size() == 0)
return;
2020-07-22 06:46:15 +00:00
Vector<Path::SplitLineSegment> active_list;
active_list.ensure_capacity(segments.size());
// first, grab the segments for the very first scanline
int first_y = path.bounding_box().bottom_right().y() + 1;
int last_y = path.bounding_box().top_left().y() - 1;
float scanline = first_y;
size_t last_active_segment { 0 };
for (auto& segment : segments) {
if (segment.maximum_y != scanline)
break;
active_list.append(segment);
++last_active_segment;
}
auto is_inside_shape = [winding_rule](int winding_number) {
if (winding_rule == WindingRule::Nonzero)
return winding_number != 0;
if (winding_rule == WindingRule::EvenOdd)
return winding_number % 2 == 0;
ASSERT_NOT_REACHED();
};
auto increment_winding = [winding_rule](int& winding_number, const IntPoint& from, const IntPoint& to) {
if (winding_rule == WindingRule::EvenOdd) {
++winding_number;
return;
}
if (winding_rule == WindingRule::Nonzero) {
if (from.dy_relative_to(to) < 0)
++winding_number;
else
--winding_number;
return;
}
ASSERT_NOT_REACHED();
};
while (scanline >= last_y) {
Optional<IntPoint> previous_to;
if (active_list.size()) {
// sort the active list by 'x' from right to left
quick_sort(active_list, [](const auto& line0, const auto& line1) {
return line1.x < line0.x;
});
#ifdef FILL_PATH_DEBUG
if ((int)scanline % 10 == 0) {
draw_text(IntRect(active_list.last().x - 20, scanline, 20, 10), String::number((int)scanline));
}
#endif
if (active_list.size() > 1) {
auto winding_number { 0 };
for (size_t i = 1; i < active_list.size(); ++i) {
auto& previous = active_list[i - 1];
auto& current = active_list[i];
IntPoint from, to;
IntPoint truncated_from { previous.x, scanline };
IntPoint truncated_to { current.x, scanline };
approximately_place_on_int_grid({ previous.x, scanline }, { current.x, scanline }, from, to, previous_to);
if (is_inside_shape(winding_number)) {
// The points between this segment and the previous are
// inside the shape
dbgln<debug_fill_path>("y={}: {} at {}: {} -- {}", scanline, winding_number, i, from, to);
draw_line(from, to, color, 1);
}
auto is_passing_through_maxima = scanline == previous.maximum_y
|| scanline == previous.minimum_y
|| scanline == current.maximum_y
|| scanline == current.minimum_y;
auto is_passing_through_vertex = false;
if (is_passing_through_maxima) {
is_passing_through_vertex = previous.x == current.x;
}
if (!is_passing_through_vertex || previous.inverse_slope * current.inverse_slope < 0)
increment_winding(winding_number, truncated_from, truncated_to);
// update the x coord
active_list[i - 1].x -= active_list[i - 1].inverse_slope;
}
active_list.last().x -= active_list.last().inverse_slope;
} else {
auto point = IntPoint(active_list[0].x, scanline);
draw_line(point, point, color);
// update the x coord
active_list.first().x -= active_list.first().inverse_slope;
}
}
--scanline;
// remove any edge that goes out of bound from the active list
for (size_t i = 0, count = active_list.size(); i < count; ++i) {
if (scanline <= active_list[i].minimum_y) {
active_list.remove(i);
--count;
--i;
}
}
for (size_t j = last_active_segment; j < segments.size(); ++j, ++last_active_segment) {
auto& segment = segments[j];
if (segment.maximum_y < scanline)
break;
if (segment.minimum_y >= scanline)
continue;
active_list.append(segment);
}
}
#ifdef FILL_PATH_DEBUG
size_t i { 0 };
for (auto& segment : segments) {
draw_line(Point<int>(segment.from), Point<int>(segment.to), Color::from_hsv(i++ * 360.0 / segments.size(), 1.0, 1.0), 1);
}
#endif
}
void Painter::blit_disabled(const IntPoint& location, const Gfx::Bitmap& bitmap, const IntRect& rect, const Palette& palette)
{
ASSERT(scale() == 1); // FIXME: Add scaling support.
auto bright_color = palette.threed_highlight();
auto dark_color = palette.threed_shadow1();
blit_filtered(location.translated(1, 1), bitmap, rect, [&](auto) {
return bright_color;
});
blit_filtered(location, bitmap, rect, [&](Color src) {
int gray = src.to_grayscale().red();
if (gray > 160)
return bright_color;
return dark_color;
});
}
}