ladybird/Userland/Libraries/LibJS/Runtime/Date.cpp

634 lines
26 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2020-2023, Linus Groh <linusg@serenityos.org>
* Copyright (c) 2022, Tim Flynn <trflynn89@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/NumericLimits.h>
#include <AK/StringBuilder.h>
#include <AK/Time.h>
#include <LibJS/Runtime/AbstractOperations.h>
#include <LibJS/Runtime/Date.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/Temporal/ISO8601.h>
#include <LibTimeZone/TimeZone.h>
#include <time.h>
namespace JS {
static Crypto::SignedBigInteger const s_one_billion_bigint { 1'000'000'000 };
static Crypto::SignedBigInteger const s_one_million_bigint { 1'000'000 };
static Crypto::SignedBigInteger const s_one_thousand_bigint { 1'000 };
Crypto::SignedBigInteger const ns_per_day_bigint { static_cast<i64>(ns_per_day) };
NonnullGCPtr<Date> Date::create(Realm& realm, double date_value)
{
return realm.heap().allocate<Date>(realm, date_value, realm.intrinsics().date_prototype()).release_allocated_value_but_fixme_should_propagate_errors();
}
Date::Date(double date_value, Object& prototype)
: Object(ConstructWithPrototypeTag::Tag, prototype)
, m_date_value(date_value)
{
}
DeprecatedString Date::iso_date_string() const
{
int year = year_from_time(m_date_value);
StringBuilder builder;
if (year < 0)
builder.appendff("-{:06}", -year);
else if (year > 9999)
builder.appendff("+{:06}", year);
else
builder.appendff("{:04}", year);
builder.append('-');
builder.appendff("{:02}", month_from_time(m_date_value) + 1);
builder.append('-');
builder.appendff("{:02}", date_from_time(m_date_value));
builder.append('T');
builder.appendff("{:02}", hour_from_time(m_date_value));
builder.append(':');
builder.appendff("{:02}", min_from_time(m_date_value));
builder.append(':');
builder.appendff("{:02}", sec_from_time(m_date_value));
builder.append('.');
builder.appendff("{:03}", ms_from_time(m_date_value));
builder.append('Z');
return builder.to_deprecated_string();
}
// DayWithinYear(t), https://tc39.es/ecma262/#eqn-DayWithinYear
u16 day_within_year(double t)
{
if (!Value(t).is_finite_number())
return 0;
// Day(t) - DayFromYear(YearFromTime(t))
return static_cast<u16>(day(t) - day_from_year(year_from_time(t)));
}
// DateFromTime(t), https://tc39.es/ecma262/#sec-date-number
u8 date_from_time(double t)
{
switch (month_from_time(t)) {
// DayWithinYear(t) + 1𝔽 if MonthFromTime(t) = +0𝔽
case 0:
return day_within_year(t) + 1;
// DayWithinYear(t) - 30𝔽 if MonthFromTime(t) = 1𝔽
case 1:
return day_within_year(t) - 30;
// DayWithinYear(t) - 58𝔽 - InLeapYear(t) if MonthFromTime(t) = 2𝔽
case 2:
return day_within_year(t) - 58 - in_leap_year(t);
// DayWithinYear(t) - 89𝔽 - InLeapYear(t) if MonthFromTime(t) = 3𝔽
case 3:
return day_within_year(t) - 89 - in_leap_year(t);
// DayWithinYear(t) - 119𝔽 - InLeapYear(t) if MonthFromTime(t) = 4𝔽
case 4:
return day_within_year(t) - 119 - in_leap_year(t);
// DayWithinYear(t) - 150𝔽 - InLeapYear(t) if MonthFromTime(t) = 5𝔽
case 5:
return day_within_year(t) - 150 - in_leap_year(t);
// DayWithinYear(t) - 180𝔽 - InLeapYear(t) if MonthFromTime(t) = 6𝔽
case 6:
return day_within_year(t) - 180 - in_leap_year(t);
// DayWithinYear(t) - 211𝔽 - InLeapYear(t) if MonthFromTime(t) = 7𝔽
case 7:
return day_within_year(t) - 211 - in_leap_year(t);
// DayWithinYear(t) - 242𝔽 - InLeapYear(t) if MonthFromTime(t) = 8𝔽
case 8:
return day_within_year(t) - 242 - in_leap_year(t);
// DayWithinYear(t) - 272𝔽 - InLeapYear(t) if MonthFromTime(t) = 9𝔽
case 9:
return day_within_year(t) - 272 - in_leap_year(t);
// DayWithinYear(t) - 303𝔽 - InLeapYear(t) if MonthFromTime(t) = 10𝔽
case 10:
return day_within_year(t) - 303 - in_leap_year(t);
// DayWithinYear(t) - 333𝔽 - InLeapYear(t) if MonthFromTime(t) = 11𝔽
case 11:
return day_within_year(t) - 333 - in_leap_year(t);
default:
VERIFY_NOT_REACHED();
}
}
// DaysInYear(y), https://tc39.es/ecma262/#eqn-DaysInYear
u16 days_in_year(i32 y)
{
// 365𝔽 if ((y) modulo 4) ≠ 0
if (y % 4 != 0)
return 365;
// 366𝔽 if ((y) modulo 4) = 0 and ((y) modulo 100) ≠ 0
if (y % 4 == 0 && y % 100 != 0)
return 366;
// 365𝔽 if ((y) modulo 100) = 0 and ((y) modulo 400) ≠ 0
if (y % 100 == 0 && y % 400 != 0)
return 365;
// 366𝔽 if ((y) modulo 400) = 0
if (y % 400 == 0)
return 366;
VERIFY_NOT_REACHED();
}
// DayFromYear(y), https://tc39.es/ecma262/#eqn-DaysFromYear
double day_from_year(i32 y)
{
// 𝔽(365 × ((y) - 1970) + floor(((y) - 1969) / 4) - floor(((y) - 1901) / 100) + floor(((y) - 1601) / 400))
return 365.0 * (y - 1970) + floor((y - 1969) / 4.0) - floor((y - 1901) / 100.0) + floor((y - 1601) / 400.0);
}
// TimeFromYear(y), https://tc39.es/ecma262/#eqn-TimeFromYear
double time_from_year(i32 y)
{
// msPerDay × DayFromYear(y)
return ms_per_day * day_from_year(y);
}
// YearFromTime(t), https://tc39.es/ecma262/#eqn-YearFromTime
i32 year_from_time(double t)
{
// the largest integral Number y (closest to +∞) such that TimeFromYear(y) ≤ t
if (!Value(t).is_finite_number())
return NumericLimits<i32>::max();
// Approximation using average number of milliseconds per year. We might have to adjust this guess afterwards.
auto year = static_cast<i32>(t / (365.2425 * ms_per_day) + 1970);
auto year_t = time_from_year(year);
if (year_t > t)
year--;
else if (year_t + days_in_year(year) * ms_per_day <= t)
year++;
return year;
}
// InLeapYear(t), https://tc39.es/ecma262/#eqn-InLeapYear
bool in_leap_year(double t)
{
// +0𝔽 if DaysInYear(YearFromTime(t)) = 365𝔽
// 1𝔽 if DaysInYear(YearFromTime(t)) = 366𝔽
return days_in_year(year_from_time(t)) == 366;
}
// MonthFromTime(t), https://tc39.es/ecma262/#eqn-MonthFromTime
u8 month_from_time(double t)
{
auto in_leap_year = JS::in_leap_year(t);
auto day_within_year = JS::day_within_year(t);
// +0𝔽 if +0𝔽 ≤ DayWithinYear(t) < 31𝔽
if (day_within_year < 31)
return 0;
// 1𝔽 if 31𝔽 ≤ DayWithinYear(t) < 59𝔽 + InLeapYear(t)
if (31 <= day_within_year && day_within_year < 59 + in_leap_year)
return 1;
// 2𝔽 if 59𝔽 + InLeapYear(t) ≤ DayWithinYear(t) < 90𝔽 + InLeapYear(t)
if (59 + in_leap_year <= day_within_year && day_within_year < 90 + in_leap_year)
return 2;
// 3𝔽 if 90𝔽 + InLeapYear(t) ≤ DayWithinYear(t) < 120𝔽 + InLeapYear(t)
if (90 + in_leap_year <= day_within_year && day_within_year < 120 + in_leap_year)
return 3;
// 4𝔽 if 120𝔽 + InLeapYear(t) ≤ DayWithinYear(t) < 151𝔽 + InLeapYear(t)
if (120 + in_leap_year <= day_within_year && day_within_year < 151 + in_leap_year)
return 4;
// 5𝔽 if 151𝔽 + InLeapYear(t) ≤ DayWithinYear(t) < 181𝔽 + InLeapYear(t)
if (151 + in_leap_year <= day_within_year && day_within_year < 181 + in_leap_year)
return 5;
// 6𝔽 if 181𝔽 + InLeapYear(t) ≤ DayWithinYear(t) < 212𝔽 + InLeapYear(t)
if (181 + in_leap_year <= day_within_year && day_within_year < 212 + in_leap_year)
return 6;
// 7𝔽 if 212𝔽 + InLeapYear(t) ≤ DayWithinYear(t) < 243𝔽 + InLeapYear(t)
if (212 + in_leap_year <= day_within_year && day_within_year < 243 + in_leap_year)
return 7;
// 8𝔽 if 243𝔽 + InLeapYear(t) ≤ DayWithinYear(t) < 273𝔽 + InLeapYear(t)
if (243 + in_leap_year <= day_within_year && day_within_year < 273 + in_leap_year)
return 8;
// 9𝔽 if 273𝔽 + InLeapYear(t) ≤ DayWithinYear(t) < 304𝔽 + InLeapYear(t)
if (273 + in_leap_year <= day_within_year && day_within_year < 304 + in_leap_year)
return 9;
// 10𝔽 if 304𝔽 + InLeapYear(t) ≤ DayWithinYear(t) < 334𝔽 + InLeapYear(t)
if (304 + in_leap_year <= day_within_year && day_within_year < 334 + in_leap_year)
return 10;
// 11𝔽 if 334𝔽 + InLeapYear(t) ≤ DayWithinYear(t) < 365𝔽 + InLeapYear(t)
if (334 + in_leap_year <= day_within_year && day_within_year < 365 + in_leap_year)
return 11;
VERIFY_NOT_REACHED();
}
// HourFromTime(t), https://tc39.es/ecma262/#eqn-HourFromTime
u8 hour_from_time(double t)
{
if (!Value(t).is_finite_number())
return 0;
// 𝔽(floor((t / msPerHour)) modulo HoursPerDay)
return static_cast<u8>(modulo(floor(t / ms_per_hour), hours_per_day));
}
// MinFromTime(t), https://tc39.es/ecma262/#eqn-MinFromTime
u8 min_from_time(double t)
{
if (!Value(t).is_finite_number())
return 0;
// 𝔽(floor((t / msPerMinute)) modulo MinutesPerHour)
return static_cast<u8>(modulo(floor(t / ms_per_minute), minutes_per_hour));
}
// SecFromTime(t), https://tc39.es/ecma262/#eqn-SecFromTime
u8 sec_from_time(double t)
{
if (!Value(t).is_finite_number())
return 0;
// 𝔽(floor((t / msPerSecond)) modulo SecondsPerMinute)
return static_cast<u8>(modulo(floor(t / ms_per_second), seconds_per_minute));
}
// msFromTime(t), https://tc39.es/ecma262/#eqn-msFromTime
u16 ms_from_time(double t)
{
if (!Value(t).is_finite_number())
return 0;
// 𝔽((t) modulo (msPerSecond))
return static_cast<u16>(modulo(t, ms_per_second));
}
2021-12-06 17:59:52 +00:00
// 21.4.1.6 Week Day, https://tc39.es/ecma262/#sec-week-day
u8 week_day(double t)
{
if (!Value(t).is_finite_number())
return 0;
2021-12-06 17:59:52 +00:00
// 𝔽((Day(t) + 4𝔽) modulo 7)
return static_cast<u8>(modulo(day(t) + 4, 7));
2021-12-06 17:59:52 +00:00
}
// 21.4.1.7 GetUTCEpochNanoseconds ( year, month, day, hour, minute, second, millisecond, microsecond, nanosecond ), https://tc39.es/ecma262/#sec-getutcepochnanoseconds
Crypto::SignedBigInteger get_utc_epoch_nanoseconds(i32 year, u8 month, u8 day, u8 hour, u8 minute, u8 second, u16 millisecond, u16 microsecond, u16 nanosecond)
{
// 1. Let date be MakeDay(𝔽(year), 𝔽(month - 1), 𝔽(day)).
auto date = make_day(year, month - 1, day);
// 2. Let time be MakeTime(𝔽(hour), 𝔽(minute), 𝔽(second), 𝔽(millisecond)).
auto time = make_time(hour, minute, second, millisecond);
// 3. Let ms be MakeDate(date, time).
auto ms = make_date(date, time);
// 4. Assert: ms is an integral Number.
VERIFY(ms == trunc(ms));
// 5. Return ((ms) × 10^6 + microsecond × 10^3 + nanosecond).
auto result = Crypto::SignedBigInteger { ms }.multiplied_by(s_one_million_bigint);
result = result.plus(Crypto::SignedBigInteger { static_cast<i32>(microsecond) }.multiplied_by(s_one_thousand_bigint));
result = result.plus(Crypto::SignedBigInteger { static_cast<i32>(nanosecond) });
return result;
}
static i64 clip_bigint_to_sane_time(Crypto::SignedBigInteger const& value)
{
static Crypto::SignedBigInteger const min_bigint { NumericLimits<i64>::min() };
static Crypto::SignedBigInteger const max_bigint { NumericLimits<i64>::max() };
// The provided epoch (nano)seconds value is potentially out of range for AK::Duration and subsequently
// get_time_zone_offset(). We can safely assume that the TZDB has no useful information that far
// into the past and future anyway, so clamp it to the i64 range.
if (value < min_bigint)
return NumericLimits<i64>::min();
if (value > max_bigint)
return NumericLimits<i64>::max();
// FIXME: Can we do this without string conversion?
return value.to_base_deprecated(10).to_int<i64>().value();
}
// 21.4.1.8 GetNamedTimeZoneEpochNanoseconds ( timeZoneIdentifier, year, month, day, hour, minute, second, millisecond, microsecond, nanosecond ), https://tc39.es/ecma262/#sec-getnamedtimezoneepochnanoseconds
Vector<Crypto::SignedBigInteger> get_named_time_zone_epoch_nanoseconds(StringView time_zone_identifier, i32 year, u8 month, u8 day, u8 hour, u8 minute, u8 second, u16 millisecond, u16 microsecond, u16 nanosecond)
{
auto local_nanoseconds = get_utc_epoch_nanoseconds(year, month, day, hour, minute, second, millisecond, microsecond, nanosecond);
auto local_time = UnixDateTime::from_nanoseconds_since_epoch(clip_bigint_to_sane_time(local_nanoseconds));
// FIXME: LibTimeZone does not behave exactly as the spec expects. It does not consider repeated or skipped time points.
auto offset = TimeZone::get_time_zone_offset(time_zone_identifier, local_time);
// Can only fail if the time zone identifier is invalid, which cannot be the case here.
VERIFY(offset.has_value());
return { local_nanoseconds.minus(Crypto::SignedBigInteger { offset->seconds }.multiplied_by(s_one_billion_bigint)) };
}
// 21.4.1.9 GetNamedTimeZoneOffsetNanoseconds ( timeZoneIdentifier, epochNanoseconds ), https://tc39.es/ecma262/#sec-getnamedtimezoneoffsetnanoseconds
i64 get_named_time_zone_offset_nanoseconds(StringView time_zone_identifier, Crypto::SignedBigInteger const& epoch_nanoseconds)
{
// Only called with validated time zone identifier as argument.
auto time_zone = TimeZone::time_zone_from_string(time_zone_identifier);
VERIFY(time_zone.has_value());
// Since UnixDateTime::from_seconds_since_epoch() and UnixDateTime::from_nanoseconds_since_epoch() both take an i64, converting to
// seconds first gives us a greater range. The TZDB doesn't have sub-second offsets.
auto seconds = epoch_nanoseconds.divided_by(s_one_billion_bigint).quotient;
auto time = UnixDateTime::from_seconds_since_epoch(clip_bigint_to_sane_time(seconds));
auto offset = TimeZone::get_time_zone_offset(*time_zone, time);
VERIFY(offset.has_value());
return offset->seconds * 1'000'000'000;
}
// 21.4.1.10 DefaultTimeZone ( ), https://tc39.es/ecma262/#sec-defaulttimezone
// 6.4.3 DefaultTimeZone ( ), https://tc39.es/ecma402/#sup-defaulttimezone
StringView default_time_zone()
{
return TimeZone::current_time_zone();
}
// 21.4.1.11 LocalTime ( t ), https://tc39.es/ecma262/#sec-localtime
double local_time(double time)
{
// 1. Let localTimeZone be DefaultTimeZone().
auto local_time_zone = default_time_zone();
double offset_nanoseconds { 0 };
// 2. If IsTimeZoneOffsetString(localTimeZone) is true, then
if (is_time_zone_offset_string(local_time_zone)) {
// a. Let offsetNs be ParseTimeZoneOffsetString(localTimeZone).
offset_nanoseconds = parse_time_zone_offset_string(local_time_zone);
}
// 3. Else,
else {
// a. Let offsetNs be GetNamedTimeZoneOffsetNanoseconds(localTimeZone, ((t) × 10^6)).
auto time_bigint = Crypto::SignedBigInteger { time }.multiplied_by(s_one_million_bigint);
offset_nanoseconds = get_named_time_zone_offset_nanoseconds(local_time_zone, time_bigint);
}
// 4. Let offsetMs be truncate(offsetNs / 10^6).
auto offset_milliseconds = trunc(offset_nanoseconds / 1e6);
// 5. Return t + 𝔽(offsetMs).
return time + offset_milliseconds;
}
// 21.4.1.12 UTC ( t ), https://tc39.es/ecma262/#sec-utc-t
double utc_time(double time)
{
// 1. Let localTimeZone be DefaultTimeZone().
auto local_time_zone = default_time_zone();
double offset_nanoseconds { 0 };
// 2. If IsTimeZoneOffsetString(localTimeZone) is true, then
if (is_time_zone_offset_string(local_time_zone)) {
// a. Let offsetNs be ParseTimeZoneOffsetString(localTimeZone).
offset_nanoseconds = parse_time_zone_offset_string(local_time_zone);
}
// 3. Else,
else {
// a. Let possibleInstants be GetNamedTimeZoneEpochNanoseconds(localTimeZone, (YearFromTime(t)), (MonthFromTime(t)) + 1, (DateFromTime(t)), (HourFromTime(t)), (MinFromTime(t)), (SecFromTime(t)), (msFromTime(t)), 0, 0).
auto possible_instants = get_named_time_zone_epoch_nanoseconds(local_time_zone, year_from_time(time), month_from_time(time) + 1, date_from_time(time), hour_from_time(time), min_from_time(time), sec_from_time(time), ms_from_time(time), 0, 0);
// b. NOTE: The following steps ensure that when t represents local time repeating multiple times at a negative time zone transition (e.g. when the daylight saving time ends or the time zone offset is decreased due to a time zone rule change) or skipped local time at a positive time zone transition (e.g. when the daylight saving time starts or the time zone offset is increased due to a time zone rule change), t is interpreted using the time zone offset before the transition.
Crypto::SignedBigInteger disambiguated_instant;
// c. If possibleInstants is not empty, then
if (!possible_instants.is_empty()) {
// i. Let disambiguatedInstant be possibleInstants[0].
disambiguated_instant = move(possible_instants.first());
}
// d. Else,
else {
// i. NOTE: t represents a local time skipped at a positive time zone transition (e.g. due to daylight saving time starting or a time zone rule change increasing the UTC offset).
// ii. Let possibleInstantsBefore be GetNamedTimeZoneEpochNanoseconds(localTimeZone, (YearFromTime(tBefore)), (MonthFromTime(tBefore)) + 1, (DateFromTime(tBefore)), (HourFromTime(tBefore)), (MinFromTime(tBefore)), (SecFromTime(tBefore)), (msFromTime(tBefore)), 0, 0), where tBefore is the largest integral Number < t for which possibleInstantsBefore is not empty (i.e., tBefore represents the last local time before the transition).
// iii. Let disambiguatedInstant be the last element of possibleInstantsBefore.
// FIXME: This branch currently cannot be reached with our implementation, because LibTimeZone does not handle skipped time points.
// When GetNamedTimeZoneEpochNanoseconds is updated to use a LibTimeZone API which does handle them, implement these steps.
VERIFY_NOT_REACHED();
}
// e. Let offsetNs be GetNamedTimeZoneOffsetNanoseconds(localTimeZone, disambiguatedInstant).
offset_nanoseconds = get_named_time_zone_offset_nanoseconds(local_time_zone, disambiguated_instant);
}
// 4. Let offsetMs be truncate(offsetNs / 10^6).
auto offset_milliseconds = trunc(offset_nanoseconds / 1e6);
// 5. Return t - 𝔽(offsetMs).
return time - offset_milliseconds;
}
// 21.4.1.14 MakeTime ( hour, min, sec, ms ), https://tc39.es/ecma262/#sec-maketime
double make_time(double hour, double min, double sec, double ms)
{
// 1. If hour is not finite or min is not finite or sec is not finite or ms is not finite, return NaN.
if (!isfinite(hour) || !isfinite(min) || !isfinite(sec) || !isfinite(ms))
return NAN;
// 2. Let h be 𝔽(! ToIntegerOrInfinity(hour)).
auto h = to_integer_or_infinity(hour);
// 3. Let m be 𝔽(! ToIntegerOrInfinity(min)).
auto m = to_integer_or_infinity(min);
// 4. Let s be 𝔽(! ToIntegerOrInfinity(sec)).
auto s = to_integer_or_infinity(sec);
// 5. Let milli be 𝔽(! ToIntegerOrInfinity(ms)).
auto milli = to_integer_or_infinity(ms);
// 6. Let t be ((h * msPerHour + m * msPerMinute) + s * msPerSecond) + milli, performing the arithmetic according to IEEE 754-2019 rules (that is, as if using the ECMAScript operators * and +).
// NOTE: C++ arithmetic abides by IEEE 754 rules
auto t = ((h * ms_per_hour + m * ms_per_minute) + s * ms_per_second) + milli;
// 7. Return t.
return t;
}
// Day(t), https://tc39.es/ecma262/#eqn-Day
double day(double time_value)
{
return floor(time_value / ms_per_day);
}
// TimeWithinDay(t), https://tc39.es/ecma262/#eqn-TimeWithinDay
double time_within_day(double time)
{
// 𝔽((t) modulo (msPerDay))
return modulo(time, ms_per_day);
}
// 21.4.1.15 MakeDay ( year, month, date ), https://tc39.es/ecma262/#sec-makeday
double make_day(double year, double month, double date)
{
// 1. If year is not finite or month is not finite or date is not finite, return NaN.
if (!isfinite(year) || !isfinite(month) || !isfinite(date))
return NAN;
// 2. Let y be 𝔽(! ToIntegerOrInfinity(year)).
auto y = to_integer_or_infinity(year);
// 3. Let m be 𝔽(! ToIntegerOrInfinity(month)).
auto m = to_integer_or_infinity(month);
// 4. Let dt be 𝔽(! ToIntegerOrInfinity(date)).
auto dt = to_integer_or_infinity(date);
// 5. Let ym be y + 𝔽(floor((m) / 12)).
auto ym = y + floor(m / 12);
// 6. If ym is not finite, return NaN.
if (!isfinite(ym))
return NAN;
// 7. Let mn be 𝔽((m) modulo 12).
auto mn = modulo(m, 12);
// 8. Find a finite time value t such that YearFromTime(t) is ym and MonthFromTime(t) is mn and DateFromTime(t) is 1𝔽; but if this is not possible (because some argument is out of range), return NaN.
if (!AK::is_within_range<int>(ym) || !AK::is_within_range<int>(mn + 1))
return NAN;
auto t = days_since_epoch(static_cast<int>(ym), static_cast<int>(mn) + 1, 1) * ms_per_day;
// 9. Return Day(t) + dt - 1𝔽.
return day(static_cast<double>(t)) + dt - 1;
}
// 21.4.1.16 MakeDate ( day, time ), https://tc39.es/ecma262/#sec-makedate
double make_date(double day, double time)
{
// 1. If day is not finite or time is not finite, return NaN.
if (!isfinite(day) || !isfinite(time))
return NAN;
// 2. Let tv be day × msPerDay + time.
auto tv = day * ms_per_day + time;
// 3. If tv is not finite, return NaN.
if (!isfinite(tv))
return NAN;
// 4. Return tv.
return tv;
}
// 21.4.1.17 TimeClip ( time ), https://tc39.es/ecma262/#sec-timeclip
double time_clip(double time)
2021-12-04 23:55:59 +00:00
{
// 1. If time is not finite, return NaN.
if (!isfinite(time))
return NAN;
2021-12-04 23:55:59 +00:00
// 2. If abs((time)) > 8.64 × 10^15, return NaN.
if (fabs(time) > 8.64E15)
return NAN;
2021-12-04 23:55:59 +00:00
// 3. Return 𝔽(! ToIntegerOrInfinity(time)).
return to_integer_or_infinity(time);
2021-12-04 23:55:59 +00:00
}
// 21.4.1.19.1 IsTimeZoneOffsetString ( offsetString ), https://tc39.es/ecma262/#sec-istimezoneoffsetstring
bool is_time_zone_offset_string(StringView offset_string)
{
// 1. Let parseResult be ParseText(StringToCodePoints(offsetString), UTCOffset).
auto parse_result = Temporal::parse_iso8601(Temporal::Production::TimeZoneNumericUTCOffset, offset_string);
// 2. If parseResult is a List of errors, return false.
// 3. Return true.
return parse_result.has_value();
}
// 21.4.1.19.2 ParseTimeZoneOffsetString ( offsetString ), https://tc39.es/ecma262/#sec-parsetimezoneoffsetstring
double parse_time_zone_offset_string(StringView offset_string)
{
// 1. Let parseResult be ParseText(StringToCodePoints(offsetString), UTCOffset).
auto parse_result = Temporal::parse_iso8601(Temporal::Production::TimeZoneNumericUTCOffset, offset_string);
// 2. Assert: parseResult is not a List of errors.
VERIFY(parse_result.has_value());
// 3. Assert: parseResult contains a TemporalSign Parse Node.
VERIFY(parse_result->time_zone_utc_offset_sign.has_value());
// 4. Let parsedSign be the source text matched by the TemporalSign Parse Node contained within parseResult.
auto parsed_sign = *parse_result->time_zone_utc_offset_sign;
i8 sign { 0 };
// 5. If parsedSign is the single code point U+002D (HYPHEN-MINUS) or U+2212 (MINUS SIGN), then
if (parsed_sign.is_one_of("-"sv, "\xE2\x88\x92"sv)) {
// a. Let sign be -1.
sign = -1;
}
// 6. Else,
else {
// a. Let sign be 1.
sign = 1;
}
// 7. NOTE: Applications of StringToNumber below do not lose precision, since each of the parsed values is guaranteed to be a sufficiently short string of decimal digits.
// 8. Assert: parseResult contains an Hour Parse Node.
VERIFY(parse_result->time_zone_utc_offset_hour.has_value());
// 9. Let parsedHours be the source text matched by the Hour Parse Node contained within parseResult.
auto parsed_hours = *parse_result->time_zone_utc_offset_hour;
// 10. Let hours be (StringToNumber(CodePointsToString(parsedHours))).
auto hours = string_to_number(parsed_hours);
double minutes { 0 };
double seconds { 0 };
double nanoseconds { 0 };
// 11. If parseResult does not contain a MinuteSecond Parse Node, then
if (!parse_result->time_zone_utc_offset_minute.has_value()) {
// a. Let minutes be 0.
minutes = 0;
}
// 12. Else,
else {
// a. Let parsedMinutes be the source text matched by the first MinuteSecond Parse Node contained within parseResult.
auto parsed_minutes = *parse_result->time_zone_utc_offset_minute;
// b. Let minutes be (StringToNumber(CodePointsToString(parsedMinutes))).
minutes = string_to_number(parsed_minutes);
}
// 13. If parseResult does not contain two MinuteSecond Parse Nodes, then
if (!parse_result->time_zone_utc_offset_second.has_value()) {
// a. Let seconds be 0.
seconds = 0;
}
// 14. Else,
else {
// a. Let parsedSeconds be the source text matched by the second secondSecond Parse Node contained within parseResult.
auto parsed_seconds = *parse_result->time_zone_utc_offset_second;
// b. Let seconds be (StringToNumber(CodePointsToString(parsedSeconds))).
seconds = string_to_number(parsed_seconds);
}
// 15. If parseResult does not contain a TemporalDecimalFraction Parse Node, then
if (!parse_result->time_zone_utc_offset_fraction.has_value()) {
// a. Let nanoseconds be 0.
nanoseconds = 0;
}
// 16. Else,
else {
// a. Let parsedFraction be the source text matched by the TemporalDecimalFraction Parse Node contained within parseResult.
auto parsed_fraction = *parse_result->time_zone_utc_offset_fraction;
// b. Let fraction be the string-concatenation of CodePointsToString(parsedFraction) and "000000000".
auto fraction = DeprecatedString::formatted("{}000000000", parsed_fraction);
// c. Let nanosecondsString be the substring of fraction from 1 to 10.
auto nanoseconds_string = fraction.substring_view(1, 9);
// d. Let nanoseconds be (StringToNumber(nanosecondsString)).
nanoseconds = string_to_number(nanoseconds_string);
}
// 17. Return sign × (((hours × 60 + minutes) × 60 + seconds) × 10^9 + nanoseconds).
// NOTE: Using scientific notation (1e9) ensures the result of this expression is a double,
// which is important - otherwise it's all integers and the result overflows!
return sign * (((hours * 60 + minutes) * 60 + seconds) * 1e9 + nanoseconds);
}
}