ladybird/Userland/Libraries/LibGL/GLContext.cpp

3765 lines
142 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2021, Jesse Buhagiar <jooster669@gmail.com>
* Copyright (c) 2021, Stephan Unverwerth <s.unverwerth@serenityos.org>
* Copyright (c) 2022, Jelle Raaijmakers <jelle@gmta.nl>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Assertions.h>
#include <AK/Debug.h>
#include <AK/Format.h>
#include <AK/QuickSort.h>
#include <AK/StringBuilder.h>
#include <AK/TemporaryChange.h>
#include <AK/Variant.h>
#include <AK/Vector.h>
#include <LibGL/GLContext.h>
#include <LibGPU/Device.h>
#include <LibGPU/Enums.h>
#include <LibGPU/ImageFormat.h>
#include <LibGfx/Bitmap.h>
#include <LibGfx/Painter.h>
#include <LibGfx/Vector4.h>
__attribute__((visibility("hidden"))) GL::GLContext* g_gl_context;
namespace GL {
static constexpr size_t MODELVIEW_MATRIX_STACK_LIMIT = 64;
static constexpr size_t PROJECTION_MATRIX_STACK_LIMIT = 8;
static constexpr size_t TEXTURE_MATRIX_STACK_LIMIT = 8;
#define APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(name, ...) \
if (should_append_to_listing()) { \
append_to_listing<&GLContext::name>(__VA_ARGS__); \
if (!should_execute_after_appending_to_listing()) \
return; \
}
#define APPEND_TO_CALL_LIST_WITH_ARG_AND_RETURN_IF_NEEDED(name, arg) \
if (should_append_to_listing()) { \
auto ptr = store_in_listing(arg); \
append_to_listing<&GLContext::name>(*ptr); \
if (!should_execute_after_appending_to_listing()) \
return; \
}
#define RETURN_WITH_ERROR_IF(condition, error) \
if (condition) { \
dbgln_if(GL_DEBUG, "{}(): error {:#x}", __func__, error); \
if (m_error == GL_NO_ERROR) \
m_error = error; \
return; \
}
#define RETURN_VALUE_WITH_ERROR_IF(condition, error, return_value) \
if (condition) { \
dbgln_if(GL_DEBUG, "{}(): error {:#x}", __func__, error); \
if (m_error == GL_NO_ERROR) \
m_error = error; \
return return_value; \
}
GLContext::GLContext(RefPtr<GPU::Driver> driver, NonnullOwnPtr<GPU::Device> device, Gfx::Bitmap& frontbuffer)
: m_viewport { frontbuffer.rect() }
, m_frontbuffer { frontbuffer }
, m_driver { driver }
, m_rasterizer { move(device) }
, m_device_info { m_rasterizer->info() }
{
m_texture_units.resize(m_device_info.num_texture_units);
m_active_texture_unit = &m_texture_units[0];
// All texture units are initialized with default textures for all targets; these
// can be referenced later on with texture name 0 in operations like glBindTexture().
auto default_texture_2d = adopt_ref(*new Texture2D());
m_default_textures.set(GL_TEXTURE_2D, default_texture_2d);
for (auto& texture_unit : m_texture_units)
texture_unit.set_texture_2d_target_texture(default_texture_2d);
// Query the number lights from the device and set set up their state
// locally in the GL
m_light_states.resize(m_device_info.num_lights);
// Set-up light0's state, as it has a different default state
// to the other lights, as per the OpenGL 1.5 spec
auto& light0 = m_light_states.at(0);
light0.diffuse_intensity = { 1.0f, 1.0f, 1.0f, 1.0f };
light0.specular_intensity = { 1.0f, 1.0f, 1.0f, 1.0f };
m_light_state_is_dirty = true;
m_client_side_texture_coord_array_enabled.resize(m_device_info.num_texture_units);
m_client_tex_coord_pointer.resize(m_device_info.num_texture_units);
m_current_vertex_tex_coord.resize(m_device_info.num_texture_units);
for (auto& tex_coord : m_current_vertex_tex_coord)
tex_coord = { 0.0f, 0.0f, 0.0f, 1.0f };
// Initialize the texture coordinate generation coefficients
// Indices 0,1,2,3 refer to the S,T,R and Q coordinate of the respective texture
// coordinate generation config.
m_texture_coordinate_generation.resize(m_device_info.num_texture_units);
for (auto& texture_coordinate_generation : m_texture_coordinate_generation) {
texture_coordinate_generation[0].object_plane_coefficients = { 1.0f, 0.0f, 0.0f, 0.0f };
texture_coordinate_generation[0].eye_plane_coefficients = { 1.0f, 0.0f, 0.0f, 0.0f };
texture_coordinate_generation[1].object_plane_coefficients = { 0.0f, 1.0f, 0.0f, 0.0f };
texture_coordinate_generation[1].eye_plane_coefficients = { 0.0f, 1.0f, 0.0f, 0.0f };
texture_coordinate_generation[2].object_plane_coefficients = { 0.0f, 0.0f, 0.0f, 0.0f };
texture_coordinate_generation[2].eye_plane_coefficients = { 0.0f, 0.0f, 0.0f, 0.0f };
texture_coordinate_generation[3].object_plane_coefficients = { 0.0f, 0.0f, 0.0f, 0.0f };
texture_coordinate_generation[3].eye_plane_coefficients = { 0.0f, 0.0f, 0.0f, 0.0f };
}
build_extension_string();
}
GLContext::~GLContext()
{
dbgln_if(GL_DEBUG, "GLContext::~GLContext() {:p}", this);
if (g_gl_context == this)
make_context_current(nullptr);
}
Optional<ContextParameter> GLContext::get_context_parameter(GLenum name)
{
switch (name) {
case GL_ALPHA_BITS:
return ContextParameter { .type = GL_INT, .value = { .integer_value = sizeof(float) * 8 } };
case GL_ALPHA_TEST:
return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = m_alpha_test_enabled } };
case GL_BLEND:
return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = m_blend_enabled } };
case GL_BLEND_DST_ALPHA:
return ContextParameter { .type = GL_INT, .value = { .integer_value = static_cast<GLint>(m_blend_destination_factor) } };
case GL_BLEND_SRC_ALPHA:
return ContextParameter { .type = GL_INT, .value = { .integer_value = static_cast<GLint>(m_blend_source_factor) } };
case GL_BLUE_BITS:
return ContextParameter { .type = GL_INT, .value = { .integer_value = sizeof(float) * 8 } };
case GL_COLOR_MATERIAL:
return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = m_color_material_enabled } };
case GL_COLOR_MATERIAL_FACE:
return ContextParameter { .type = GL_INT, .value = { .integer_value = static_cast<GLint>(m_color_material_face) } };
case GL_COLOR_MATERIAL_MODE:
return ContextParameter { .type = GL_INT, .value = { .integer_value = static_cast<GLint>(m_color_material_mode) } };
case GL_CULL_FACE:
return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = m_cull_faces } };
case GL_DEPTH_BITS:
return ContextParameter { .type = GL_INT, .value = { .integer_value = sizeof(float) * 8 } };
case GL_DEPTH_TEST:
return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = m_depth_test_enabled } };
case GL_DITHER:
return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = m_dither_enabled } };
case GL_DOUBLEBUFFER:
return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = true } };
case GL_FOG: {
auto fog_enabled = m_rasterizer->options().fog_enabled;
return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = fog_enabled } };
}
case GL_GREEN_BITS:
return ContextParameter { .type = GL_INT, .value = { .integer_value = sizeof(float) * 8 } };
case GL_LIGHTING:
return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = m_lighting_enabled } };
case GL_MAX_LIGHTS:
return ContextParameter { .type = GL_INT, .value = { .integer_value = static_cast<GLint>(m_device_info.num_lights) } };
case GL_MAX_MODELVIEW_STACK_DEPTH:
return ContextParameter { .type = GL_INT, .value = { .integer_value = MODELVIEW_MATRIX_STACK_LIMIT } };
case GL_MAX_PROJECTION_STACK_DEPTH:
return ContextParameter { .type = GL_INT, .value = { .integer_value = PROJECTION_MATRIX_STACK_LIMIT } };
case GL_MAX_TEXTURE_SIZE:
return ContextParameter { .type = GL_INT, .value = { .integer_value = 4096 } };
case GL_MAX_TEXTURE_STACK_DEPTH:
return ContextParameter { .type = GL_INT, .value = { .integer_value = TEXTURE_MATRIX_STACK_LIMIT } };
case GL_MAX_TEXTURE_UNITS:
return ContextParameter { .type = GL_INT, .value = { .integer_value = static_cast<GLint>(m_texture_units.size()) } };
case GL_NORMALIZE:
return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = m_normalize } };
case GL_PACK_ALIGNMENT:
return ContextParameter { .type = GL_INT, .value = { .integer_value = m_pack_alignment } };
case GL_PACK_IMAGE_HEIGHT:
return ContextParameter { .type = GL_BOOL, .value = { .integer_value = 0 } };
case GL_PACK_LSB_FIRST:
return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = false } };
case GL_PACK_ROW_LENGTH:
return ContextParameter { .type = GL_INT, .value = { .integer_value = 0 } };
case GL_PACK_SKIP_PIXELS:
return ContextParameter { .type = GL_INT, .value = { .integer_value = 0 } };
case GL_PACK_SKIP_ROWS:
return ContextParameter { .type = GL_INT, .value = { .integer_value = 0 } };
case GL_PACK_SWAP_BYTES:
return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = false } };
case GL_POLYGON_OFFSET_FILL:
return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = m_depth_offset_enabled } };
case GL_RED_BITS:
return ContextParameter { .type = GL_INT, .value = { .integer_value = sizeof(float) * 8 } };
case GL_SCISSOR_BOX: {
auto scissor_box = m_rasterizer->options().scissor_box;
return ContextParameter {
.type = GL_INT,
.count = 4,
.value = {
.integer_list = {
scissor_box.x(),
scissor_box.y(),
scissor_box.width(),
scissor_box.height(),
} }
};
} break;
case GL_SCISSOR_TEST: {
auto scissor_enabled = m_rasterizer->options().scissor_enabled;
return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = scissor_enabled } };
}
case GL_STENCIL_BITS:
return ContextParameter { .type = GL_INT, .value = { .integer_value = m_device_info.stencil_bits } };
case GL_STENCIL_CLEAR_VALUE:
return ContextParameter { .type = GL_INT, .value = { .integer_value = m_clear_stencil } };
case GL_STENCIL_TEST:
return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = m_stencil_test_enabled } };
case GL_TEXTURE_1D:
return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = m_active_texture_unit->texture_1d_enabled() } };
case GL_TEXTURE_2D:
return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = m_active_texture_unit->texture_2d_enabled() } };
case GL_TEXTURE_3D:
return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = m_active_texture_unit->texture_3d_enabled() } };
case GL_TEXTURE_CUBE_MAP:
return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = m_active_texture_unit->texture_cube_map_enabled() } };
case GL_TEXTURE_GEN_Q:
case GL_TEXTURE_GEN_R:
case GL_TEXTURE_GEN_S:
case GL_TEXTURE_GEN_T: {
auto generation_enabled = texture_coordinate_generation(m_active_texture_unit_index, name).enabled;
return ContextParameter { .type = GL_BOOL, .is_capability = true, .value = { .boolean_value = generation_enabled } };
}
case GL_UNPACK_ALIGNMENT:
return ContextParameter { .type = GL_INT, .value = { .integer_value = m_unpack_alignment } };
case GL_UNPACK_IMAGE_HEIGHT:
return ContextParameter { .type = GL_BOOL, .value = { .integer_value = 0 } };
case GL_UNPACK_LSB_FIRST:
return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = false } };
case GL_UNPACK_ROW_LENGTH:
return ContextParameter { .type = GL_INT, .value = { .integer_value = m_unpack_row_length } };
case GL_UNPACK_SKIP_PIXELS:
return ContextParameter { .type = GL_INT, .value = { .integer_value = 0 } };
case GL_UNPACK_SKIP_ROWS:
return ContextParameter { .type = GL_INT, .value = { .integer_value = 0 } };
case GL_UNPACK_SWAP_BYTES:
return ContextParameter { .type = GL_BOOL, .value = { .boolean_value = false } };
case GL_VIEWPORT:
return ContextParameter {
.type = GL_INT,
.count = 4,
.value = {
.integer_list = {
m_viewport.x(),
m_viewport.y(),
m_viewport.width(),
m_viewport.height(),
} }
};
default:
dbgln_if(GL_DEBUG, "get_context_parameter({:#x}): unknown context parameter", name);
return {};
}
}
void GLContext::gl_begin(GLenum mode)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_begin, mode);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(mode > GL_POLYGON, GL_INVALID_ENUM);
m_current_draw_mode = mode;
m_in_draw_state = true; // Certain commands will now generate an error
}
void GLContext::gl_clear(GLbitfield mask)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_clear, mask);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(mask & ~(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT), GL_INVALID_ENUM);
if (mask & GL_COLOR_BUFFER_BIT)
m_rasterizer->clear_color(m_clear_color);
if (mask & GL_DEPTH_BUFFER_BIT)
m_rasterizer->clear_depth(m_clear_depth);
if (mask & GL_STENCIL_BUFFER_BIT)
m_rasterizer->clear_stencil(m_clear_stencil);
}
void GLContext::gl_clear_color(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_clear_color, red, green, blue, alpha);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
m_clear_color = { red, green, blue, alpha };
m_clear_color.clamp(0.f, 1.f);
}
void GLContext::gl_clear_depth(GLdouble depth)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_clear_depth, depth);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
m_clear_depth = clamp(static_cast<float>(depth), 0.f, 1.f);
}
void GLContext::gl_clear_stencil(GLint s)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_clear_stencil, s);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
m_clear_stencil = static_cast<u8>(s & ((1 << m_device_info.stencil_bits) - 1));
}
void GLContext::gl_color(GLdouble r, GLdouble g, GLdouble b, GLdouble a)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_color, r, g, b, a);
m_current_vertex_color = {
static_cast<float>(r),
static_cast<float>(g),
static_cast<float>(b),
static_cast<float>(a),
};
}
void GLContext::gl_end()
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_end);
// Make sure we had a `glBegin` before this call...
RETURN_WITH_ERROR_IF(!m_in_draw_state, GL_INVALID_OPERATION);
m_in_draw_state = false;
// FIXME: Add support for the remaining primitive types.
if (m_current_draw_mode != GL_TRIANGLES
&& m_current_draw_mode != GL_TRIANGLE_FAN
&& m_current_draw_mode != GL_TRIANGLE_STRIP
&& m_current_draw_mode != GL_QUADS
&& m_current_draw_mode != GL_QUAD_STRIP
&& m_current_draw_mode != GL_POLYGON) {
m_vertex_list.clear_with_capacity();
dbgln_if(GL_DEBUG, "gl_end(): draw mode {:#x} unsupported", m_current_draw_mode);
RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM);
}
Vector<size_t, 32> enabled_texture_units;
for (size_t i = 0; i < m_texture_units.size(); ++i) {
if (m_texture_units[i].texture_2d_enabled())
enabled_texture_units.append(i);
}
sync_device_config();
GPU::PrimitiveType primitive_type;
switch (m_current_draw_mode) {
case GL_TRIANGLES:
primitive_type = GPU::PrimitiveType::Triangles;
break;
case GL_TRIANGLE_STRIP:
case GL_QUAD_STRIP:
primitive_type = GPU::PrimitiveType::TriangleStrip;
break;
case GL_TRIANGLE_FAN:
case GL_POLYGON:
primitive_type = GPU::PrimitiveType::TriangleFan;
break;
case GL_QUADS:
primitive_type = GPU::PrimitiveType::Quads;
break;
default:
VERIFY_NOT_REACHED();
}
m_rasterizer->draw_primitives(primitive_type, m_model_view_matrix, m_projection_matrix, m_texture_matrix, m_vertex_list, enabled_texture_units);
m_vertex_list.clear_with_capacity();
}
void GLContext::gl_frustum(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble near_val, GLdouble far_val)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_frustum, left, right, bottom, top, near_val, far_val);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(near_val < 0 || far_val < 0, GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(left == right || bottom == top || near_val == far_val, GL_INVALID_VALUE);
// Let's do some math!
auto a = static_cast<float>((right + left) / (right - left));
auto b = static_cast<float>((top + bottom) / (top - bottom));
auto c = static_cast<float>(-((far_val + near_val) / (far_val - near_val)));
auto d = static_cast<float>(-((2 * far_val * near_val) / (far_val - near_val)));
FloatMatrix4x4 frustum {
static_cast<float>(2 * near_val / (right - left)), 0, a, 0,
0, static_cast<float>(2 * near_val / (top - bottom)), b, 0,
0, 0, c, d,
0, 0, -1, 0
};
*m_current_matrix = *m_current_matrix * frustum;
}
void GLContext::gl_ortho(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble near_val, GLdouble far_val)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_ortho, left, right, bottom, top, near_val, far_val);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(left == right || bottom == top || near_val == far_val, GL_INVALID_VALUE);
auto rl = right - left;
auto tb = top - bottom;
auto fn = far_val - near_val;
auto tx = -(right + left) / rl;
auto ty = -(top + bottom) / tb;
auto tz = -(far_val + near_val) / fn;
FloatMatrix4x4 projection {
static_cast<float>(2 / rl), 0, 0, static_cast<float>(tx),
0, static_cast<float>(2 / tb), 0, static_cast<float>(ty),
0, 0, static_cast<float>(-2 / fn), static_cast<float>(tz),
0, 0, 0, 1
};
*m_current_matrix = *m_current_matrix * projection;
}
GLenum GLContext::gl_get_error()
{
if (m_in_draw_state)
return GL_INVALID_OPERATION;
auto last_error = m_error;
m_error = GL_NO_ERROR;
return last_error;
}
GLubyte* GLContext::gl_get_string(GLenum name)
{
RETURN_VALUE_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION, nullptr);
switch (name) {
case GL_VENDOR:
return reinterpret_cast<GLubyte*>(const_cast<char*>(m_device_info.vendor_name.characters()));
case GL_RENDERER:
return reinterpret_cast<GLubyte*>(const_cast<char*>(m_device_info.device_name.characters()));
case GL_VERSION:
return reinterpret_cast<GLubyte*>(const_cast<char*>("1.5"));
case GL_EXTENSIONS:
return reinterpret_cast<GLubyte*>(const_cast<char*>(m_extensions.characters()));
case GL_SHADING_LANGUAGE_VERSION:
return reinterpret_cast<GLubyte*>(const_cast<char*>("0.0"));
default:
dbgln_if(GL_DEBUG, "gl_get_string({:#x}): unknown name", name);
break;
}
RETURN_VALUE_WITH_ERROR_IF(true, GL_INVALID_ENUM, nullptr);
}
void GLContext::gl_load_identity()
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_load_identity);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
*m_current_matrix = FloatMatrix4x4::identity();
}
2022-04-01 17:58:27 +00:00
void GLContext::gl_load_matrix(FloatMatrix4x4 const& matrix)
{
APPEND_TO_CALL_LIST_WITH_ARG_AND_RETURN_IF_NEEDED(gl_load_matrix, matrix);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
*m_current_matrix = matrix;
}
void GLContext::gl_matrix_mode(GLenum mode)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_matrix_mode, mode);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(mode < GL_MODELVIEW || mode > GL_TEXTURE, GL_INVALID_ENUM);
m_current_matrix_mode = mode;
switch (mode) {
case GL_MODELVIEW:
m_current_matrix = &m_model_view_matrix;
m_current_matrix_stack = &m_model_view_matrix_stack;
break;
case GL_PROJECTION:
m_current_matrix = &m_projection_matrix;
m_current_matrix_stack = &m_projection_matrix_stack;
break;
case GL_TEXTURE:
m_current_matrix = &m_texture_matrix;
m_current_matrix_stack = &m_texture_matrix_stack;
break;
default:
VERIFY_NOT_REACHED();
}
}
static constexpr size_t matrix_stack_limit(GLenum matrix_mode)
{
switch (matrix_mode) {
case GL_MODELVIEW:
return MODELVIEW_MATRIX_STACK_LIMIT;
case GL_PROJECTION:
return PROJECTION_MATRIX_STACK_LIMIT;
case GL_TEXTURE:
return TEXTURE_MATRIX_STACK_LIMIT;
}
VERIFY_NOT_REACHED();
}
void GLContext::gl_push_matrix()
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_push_matrix);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF((*m_current_matrix_stack).size() >= matrix_stack_limit(m_current_matrix_mode), GL_STACK_OVERFLOW);
(*m_current_matrix_stack).append(*m_current_matrix);
}
void GLContext::gl_pop_matrix()
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_pop_matrix);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF((*m_current_matrix_stack).is_empty(), GL_STACK_UNDERFLOW);
*m_current_matrix = (*m_current_matrix_stack).take_last();
}
void GLContext::gl_mult_matrix(FloatMatrix4x4 const& matrix)
{
APPEND_TO_CALL_LIST_WITH_ARG_AND_RETURN_IF_NEEDED(gl_mult_matrix, matrix);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
*m_current_matrix = *m_current_matrix * matrix;
}
void GLContext::gl_rotate(GLfloat angle, GLfloat x, GLfloat y, GLfloat z)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_rotate, angle, x, y, z);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
FloatVector3 axis = { x, y, z };
if (axis.length() > 0.f)
axis.normalize();
auto rotation_mat = Gfx::rotation_matrix(axis, angle * static_cast<float>(M_PI * 2 / 360));
*m_current_matrix = *m_current_matrix * rotation_mat;
}
void GLContext::gl_scale(GLdouble x, GLdouble y, GLdouble z)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_scale, x, y, z);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
auto scale_matrix = Gfx::scale_matrix(FloatVector3 { static_cast<float>(x), static_cast<float>(y), static_cast<float>(z) });
*m_current_matrix = *m_current_matrix * scale_matrix;
}
void GLContext::gl_translate(GLdouble x, GLdouble y, GLdouble z)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_translate, x, y, z);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
auto translation_matrix = Gfx::translation_matrix(FloatVector3 { static_cast<float>(x), static_cast<float>(y), static_cast<float>(z) });
*m_current_matrix = *m_current_matrix * translation_matrix;
}
void GLContext::gl_vertex(GLdouble x, GLdouble y, GLdouble z, GLdouble w)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_vertex, x, y, z, w);
GPU::Vertex vertex;
vertex.position = { static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(w) };
vertex.color = m_current_vertex_color;
for (size_t i = 0; i < m_device_info.num_texture_units; ++i)
vertex.tex_coords[i] = m_current_vertex_tex_coord[i];
vertex.normal = m_current_vertex_normal;
m_vertex_list.append(vertex);
}
void GLContext::gl_tex_coord(GLfloat s, GLfloat t, GLfloat r, GLfloat q)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_tex_coord, s, t, r, q);
m_current_vertex_tex_coord[0] = { s, t, r, q };
}
void GLContext::gl_multi_tex_coord(GLenum target, GLfloat s, GLfloat t, GLfloat r, GLfloat q)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_multi_tex_coord, target, s, t, r, q);
RETURN_WITH_ERROR_IF(target < GL_TEXTURE0 || target >= GL_TEXTURE0 + m_device_info.num_texture_units, GL_INVALID_ENUM);
m_current_vertex_tex_coord[target - GL_TEXTURE0] = { s, t, r, q };
}
void GLContext::gl_viewport(GLint x, GLint y, GLsizei width, GLsizei height)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_viewport, x, y, width, height);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(width < 0 || height < 0, GL_INVALID_VALUE);
m_viewport = { x, y, width, height };
auto rasterizer_options = m_rasterizer->options();
rasterizer_options.viewport = m_viewport;
m_rasterizer->set_options(rasterizer_options);
}
void GLContext::gl_enable(GLenum capability)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_enable, capability);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
auto rasterizer_options = m_rasterizer->options();
bool update_rasterizer_options = false;
switch (capability) {
case GL_COLOR_MATERIAL:
m_color_material_enabled = true;
break;
case GL_CULL_FACE:
m_cull_faces = true;
rasterizer_options.enable_culling = true;
update_rasterizer_options = true;
break;
case GL_DEPTH_TEST:
m_depth_test_enabled = true;
rasterizer_options.enable_depth_test = true;
update_rasterizer_options = true;
break;
case GL_BLEND:
m_blend_enabled = true;
rasterizer_options.enable_blending = true;
update_rasterizer_options = true;
break;
case GL_ALPHA_TEST:
m_alpha_test_enabled = true;
rasterizer_options.enable_alpha_test = true;
update_rasterizer_options = true;
break;
case GL_DITHER:
m_dither_enabled = true;
break;
case GL_FOG:
rasterizer_options.fog_enabled = true;
update_rasterizer_options = true;
break;
case GL_LIGHTING:
m_lighting_enabled = true;
rasterizer_options.lighting_enabled = true;
update_rasterizer_options = true;
break;
case GL_NORMALIZE:
m_normalize = true;
rasterizer_options.normalization_enabled = true;
update_rasterizer_options = true;
break;
case GL_POLYGON_OFFSET_FILL:
m_depth_offset_enabled = true;
rasterizer_options.depth_offset_enabled = true;
update_rasterizer_options = true;
break;
case GL_SCISSOR_TEST:
rasterizer_options.scissor_enabled = true;
update_rasterizer_options = true;
break;
case GL_STENCIL_TEST:
m_stencil_test_enabled = true;
rasterizer_options.enable_stencil_test = true;
update_rasterizer_options = true;
break;
case GL_TEXTURE_1D:
m_active_texture_unit->set_texture_1d_enabled(true);
m_sampler_config_is_dirty = true;
break;
case GL_TEXTURE_2D:
m_active_texture_unit->set_texture_2d_enabled(true);
m_sampler_config_is_dirty = true;
break;
case GL_TEXTURE_3D:
m_active_texture_unit->set_texture_3d_enabled(true);
m_sampler_config_is_dirty = true;
break;
case GL_TEXTURE_CUBE_MAP:
m_active_texture_unit->set_texture_cube_map_enabled(true);
m_sampler_config_is_dirty = true;
break;
case GL_LIGHT0:
case GL_LIGHT1:
case GL_LIGHT2:
case GL_LIGHT3:
case GL_LIGHT4:
case GL_LIGHT5:
case GL_LIGHT6:
case GL_LIGHT7:
m_light_states.at(capability - GL_LIGHT0).is_enabled = true;
m_light_state_is_dirty = true;
break;
case GL_TEXTURE_GEN_Q:
case GL_TEXTURE_GEN_R:
case GL_TEXTURE_GEN_S:
case GL_TEXTURE_GEN_T:
texture_coordinate_generation(m_active_texture_unit_index, capability).enabled = true;
m_texcoord_generation_dirty = true;
break;
default:
dbgln_if(GL_DEBUG, "gl_enable({:#x}): unknown parameter", capability);
RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM);
}
if (update_rasterizer_options)
m_rasterizer->set_options(rasterizer_options);
}
void GLContext::gl_disable(GLenum capability)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_disable, capability);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
auto rasterizer_options = m_rasterizer->options();
bool update_rasterizer_options = false;
switch (capability) {
case GL_COLOR_MATERIAL:
m_color_material_enabled = false;
break;
case GL_CULL_FACE:
m_cull_faces = false;
rasterizer_options.enable_culling = false;
update_rasterizer_options = true;
break;
case GL_DEPTH_TEST:
m_depth_test_enabled = false;
rasterizer_options.enable_depth_test = false;
update_rasterizer_options = true;
break;
case GL_BLEND:
m_blend_enabled = false;
rasterizer_options.enable_blending = false;
update_rasterizer_options = true;
break;
case GL_ALPHA_TEST:
m_alpha_test_enabled = false;
rasterizer_options.enable_alpha_test = false;
update_rasterizer_options = true;
break;
case GL_DITHER:
m_dither_enabled = false;
break;
case GL_FOG:
rasterizer_options.fog_enabled = false;
update_rasterizer_options = true;
break;
case GL_LIGHTING:
m_lighting_enabled = false;
rasterizer_options.lighting_enabled = false;
update_rasterizer_options = true;
break;
case GL_LIGHT0:
case GL_LIGHT1:
case GL_LIGHT2:
case GL_LIGHT3:
case GL_LIGHT4:
case GL_LIGHT5:
case GL_LIGHT6:
case GL_LIGHT7:
m_light_states.at(capability - GL_LIGHT0).is_enabled = false;
m_light_state_is_dirty = true;
break;
case GL_NORMALIZE:
m_normalize = false;
rasterizer_options.normalization_enabled = false;
update_rasterizer_options = true;
break;
case GL_POLYGON_OFFSET_FILL:
m_depth_offset_enabled = false;
rasterizer_options.depth_offset_enabled = false;
update_rasterizer_options = true;
break;
case GL_SCISSOR_TEST:
rasterizer_options.scissor_enabled = false;
update_rasterizer_options = true;
break;
case GL_STENCIL_TEST:
m_stencil_test_enabled = false;
rasterizer_options.enable_stencil_test = false;
update_rasterizer_options = true;
break;
case GL_TEXTURE_1D:
m_active_texture_unit->set_texture_1d_enabled(false);
m_sampler_config_is_dirty = true;
break;
case GL_TEXTURE_2D:
m_active_texture_unit->set_texture_2d_enabled(false);
m_sampler_config_is_dirty = true;
break;
case GL_TEXTURE_3D:
m_active_texture_unit->set_texture_3d_enabled(false);
m_sampler_config_is_dirty = true;
break;
case GL_TEXTURE_CUBE_MAP:
m_active_texture_unit->set_texture_cube_map_enabled(false);
m_sampler_config_is_dirty = true;
break;
case GL_TEXTURE_GEN_Q:
case GL_TEXTURE_GEN_R:
case GL_TEXTURE_GEN_S:
case GL_TEXTURE_GEN_T:
texture_coordinate_generation(m_active_texture_unit_index, capability).enabled = false;
m_texcoord_generation_dirty = true;
break;
default:
dbgln_if(GL_DEBUG, "gl_disable({:#x}): unknown parameter", capability);
RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM);
}
if (update_rasterizer_options)
m_rasterizer->set_options(rasterizer_options);
}
GLboolean GLContext::gl_is_enabled(GLenum capability)
{
RETURN_VALUE_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION, 0);
auto optional_parameter = get_context_parameter(capability);
RETURN_VALUE_WITH_ERROR_IF(!optional_parameter.has_value(), GL_INVALID_ENUM, 0);
auto parameter = optional_parameter.release_value();
RETURN_VALUE_WITH_ERROR_IF(!parameter.is_capability, GL_INVALID_ENUM, 0);
return parameter.value.boolean_value;
}
void GLContext::gl_gen_textures(GLsizei n, GLuint* textures)
{
RETURN_WITH_ERROR_IF(n < 0, GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
m_name_allocator.allocate(n, textures);
// Initialize all texture names with a nullptr
for (auto i = 0; i < n; ++i) {
GLuint name = textures[i];
m_allocated_textures.set(name, nullptr);
}
}
2022-04-01 17:58:27 +00:00
void GLContext::gl_delete_textures(GLsizei n, GLuint const* textures)
{
RETURN_WITH_ERROR_IF(n < 0, GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
for (auto i = 0; i < n; i++) {
GLuint name = textures[i];
if (name == 0)
continue;
m_name_allocator.free(name);
auto texture_object = m_allocated_textures.find(name);
if (texture_object == m_allocated_textures.end() || texture_object->value.is_null())
continue;
auto texture = texture_object->value;
// Check all texture units
for (auto& texture_unit : m_texture_units) {
if (texture->is_texture_2d() && texture_unit.texture_2d_target_texture() == texture) {
// If a texture that is currently bound is deleted, the binding reverts to 0 (the default texture)
texture_unit.set_texture_2d_target_texture(get_default_texture<Texture2D>(GL_TEXTURE_2D));
}
}
m_allocated_textures.remove(name);
}
}
void GLContext::gl_tex_image_2d(GLenum target, GLint level, GLint internal_format, GLsizei width, GLsizei height, GLint border, GLenum format, GLenum type, GLvoid const* data)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// We only support GL_TEXTURE_2D for now
RETURN_WITH_ERROR_IF(target != GL_TEXTURE_2D, GL_INVALID_ENUM);
// Internal format can also be a number between 1 and 4. Symbolic formats were only added with EXT_texture, promoted to core in OpenGL 1.1
if (internal_format == 1)
internal_format = GL_ALPHA;
else if (internal_format == 2)
internal_format = GL_LUMINANCE_ALPHA;
else if (internal_format == 3)
internal_format = GL_RGB;
else if (internal_format == 4)
internal_format = GL_RGBA;
// We only support symbolic constants for now
RETURN_WITH_ERROR_IF(!(internal_format == GL_RGB || internal_format == GL_RGBA || internal_format == GL_LUMINANCE8 || internal_format == GL_LUMINANCE8_ALPHA8), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!(type == GL_UNSIGNED_BYTE || type == GL_UNSIGNED_SHORT_5_6_5), GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(level < 0 || level > Texture2D::LOG2_MAX_TEXTURE_SIZE, GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(width < 0 || height < 0 || width > (2 + Texture2D::MAX_TEXTURE_SIZE) || height > (2 + Texture2D::MAX_TEXTURE_SIZE), GL_INVALID_VALUE);
// Check if width and height are a power of 2
if (!m_device_info.supports_npot_textures) {
RETURN_WITH_ERROR_IF(!is_power_of_two(width), GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(!is_power_of_two(height), GL_INVALID_VALUE);
}
RETURN_WITH_ERROR_IF(border != 0, GL_INVALID_VALUE);
auto texture_2d = m_active_texture_unit->texture_2d_target_texture();
VERIFY(!texture_2d.is_null());
if (level == 0) {
// FIXME: OpenGL has the concept of texture and mipmap completeness. A texture has to fulfill certain criteria to be considered complete.
// Trying to render while an incomplete texture is bound will result in an error.
// Here we simply create a complete device image when mipmap level 0 is attached to the texture object. This has the unfortunate side effect
// that constructing GL textures in any but the default mipmap order, going from level 0 upwards will cause mip levels to stay uninitialized.
// To be spec compliant we should create the device image once the texture has become complete and is used for rendering the first time.
// All images that were attached before the device image was created need to be stored somewhere to be used to initialize the device image once complete.
texture_2d->set_device_image(m_rasterizer->create_image(GPU::ImageFormat::BGRA8888, width, height, 1, 999, 1));
m_sampler_config_is_dirty = true;
}
texture_2d->upload_texture_data(level, internal_format, width, height, format, type, data, m_unpack_row_length, m_unpack_alignment);
}
void GLContext::gl_tex_sub_image_2d(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, GLvoid const* data)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// We only support GL_TEXTURE_2D for now
RETURN_WITH_ERROR_IF(target != GL_TEXTURE_2D, GL_INVALID_ENUM);
// We only support symbolic constants for now
RETURN_WITH_ERROR_IF(!(format == GL_RGBA || format == GL_RGB), GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(!(type == GL_UNSIGNED_BYTE || type == GL_UNSIGNED_SHORT_5_6_5), GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(level < 0 || level > Texture2D::LOG2_MAX_TEXTURE_SIZE, GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(width < 0 || height < 0 || width > (2 + Texture2D::MAX_TEXTURE_SIZE) || height > (2 + Texture2D::MAX_TEXTURE_SIZE), GL_INVALID_VALUE);
// A 2D texture array must have been defined by a previous glTexImage2D operation
auto texture_2d = m_active_texture_unit->texture_2d_target_texture();
RETURN_WITH_ERROR_IF(texture_2d.is_null(), GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(xoffset < 0 || yoffset < 0 || xoffset + width > texture_2d->width_at_lod(level) || yoffset + height > texture_2d->height_at_lod(level), GL_INVALID_VALUE);
texture_2d->replace_sub_texture_data(level, xoffset, yoffset, width, height, format, type, data, m_unpack_row_length, m_unpack_alignment);
}
void GLContext::gl_tex_parameter(GLenum target, GLenum pname, GLfloat param)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_tex_parameter, target, pname, param);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: We currently only support GL_TETXURE_2D targets. 1D, 3D and CUBE should also be supported (https://docs.gl/gl2/glTexParameter)
RETURN_WITH_ERROR_IF(target != GL_TEXTURE_2D, GL_INVALID_ENUM);
// FIXME: implement the remaining parameters. (https://docs.gl/gl2/glTexParameter)
RETURN_WITH_ERROR_IF(!(pname == GL_TEXTURE_MIN_FILTER
|| pname == GL_TEXTURE_MAG_FILTER
|| pname == GL_TEXTURE_WRAP_S
|| pname == GL_TEXTURE_WRAP_T),
GL_INVALID_ENUM);
// We assume GL_TEXTURE_2D (see above)
auto texture_2d = m_active_texture_unit->texture_2d_target_texture();
if (texture_2d.is_null())
return;
switch (pname) {
case GL_TEXTURE_MIN_FILTER:
RETURN_WITH_ERROR_IF(!(param == GL_NEAREST
|| param == GL_LINEAR
|| param == GL_NEAREST_MIPMAP_NEAREST
|| param == GL_LINEAR_MIPMAP_NEAREST
|| param == GL_NEAREST_MIPMAP_LINEAR
|| param == GL_LINEAR_MIPMAP_LINEAR),
GL_INVALID_ENUM);
texture_2d->sampler().set_min_filter(param);
break;
case GL_TEXTURE_MAG_FILTER:
RETURN_WITH_ERROR_IF(!(param == GL_NEAREST
|| param == GL_LINEAR),
GL_INVALID_ENUM);
texture_2d->sampler().set_mag_filter(param);
break;
case GL_TEXTURE_WRAP_S:
RETURN_WITH_ERROR_IF(!(param == GL_CLAMP
|| param == GL_CLAMP_TO_BORDER
|| param == GL_CLAMP_TO_EDGE
|| param == GL_MIRRORED_REPEAT
|| param == GL_REPEAT),
GL_INVALID_ENUM);
texture_2d->sampler().set_wrap_s_mode(param);
break;
case GL_TEXTURE_WRAP_T:
RETURN_WITH_ERROR_IF(!(param == GL_CLAMP
|| param == GL_CLAMP_TO_BORDER
|| param == GL_CLAMP_TO_EDGE
|| param == GL_MIRRORED_REPEAT
|| param == GL_REPEAT),
GL_INVALID_ENUM);
texture_2d->sampler().set_wrap_t_mode(param);
break;
default:
VERIFY_NOT_REACHED();
}
m_sampler_config_is_dirty = true;
}
void GLContext::gl_tex_parameterfv(GLenum target, GLenum pname, GLfloat const* params)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_tex_parameterfv, target, pname, params);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: We currently only support GL_TETXURE_2D targets. 1D, 3D and CUBE should also be supported (https://docs.gl/gl2/glTexParameter)
RETURN_WITH_ERROR_IF(target != GL_TEXTURE_2D, GL_INVALID_ENUM);
// FIXME: implement the remaining parameters. (https://docs.gl/gl2/glTexParameter)
RETURN_WITH_ERROR_IF(!(pname == GL_TEXTURE_BORDER_COLOR), GL_INVALID_ENUM);
// We assume GL_TEXTURE_2D (see above)
auto texture_2d = m_active_texture_unit->texture_2d_target_texture();
RETURN_WITH_ERROR_IF(texture_2d.is_null(), GL_INVALID_OPERATION);
switch (pname) {
case GL_TEXTURE_BORDER_COLOR:
texture_2d->sampler().set_border_color(params[0], params[1], params[2], params[3]);
break;
default:
VERIFY_NOT_REACHED();
}
m_sampler_config_is_dirty = true;
}
void GLContext::gl_front_face(GLenum face)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_front_face, face);
RETURN_WITH_ERROR_IF(face < GL_CW || face > GL_CCW, GL_INVALID_ENUM);
m_front_face = face;
auto rasterizer_options = m_rasterizer->options();
rasterizer_options.front_face = (face == GL_CW) ? GPU::WindingOrder::Clockwise : GPU::WindingOrder::CounterClockwise;
m_rasterizer->set_options(rasterizer_options);
}
void GLContext::gl_cull_face(GLenum cull_mode)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_cull_face, cull_mode);
RETURN_WITH_ERROR_IF(cull_mode < GL_FRONT || cull_mode > GL_FRONT_AND_BACK, GL_INVALID_ENUM);
m_culled_sides = cull_mode;
auto rasterizer_options = m_rasterizer->options();
rasterizer_options.cull_back = cull_mode == GL_BACK || cull_mode == GL_FRONT_AND_BACK;
rasterizer_options.cull_front = cull_mode == GL_FRONT || cull_mode == GL_FRONT_AND_BACK;
m_rasterizer->set_options(rasterizer_options);
}
GLuint GLContext::gl_gen_lists(GLsizei range)
{
RETURN_VALUE_WITH_ERROR_IF(range <= 0, GL_INVALID_VALUE, 0);
RETURN_VALUE_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION, 0);
auto initial_entry = m_listings.size();
m_listings.resize(range + initial_entry);
return initial_entry + 1;
}
void GLContext::invoke_list(size_t list_index)
{
auto& listing = m_listings[list_index - 1];
for (auto& entry : listing.entries) {
entry.function.visit([&](auto& function) {
entry.arguments.visit([&](auto& arguments) {
2022-04-01 17:58:27 +00:00
auto apply = [&]<typename... Args>(Args&&... args) {
if constexpr (requires { (this->*function)(forward<Args>(args)...); })
(this->*function)(forward<Args>(args)...);
};
arguments.apply_as_args(apply);
});
});
}
}
void GLContext::gl_call_list(GLuint list)
{
if (m_gl_call_depth > max_allowed_gl_call_depth)
return;
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_call_list, list);
if (m_listings.size() < list)
return;
TemporaryChange change { m_gl_call_depth, m_gl_call_depth + 1 };
invoke_list(list);
}
void GLContext::gl_call_lists(GLsizei n, GLenum type, void const* lists)
{
if (m_gl_call_depth > max_allowed_gl_call_depth)
return;
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_call_lists, n, type, lists);
RETURN_WITH_ERROR_IF(n < 0, GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(!(type == GL_BYTE
|| type == GL_UNSIGNED_BYTE
|| type == GL_SHORT
|| type == GL_UNSIGNED_SHORT
|| type == GL_INT
|| type == GL_UNSIGNED_INT
|| type == GL_FLOAT
|| type == GL_2_BYTES
|| type == GL_3_BYTES
|| type == GL_4_BYTES),
GL_INVALID_ENUM);
TemporaryChange change { m_gl_call_depth, m_gl_call_depth + 1 };
auto invoke_all_lists = [&]<typename T>(T const* lists) {
for (int i = 0; i < n; ++i) {
auto list = static_cast<size_t>(lists[i]);
invoke_list(m_list_base + list);
}
};
switch (type) {
case GL_BYTE:
invoke_all_lists(static_cast<GLbyte const*>(lists));
break;
case GL_UNSIGNED_BYTE:
invoke_all_lists(static_cast<GLubyte const*>(lists));
break;
case GL_SHORT:
invoke_all_lists(static_cast<GLshort const*>(lists));
break;
case GL_UNSIGNED_SHORT:
invoke_all_lists(static_cast<GLushort const*>(lists));
break;
case GL_INT:
invoke_all_lists(static_cast<GLint const*>(lists));
break;
case GL_UNSIGNED_INT:
invoke_all_lists(static_cast<GLuint const*>(lists));
break;
case GL_FLOAT:
invoke_all_lists(static_cast<GLfloat const*>(lists));
break;
case GL_2_BYTES:
case GL_3_BYTES:
case GL_4_BYTES:
dbgln("GLContext FIXME: unimplemented glCallLists() with type {}", type);
break;
default:
VERIFY_NOT_REACHED();
}
}
void GLContext::gl_delete_lists(GLuint list, GLsizei range)
{
if (m_listings.size() < list || m_listings.size() <= list + range)
return;
for (auto& entry : m_listings.span().slice(list - 1, range))
entry.entries.clear_with_capacity();
}
void GLContext::gl_list_base(GLuint base)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_list_base, base);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
m_list_base = base;
}
void GLContext::gl_end_list()
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(!m_current_listing_index.has_value(), GL_INVALID_OPERATION);
m_listings[m_current_listing_index->index] = move(m_current_listing_index->listing);
m_current_listing_index.clear();
}
void GLContext::gl_new_list(GLuint list, GLenum mode)
{
RETURN_WITH_ERROR_IF(list == 0, GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(mode != GL_COMPILE && mode != GL_COMPILE_AND_EXECUTE, GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(m_current_listing_index.has_value(), GL_INVALID_OPERATION);
if (m_listings.size() < list)
return;
m_current_listing_index = CurrentListing { {}, static_cast<size_t>(list - 1), mode };
}
GLboolean GLContext::gl_is_list(GLuint list)
{
RETURN_VALUE_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION, GL_FALSE);
return list < m_listings.size() ? GL_TRUE : GL_FALSE;
}
void GLContext::gl_flush()
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// No-op since GLContext is completely synchronous at the moment
}
void GLContext::gl_finish()
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// No-op since GLContext is completely synchronous at the moment
}
void GLContext::gl_blend_func(GLenum src_factor, GLenum dst_factor)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_blend_func, src_factor, dst_factor);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: The list of allowed enums differs between API versions
// This was taken from the 2.0 spec on https://docs.gl/gl2/glBlendFunc
RETURN_WITH_ERROR_IF(!(src_factor == GL_ZERO
|| src_factor == GL_ONE
|| src_factor == GL_SRC_COLOR
|| src_factor == GL_ONE_MINUS_SRC_COLOR
|| src_factor == GL_DST_COLOR
|| src_factor == GL_ONE_MINUS_DST_COLOR
|| src_factor == GL_SRC_ALPHA
|| src_factor == GL_ONE_MINUS_SRC_ALPHA
|| src_factor == GL_DST_ALPHA
|| src_factor == GL_ONE_MINUS_DST_ALPHA
|| src_factor == GL_CONSTANT_COLOR
|| src_factor == GL_ONE_MINUS_CONSTANT_COLOR
|| src_factor == GL_CONSTANT_ALPHA
|| src_factor == GL_ONE_MINUS_CONSTANT_ALPHA
|| src_factor == GL_SRC_ALPHA_SATURATE),
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!(dst_factor == GL_ZERO
|| dst_factor == GL_ONE
|| dst_factor == GL_SRC_COLOR
|| dst_factor == GL_ONE_MINUS_SRC_COLOR
|| dst_factor == GL_DST_COLOR
|| dst_factor == GL_ONE_MINUS_DST_COLOR
|| dst_factor == GL_SRC_ALPHA
|| dst_factor == GL_ONE_MINUS_SRC_ALPHA
|| dst_factor == GL_DST_ALPHA
|| dst_factor == GL_ONE_MINUS_DST_ALPHA
|| dst_factor == GL_CONSTANT_COLOR
|| dst_factor == GL_ONE_MINUS_CONSTANT_COLOR
|| dst_factor == GL_CONSTANT_ALPHA
|| dst_factor == GL_ONE_MINUS_CONSTANT_ALPHA),
GL_INVALID_ENUM);
m_blend_source_factor = src_factor;
m_blend_destination_factor = dst_factor;
auto map_gl_blend_factor_to_device = [](GLenum factor) constexpr
{
switch (factor) {
case GL_ZERO:
return GPU::BlendFactor::Zero;
case GL_ONE:
return GPU::BlendFactor::One;
case GL_SRC_ALPHA:
return GPU::BlendFactor::SrcAlpha;
case GL_ONE_MINUS_SRC_ALPHA:
return GPU::BlendFactor::OneMinusSrcAlpha;
case GL_SRC_COLOR:
return GPU::BlendFactor::SrcColor;
case GL_ONE_MINUS_SRC_COLOR:
return GPU::BlendFactor::OneMinusSrcColor;
case GL_DST_ALPHA:
return GPU::BlendFactor::DstAlpha;
case GL_ONE_MINUS_DST_ALPHA:
return GPU::BlendFactor::OneMinusDstAlpha;
case GL_DST_COLOR:
return GPU::BlendFactor::DstColor;
case GL_ONE_MINUS_DST_COLOR:
return GPU::BlendFactor::OneMinusDstColor;
case GL_SRC_ALPHA_SATURATE:
return GPU::BlendFactor::SrcAlphaSaturate;
default:
VERIFY_NOT_REACHED();
}
};
auto options = m_rasterizer->options();
options.blend_source_factor = map_gl_blend_factor_to_device(m_blend_source_factor);
options.blend_destination_factor = map_gl_blend_factor_to_device(m_blend_destination_factor);
m_rasterizer->set_options(options);
}
void GLContext::gl_shade_model(GLenum mode)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_shade_model, mode);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(mode != GL_FLAT && mode != GL_SMOOTH, GL_INVALID_ENUM);
auto options = m_rasterizer->options();
options.shade_smooth = (mode == GL_SMOOTH);
m_rasterizer->set_options(options);
}
void GLContext::gl_alpha_func(GLenum func, GLclampf ref)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_alpha_func, func, ref);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(func < GL_NEVER || func > GL_ALWAYS, GL_INVALID_ENUM);
m_alpha_test_func = func;
m_alpha_test_ref_value = ref;
auto options = m_rasterizer->options();
switch (func) {
case GL_NEVER:
options.alpha_test_func = GPU::AlphaTestFunction::Never;
break;
case GL_ALWAYS:
options.alpha_test_func = GPU::AlphaTestFunction::Always;
break;
case GL_LESS:
options.alpha_test_func = GPU::AlphaTestFunction::Less;
break;
case GL_LEQUAL:
options.alpha_test_func = GPU::AlphaTestFunction::LessOrEqual;
break;
case GL_EQUAL:
options.alpha_test_func = GPU::AlphaTestFunction::Equal;
break;
case GL_NOTEQUAL:
options.alpha_test_func = GPU::AlphaTestFunction::NotEqual;
break;
case GL_GEQUAL:
options.alpha_test_func = GPU::AlphaTestFunction::GreaterOrEqual;
break;
case GL_GREATER:
options.alpha_test_func = GPU::AlphaTestFunction::Greater;
break;
default:
VERIFY_NOT_REACHED();
}
options.alpha_test_ref_value = m_alpha_test_ref_value;
m_rasterizer->set_options(options);
}
void GLContext::gl_hint(GLenum target, GLenum mode)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_hint, target, mode);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(target != GL_PERSPECTIVE_CORRECTION_HINT
&& target != GL_POINT_SMOOTH_HINT
&& target != GL_LINE_SMOOTH_HINT
&& target != GL_POLYGON_SMOOTH_HINT
&& target != GL_FOG_HINT
&& target != GL_GENERATE_MIPMAP_HINT
&& target != GL_TEXTURE_COMPRESSION_HINT,
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(mode != GL_DONT_CARE
&& mode != GL_FASTEST
&& mode != GL_NICEST,
GL_INVALID_ENUM);
// According to the spec implementors are free to ignore glHint. So we do.
}
void GLContext::gl_read_buffer(GLenum mode)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_read_buffer, mode);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: Also allow aux buffers GL_AUX0 through GL_AUX3 here
// plus any aux buffer between 0 and GL_AUX_BUFFERS
RETURN_WITH_ERROR_IF(mode != GL_FRONT_LEFT
&& mode != GL_FRONT_RIGHT
&& mode != GL_BACK_LEFT
&& mode != GL_BACK_RIGHT
&& mode != GL_FRONT
&& mode != GL_BACK
&& mode != GL_LEFT
&& mode != GL_RIGHT,
GL_INVALID_ENUM);
// FIXME: We do not currently have aux buffers, so make it an invalid
// operation to select anything but front or back buffers. Also we do
// not allow selecting the stereoscopic RIGHT buffers since we do not
// have them configured.
RETURN_WITH_ERROR_IF(mode != GL_FRONT_LEFT
&& mode != GL_FRONT
&& mode != GL_BACK_LEFT
&& mode != GL_BACK
&& mode != GL_FRONT
&& mode != GL_BACK
&& mode != GL_LEFT,
GL_INVALID_OPERATION);
m_current_read_buffer = mode;
}
void GLContext::gl_draw_buffer(GLenum buffer)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_draw_buffer, buffer);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: Also allow aux buffers GL_AUX0 through GL_AUX3 here
// plus any aux buffer between 0 and GL_AUX_BUFFERS
RETURN_WITH_ERROR_IF(buffer != GL_NONE
&& buffer != GL_FRONT_LEFT
&& buffer != GL_FRONT_RIGHT
&& buffer != GL_BACK_LEFT
&& buffer != GL_BACK_RIGHT
&& buffer != GL_FRONT
&& buffer != GL_BACK
&& buffer != GL_LEFT
&& buffer != GL_RIGHT,
GL_INVALID_ENUM);
// FIXME: We do not currently have aux buffers, so make it an invalid
// operation to select anything but front or back buffers. Also we do
// not allow selecting the stereoscopic RIGHT buffers since we do not
// have them configured.
RETURN_WITH_ERROR_IF(buffer != GL_NONE
&& buffer != GL_FRONT_LEFT
&& buffer != GL_FRONT
&& buffer != GL_BACK_LEFT
&& buffer != GL_BACK
&& buffer != GL_FRONT
&& buffer != GL_BACK
&& buffer != GL_LEFT,
GL_INVALID_OPERATION);
m_current_draw_buffer = buffer;
auto rasterizer_options = m_rasterizer->options();
// FIXME: We only have a single draw buffer in SoftGPU at the moment,
// so we simply disable color writes if GL_NONE is selected
rasterizer_options.enable_color_write = m_current_draw_buffer != GL_NONE;
m_rasterizer->set_options(rasterizer_options);
}
void GLContext::gl_read_pixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, GLvoid* pixels)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(width < 0 || height < 0, GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(format != GL_COLOR_INDEX
&& format != GL_STENCIL_INDEX
&& format != GL_DEPTH_COMPONENT
&& format != GL_RED
&& format != GL_GREEN
&& format != GL_BLUE
&& format != GL_ALPHA
&& format != GL_RGB
&& format != GL_RGBA
&& format != GL_LUMINANCE
&& format != GL_LUMINANCE_ALPHA,
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(type != GL_UNSIGNED_BYTE
&& type != GL_BYTE
&& type != GL_BITMAP
&& type != GL_UNSIGNED_SHORT
&& type != GL_SHORT
&& type != GL_BLUE
&& type != GL_UNSIGNED_INT
&& type != GL_INT
&& type != GL_FLOAT,
GL_INVALID_ENUM);
// FIXME: We only support RGBA buffers for now.
// Once we add support for indexed color modes do the correct check here
RETURN_WITH_ERROR_IF(format == GL_COLOR_INDEX, GL_INVALID_OPERATION);
// FIXME: We do not have stencil buffers yet
// Once we add support for stencil buffers do the correct check here
RETURN_WITH_ERROR_IF(format == GL_STENCIL_INDEX, GL_INVALID_OPERATION);
if (format == GL_DEPTH_COMPONENT) {
// FIXME: This check needs to be a bit more sophisticated. Currently the buffers
// are hardcoded. Once we add proper structures for them we need to correct this check
// Error because only back buffer has a depth buffer
RETURN_WITH_ERROR_IF(m_current_read_buffer == GL_FRONT
|| m_current_read_buffer == GL_FRONT_LEFT
|| m_current_read_buffer == GL_FRONT_RIGHT,
GL_INVALID_OPERATION);
}
// Some helper functions for converting float values to integer types
auto float_to_i8 = [](float f) -> GLchar {
return static_cast<GLchar>((0x7f * min(max(f, 0.0f), 1.0f) - 1) / 2);
};
auto float_to_i16 = [](float f) -> GLshort {
return static_cast<GLshort>((0x7fff * min(max(f, 0.0f), 1.0f) - 1) / 2);
};
auto float_to_i32 = [](float f) -> GLint {
return static_cast<GLint>((0x7fffffff * min(max(f, 0.0f), 1.0f) - 1) / 2);
};
auto float_to_u8 = [](float f) -> GLubyte {
return static_cast<GLubyte>(0xff * min(max(f, 0.0f), 1.0f));
};
auto float_to_u16 = [](float f) -> GLushort {
return static_cast<GLushort>(0xffff * min(max(f, 0.0f), 1.0f));
};
auto float_to_u32 = [](float f) -> GLuint {
return static_cast<GLuint>(0xffffffff * min(max(f, 0.0f), 1.0f));
};
u8 component_size = 0;
switch (type) {
case GL_BYTE:
case GL_UNSIGNED_BYTE:
component_size = 1;
break;
case GL_SHORT:
case GL_UNSIGNED_SHORT:
component_size = 2;
break;
case GL_INT:
case GL_UNSIGNED_INT:
case GL_FLOAT:
component_size = 4;
break;
}
if (format == GL_DEPTH_COMPONENT) {
auto const row_stride = (width * component_size + m_pack_alignment - 1) / m_pack_alignment * m_pack_alignment;
// Read from depth buffer
for (GLsizei i = 0; i < height; ++i) {
for (GLsizei j = 0; j < width; ++j) {
float depth = m_rasterizer->get_depthbuffer_value(x + j, y + i);
auto char_ptr = reinterpret_cast<char*>(pixels) + i * row_stride + j * component_size;
switch (type) {
case GL_BYTE:
*reinterpret_cast<GLchar*>(char_ptr) = float_to_i8(depth);
break;
case GL_SHORT:
*reinterpret_cast<GLshort*>(char_ptr) = float_to_i16(depth);
break;
case GL_INT:
*reinterpret_cast<GLint*>(char_ptr) = float_to_i32(depth);
break;
case GL_UNSIGNED_BYTE:
*reinterpret_cast<GLubyte*>(char_ptr) = float_to_u8(depth);
break;
case GL_UNSIGNED_SHORT:
*reinterpret_cast<GLushort*>(char_ptr) = float_to_u16(depth);
break;
case GL_UNSIGNED_INT:
*reinterpret_cast<GLuint*>(char_ptr) = float_to_u32(depth);
break;
case GL_FLOAT:
*reinterpret_cast<GLfloat*>(char_ptr) = min(max(depth, 0.0f), 1.0f);
break;
}
}
}
return;
}
bool write_red = false;
bool write_green = false;
bool write_blue = false;
bool write_alpha = false;
size_t component_count = 0;
size_t red_offset = 0;
size_t green_offset = 0;
size_t blue_offset = 0;
size_t alpha_offset = 0;
char* red_ptr = nullptr;
char* green_ptr = nullptr;
char* blue_ptr = nullptr;
char* alpha_ptr = nullptr;
switch (format) {
case GL_RGB:
write_red = true;
write_green = true;
write_blue = true;
component_count = 3;
red_offset = 2;
green_offset = 1;
blue_offset = 0;
break;
case GL_RGBA:
write_red = true;
write_green = true;
write_blue = true;
write_alpha = true;
component_count = 4;
red_offset = 3;
green_offset = 2;
blue_offset = 1;
alpha_offset = 0;
break;
case GL_RED:
write_red = true;
component_count = 1;
red_offset = 0;
break;
case GL_GREEN:
write_green = true;
component_count = 1;
green_offset = 0;
break;
case GL_BLUE:
write_blue = true;
component_count = 1;
blue_offset = 0;
break;
case GL_ALPHA:
write_alpha = true;
component_count = 1;
alpha_offset = 0;
break;
}
auto const pixel_bytes = component_size * component_count;
auto const row_alignment_bytes = (m_pack_alignment - ((width * pixel_bytes) % m_pack_alignment)) % m_pack_alignment;
char* out_ptr = reinterpret_cast<char*>(pixels);
for (int i = 0; i < (int)height; ++i) {
for (int j = 0; j < (int)width; ++j) {
Gfx::ARGB32 color {};
if (m_current_read_buffer == GL_FRONT || m_current_read_buffer == GL_LEFT || m_current_read_buffer == GL_FRONT_LEFT) {
if (y + i >= m_frontbuffer->width() || x + j >= m_frontbuffer->height())
color = 0;
else
color = m_frontbuffer->scanline(y + i)[x + j];
} else {
color = m_rasterizer->get_color_buffer_pixel(x + j, y + i);
}
float red = ((color >> 24) & 0xff) / 255.0f;
float green = ((color >> 16) & 0xff) / 255.0f;
float blue = ((color >> 8) & 0xff) / 255.0f;
float alpha = (color & 0xff) / 255.0f;
// FIXME: Set up write pointers based on selected endianness (glPixelStore)
red_ptr = out_ptr + (component_size * red_offset);
green_ptr = out_ptr + (component_size * green_offset);
blue_ptr = out_ptr + (component_size * blue_offset);
alpha_ptr = out_ptr + (component_size * alpha_offset);
switch (type) {
case GL_BYTE:
if (write_red)
*reinterpret_cast<GLchar*>(red_ptr) = float_to_i8(red);
if (write_green)
*reinterpret_cast<GLchar*>(green_ptr) = float_to_i8(green);
if (write_blue)
*reinterpret_cast<GLchar*>(blue_ptr) = float_to_i8(blue);
if (write_alpha)
*reinterpret_cast<GLchar*>(alpha_ptr) = float_to_i8(alpha);
break;
case GL_UNSIGNED_BYTE:
if (write_red)
*reinterpret_cast<GLubyte*>(red_ptr) = float_to_u8(red);
if (write_green)
*reinterpret_cast<GLubyte*>(green_ptr) = float_to_u8(green);
if (write_blue)
*reinterpret_cast<GLubyte*>(blue_ptr) = float_to_u8(blue);
if (write_alpha)
*reinterpret_cast<GLubyte*>(alpha_ptr) = float_to_u8(alpha);
break;
case GL_SHORT:
if (write_red)
*reinterpret_cast<GLshort*>(red_ptr) = float_to_i16(red);
if (write_green)
*reinterpret_cast<GLshort*>(green_ptr) = float_to_i16(green);
if (write_blue)
*reinterpret_cast<GLshort*>(blue_ptr) = float_to_i16(blue);
if (write_alpha)
*reinterpret_cast<GLshort*>(alpha_ptr) = float_to_i16(alpha);
break;
case GL_UNSIGNED_SHORT:
if (write_red)
*reinterpret_cast<GLushort*>(red_ptr) = float_to_u16(red);
if (write_green)
*reinterpret_cast<GLushort*>(green_ptr) = float_to_u16(green);
if (write_blue)
*reinterpret_cast<GLushort*>(blue_ptr) = float_to_u16(blue);
if (write_alpha)
*reinterpret_cast<GLushort*>(alpha_ptr) = float_to_u16(alpha);
break;
case GL_INT:
if (write_red)
*reinterpret_cast<GLint*>(red_ptr) = float_to_i32(red);
if (write_green)
*reinterpret_cast<GLint*>(green_ptr) = float_to_i32(green);
if (write_blue)
*reinterpret_cast<GLint*>(blue_ptr) = float_to_i32(blue);
if (write_alpha)
*reinterpret_cast<GLint*>(alpha_ptr) = float_to_i32(alpha);
break;
case GL_UNSIGNED_INT:
if (write_red)
*reinterpret_cast<GLuint*>(red_ptr) = float_to_u32(red);
if (write_green)
*reinterpret_cast<GLuint*>(green_ptr) = float_to_u32(green);
if (write_blue)
*reinterpret_cast<GLuint*>(blue_ptr) = float_to_u32(blue);
if (write_alpha)
*reinterpret_cast<GLuint*>(alpha_ptr) = float_to_u32(alpha);
break;
case GL_FLOAT:
if (write_red)
*reinterpret_cast<GLfloat*>(red_ptr) = min(max(red, 0.0f), 1.0f);
if (write_green)
*reinterpret_cast<GLfloat*>(green_ptr) = min(max(green, 0.0f), 1.0f);
if (write_blue)
*reinterpret_cast<GLfloat*>(blue_ptr) = min(max(blue, 0.0f), 1.0f);
if (write_alpha)
*reinterpret_cast<GLfloat*>(alpha_ptr) = min(max(alpha, 0.0f), 1.0f);
break;
}
out_ptr += pixel_bytes;
}
out_ptr += row_alignment_bytes;
}
}
void GLContext::gl_bind_texture(GLenum target, GLuint texture)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(target != GL_TEXTURE_1D
&& target != GL_TEXTURE_2D
&& target != GL_TEXTURE_3D
&& target != GL_TEXTURE_1D_ARRAY
&& target != GL_TEXTURE_2D_ARRAY
&& target != GL_TEXTURE_CUBE_MAP,
GL_INVALID_ENUM);
// FIXME: We only support GL_TEXTURE_2D for now
if (target != GL_TEXTURE_2D) {
dbgln("gl_bind_texture(target = {:#x}): currently only GL_TEXTURE_2D is supported", target);
return;
}
RefPtr<Texture2D> texture_2d;
if (texture == 0) {
// Texture name 0 refers to the default texture
texture_2d = get_default_texture<Texture2D>(target);
} else {
// Find this texture name in our previously allocated textures
auto it = m_allocated_textures.find(texture);
if (it != m_allocated_textures.end()) {
auto texture_object = it->value;
if (!texture_object.is_null()) {
// Texture must have been created with the same target
RETURN_WITH_ERROR_IF(!texture_object->is_texture_2d(), GL_INVALID_OPERATION);
texture_2d = static_cast<Texture2D*>(texture_object.ptr());
}
}
// OpenGL 1.x supports binding texture names that were not previously generated by glGenTextures.
// If there is not an allocated texture, meaning it was not previously generated by glGenTextures,
// we can keep texture_object null to both allocate and bind the texture with the passed in texture name.
// FIXME: Later OpenGL versions such as 4.x enforce that texture names being bound were previously generated
// by glGenTextures.
if (!texture_2d) {
texture_2d = adopt_ref(*new Texture2D());
m_allocated_textures.set(texture, texture_2d);
}
}
m_active_texture_unit->set_texture_2d_target_texture(texture_2d);
m_sampler_config_is_dirty = true;
}
GLboolean GLContext::gl_is_texture(GLuint texture)
{
RETURN_VALUE_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION, GL_FALSE);
if (texture == 0)
return GL_FALSE;
auto it = m_allocated_textures.find(texture);
if (it == m_allocated_textures.end())
return GL_FALSE;
return it->value.is_null() ? GL_FALSE : GL_TRUE;
}
void GLContext::gl_active_texture(GLenum texture)
{
RETURN_WITH_ERROR_IF(texture < GL_TEXTURE0 || texture >= GL_TEXTURE0 + m_device_info.num_texture_units, GL_INVALID_ENUM);
m_active_texture_unit_index = texture - GL_TEXTURE0;
m_active_texture_unit = &m_texture_units.at(m_active_texture_unit_index);
}
void GLContext::gl_get_booleanv(GLenum pname, GLboolean* data)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
auto optional_parameter = get_context_parameter(pname);
RETURN_WITH_ERROR_IF(!optional_parameter.has_value(), GL_INVALID_ENUM);
auto parameter = optional_parameter.release_value();
switch (parameter.type) {
case GL_BOOL:
*data = parameter.value.boolean_value ? GL_TRUE : GL_FALSE;
break;
case GL_DOUBLE:
*data = (parameter.value.double_value == 0.0) ? GL_FALSE : GL_TRUE;
break;
case GL_INT:
*data = (parameter.value.integer_value == 0) ? GL_FALSE : GL_TRUE;
break;
default:
VERIFY_NOT_REACHED();
}
}
void GLContext::gl_get_doublev(GLenum pname, GLdouble* params)
{
get_floating_point(pname, params);
}
void GLContext::gl_get_floatv(GLenum pname, GLfloat* params)
{
get_floating_point(pname, params);
}
template<typename T>
void GLContext::get_floating_point(GLenum pname, T* params)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// Handle matrix retrieval first
auto flatten_and_assign_matrix = [&params](FloatMatrix4x4 const& matrix) {
auto elements = matrix.elements();
for (size_t i = 0; i < 4; ++i) {
for (size_t j = 0; j < 4; ++j) {
// Return transposed matrix since OpenGL defines them as column-major
params[i * 4 + j] = static_cast<T>(elements[j][i]);
}
}
};
switch (pname) {
case GL_MODELVIEW_MATRIX:
flatten_and_assign_matrix(m_model_view_matrix);
return;
case GL_PROJECTION_MATRIX:
flatten_and_assign_matrix(m_projection_matrix);
return;
}
// Regular parameters
auto optional_parameter = get_context_parameter(pname);
RETURN_WITH_ERROR_IF(!optional_parameter.has_value(), GL_INVALID_ENUM);
auto parameter = optional_parameter.release_value();
switch (parameter.type) {
case GL_BOOL:
*params = parameter.value.boolean_value ? GL_TRUE : GL_FALSE;
break;
case GL_DOUBLE:
for (size_t i = 0; i < parameter.count; ++i)
params[i] = parameter.value.double_list[i];
break;
case GL_INT:
for (size_t i = 0; i < parameter.count; ++i)
params[i] = parameter.value.integer_list[i];
break;
default:
VERIFY_NOT_REACHED();
}
}
void GLContext::gl_get_integerv(GLenum pname, GLint* data)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
auto optional_parameter = get_context_parameter(pname);
RETURN_WITH_ERROR_IF(!optional_parameter.has_value(), GL_INVALID_ENUM);
auto parameter = optional_parameter.release_value();
switch (parameter.type) {
case GL_BOOL:
*data = parameter.value.boolean_value ? GL_TRUE : GL_FALSE;
break;
case GL_DOUBLE: {
double const int_range = static_cast<double>(NumericLimits<GLint>::max()) - NumericLimits<GLint>::min();
for (size_t i = 0; i < parameter.count; ++i) {
double const result_factor = (clamp(parameter.value.double_list[i], -1.0, 1.0) + 1.0) / 2.0;
data[i] = static_cast<GLint>(NumericLimits<GLint>::min() + result_factor * int_range);
}
break;
}
case GL_INT:
for (size_t i = 0; i < parameter.count; ++i)
data[i] = parameter.value.integer_list[i];
break;
default:
VERIFY_NOT_REACHED();
}
}
void GLContext::gl_depth_mask(GLboolean flag)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_depth_mask, flag);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
auto options = m_rasterizer->options();
options.enable_depth_write = (flag != GL_FALSE);
m_rasterizer->set_options(options);
}
2022-03-09 11:27:02 +00:00
void GLContext::gl_clip_plane(GLenum plane, [[maybe_unused]] GLdouble const* equation)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_clip_plane, plane, equation);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF((plane < GL_CLIP_PLANE0) || (plane > GL_CLIP_PLANE5), GL_INVALID_ENUM);
dbgln_if(GL_DEBUG, "GLContext FIXME: implement gl_clip_plane() (equation = [{} {} {} {}])", equation[0], equation[1], equation[2], equation[3]);
}
void GLContext::gl_enable_client_state(GLenum cap)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
switch (cap) {
case GL_COLOR_ARRAY:
m_client_side_color_array_enabled = true;
break;
case GL_NORMAL_ARRAY:
m_client_side_normal_array_enabled = true;
break;
case GL_TEXTURE_COORD_ARRAY:
m_client_side_texture_coord_array_enabled[m_client_active_texture] = true;
break;
case GL_VERTEX_ARRAY:
m_client_side_vertex_array_enabled = true;
break;
default:
RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM);
}
}
void GLContext::gl_disable_client_state(GLenum cap)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
switch (cap) {
case GL_COLOR_ARRAY:
m_client_side_color_array_enabled = false;
break;
case GL_NORMAL_ARRAY:
m_client_side_normal_array_enabled = false;
break;
case GL_TEXTURE_COORD_ARRAY:
m_client_side_texture_coord_array_enabled[m_client_active_texture] = false;
break;
case GL_VERTEX_ARRAY:
m_client_side_vertex_array_enabled = false;
break;
default:
RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM);
}
}
void GLContext::gl_client_active_texture(GLenum target)
{
RETURN_WITH_ERROR_IF(target < GL_TEXTURE0 || target >= GL_TEXTURE0 + m_device_info.num_texture_units, GL_INVALID_ENUM);
m_client_active_texture = target - GL_TEXTURE0;
}
2022-04-01 17:58:27 +00:00
void GLContext::gl_vertex_pointer(GLint size, GLenum type, GLsizei stride, void const* pointer)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(!(size == 2 || size == 3 || size == 4), GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(!(type == GL_SHORT || type == GL_INT || type == GL_FLOAT || type == GL_DOUBLE), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(stride < 0, GL_INVALID_VALUE);
m_client_vertex_pointer = { .size = size, .type = type, .stride = stride, .pointer = pointer };
}
2022-04-01 17:58:27 +00:00
void GLContext::gl_color_pointer(GLint size, GLenum type, GLsizei stride, void const* pointer)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(!(size == 3 || size == 4), GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(type != GL_BYTE
&& type != GL_UNSIGNED_BYTE
&& type != GL_SHORT
&& type != GL_UNSIGNED_SHORT
&& type != GL_INT
&& type != GL_UNSIGNED_INT
&& type != GL_FLOAT
&& type != GL_DOUBLE,
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(stride < 0, GL_INVALID_VALUE);
m_client_color_pointer = { .size = size, .type = type, .stride = stride, .pointer = pointer };
}
2022-04-01 17:58:27 +00:00
void GLContext::gl_tex_coord_pointer(GLint size, GLenum type, GLsizei stride, void const* pointer)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(!(size == 1 || size == 2 || size == 3 || size == 4), GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(!(type == GL_SHORT || type == GL_INT || type == GL_FLOAT || type == GL_DOUBLE), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(stride < 0, GL_INVALID_VALUE);
auto& tex_coord_pointer = m_client_tex_coord_pointer[m_client_active_texture];
tex_coord_pointer = { .size = size, .type = type, .stride = stride, .pointer = pointer };
}
void GLContext::gl_normal_pointer(GLenum type, GLsizei stride, void const* pointer)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(type != GL_BYTE
&& type != GL_SHORT
&& type != GL_INT
&& type != GL_FLOAT
&& type != GL_DOUBLE,
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(stride < 0, GL_INVALID_VALUE);
m_client_normal_pointer = { .size = 3, .type = type, .stride = stride, .pointer = pointer };
}
void GLContext::gl_tex_env(GLenum target, GLenum pname, GLfloat param)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_tex_env, target, pname, param);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: We currently only support a subset of possible target values. Implement the rest!
RETURN_WITH_ERROR_IF(target != GL_TEXTURE_ENV, GL_INVALID_ENUM);
// FIXME: We currently only support a subset of possible pname values. Implement the rest!
RETURN_WITH_ERROR_IF(pname != GL_TEXTURE_ENV_MODE, GL_INVALID_ENUM);
auto param_enum = static_cast<GLenum>(param);
switch (param_enum) {
case GL_MODULATE:
case GL_REPLACE:
case GL_DECAL:
case GL_ADD:
m_active_texture_unit->set_env_mode(param_enum);
m_sampler_config_is_dirty = true;
break;
default:
// FIXME: We currently only support a subset of possible param values. Implement the rest!
dbgln_if(GL_DEBUG, "gl_tex_env({:#x}, {:#x}, {}): param unimplemented", target, pname, param);
RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM);
}
}
void GLContext::gl_draw_arrays(GLenum mode, GLint first, GLsizei count)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_draw_arrays, mode, first, count);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: Some modes are still missing (GL_POINTS, GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES)
RETURN_WITH_ERROR_IF(!(mode == GL_TRIANGLE_STRIP
|| mode == GL_TRIANGLE_FAN
|| mode == GL_TRIANGLES
|| mode == GL_QUADS
|| mode == GL_QUAD_STRIP
|| mode == GL_POLYGON),
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(count < 0, GL_INVALID_VALUE);
// At least the vertex array needs to be enabled
if (!m_client_side_vertex_array_enabled)
return;
auto last = first + count;
gl_begin(mode);
for (int i = first; i < last; i++) {
if (m_client_side_color_array_enabled) {
float color[4] { 0, 0, 0, 1 };
read_from_vertex_attribute_pointer(m_client_color_pointer, i, color);
gl_color(color[0], color[1], color[2], color[3]);
}
for (size_t t = 0; t < m_client_tex_coord_pointer.size(); ++t) {
if (m_client_side_texture_coord_array_enabled[t]) {
float tex_coords[4] { 0, 0, 0, 0 };
read_from_vertex_attribute_pointer(m_client_tex_coord_pointer[t], i, tex_coords);
gl_multi_tex_coord(GL_TEXTURE0 + t, tex_coords[0], tex_coords[1], tex_coords[2], tex_coords[3]);
}
}
if (m_client_side_normal_array_enabled) {
float normal[3];
read_from_vertex_attribute_pointer(m_client_normal_pointer, i, normal);
gl_normal(normal[0], normal[1], normal[2]);
}
float vertex[4] { 0, 0, 0, 1 };
read_from_vertex_attribute_pointer(m_client_vertex_pointer, i, vertex);
gl_vertex(vertex[0], vertex[1], vertex[2], vertex[3]);
}
gl_end();
}
2022-04-01 17:58:27 +00:00
void GLContext::gl_draw_elements(GLenum mode, GLsizei count, GLenum type, void const* indices)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_draw_elements, mode, count, type, indices);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: Some modes are still missing (GL_POINTS, GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES)
RETURN_WITH_ERROR_IF(!(mode == GL_TRIANGLE_STRIP
|| mode == GL_TRIANGLE_FAN
|| mode == GL_TRIANGLES
|| mode == GL_QUADS
|| mode == GL_QUAD_STRIP
|| mode == GL_POLYGON),
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!(type == GL_UNSIGNED_BYTE
|| type == GL_UNSIGNED_SHORT
|| type == GL_UNSIGNED_INT),
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(count < 0, GL_INVALID_VALUE);
// At least the vertex array needs to be enabled
if (!m_client_side_vertex_array_enabled)
return;
gl_begin(mode);
for (int index = 0; index < count; index++) {
int i = 0;
switch (type) {
case GL_UNSIGNED_BYTE:
2022-04-01 17:58:27 +00:00
i = reinterpret_cast<GLubyte const*>(indices)[index];
break;
case GL_UNSIGNED_SHORT:
2022-04-01 17:58:27 +00:00
i = reinterpret_cast<GLushort const*>(indices)[index];
break;
case GL_UNSIGNED_INT:
2022-04-01 17:58:27 +00:00
i = reinterpret_cast<GLuint const*>(indices)[index];
break;
}
if (m_client_side_color_array_enabled) {
float color[4] { 0, 0, 0, 1 };
read_from_vertex_attribute_pointer(m_client_color_pointer, i, color);
gl_color(color[0], color[1], color[2], color[3]);
}
for (size_t t = 0; t < m_client_tex_coord_pointer.size(); ++t) {
if (m_client_side_texture_coord_array_enabled[t]) {
float tex_coords[4] { 0, 0, 0, 0 };
read_from_vertex_attribute_pointer(m_client_tex_coord_pointer[t], i, tex_coords);
gl_multi_tex_coord(GL_TEXTURE0 + t, tex_coords[0], tex_coords[1], tex_coords[2], tex_coords[3]);
}
}
if (m_client_side_normal_array_enabled) {
float normal[3];
read_from_vertex_attribute_pointer(m_client_normal_pointer, i, normal);
gl_normal(normal[0], normal[1], normal[2]);
}
float vertex[4] { 0, 0, 0, 1 };
read_from_vertex_attribute_pointer(m_client_vertex_pointer, i, vertex);
gl_vertex(vertex[0], vertex[1], vertex[2], vertex[3]);
}
gl_end();
}
2022-04-01 17:58:27 +00:00
void GLContext::gl_draw_pixels(GLsizei width, GLsizei height, GLenum format, GLenum type, void const* data)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_draw_pixels, width, height, format, type, data);
RETURN_WITH_ERROR_IF(format < GL_COLOR_INDEX || format > GL_BGRA, GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF((type < GL_BYTE || type > GL_FLOAT)
&& (type < GL_UNSIGNED_BYTE_3_3_2 || type > GL_UNSIGNED_INT_10_10_10_2)
&& (type < GL_UNSIGNED_BYTE_2_3_3_REV || type > GL_UNSIGNED_INT_2_10_10_10_REV),
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(type == GL_BITMAP && !(format == GL_COLOR_INDEX || format == GL_STENCIL_INDEX), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(width < 0 || height < 0, GL_INVALID_VALUE);
// FIXME: GL_INVALID_OPERATION is generated if format is GL_STENCIL_INDEX and there is no stencil buffer
// FIXME: GL_INVALID_OPERATION is generated if format is GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA,
// GL_BGR, GL_BGRA, GL_LUMINANCE, or GL_LUMINANCE_ALPHA, and the GL is in color index mode
RETURN_WITH_ERROR_IF(format != GL_RGB
&& (type == GL_UNSIGNED_BYTE_3_3_2
|| type == GL_UNSIGNED_BYTE_2_3_3_REV
|| type == GL_UNSIGNED_SHORT_5_6_5
|| type == GL_UNSIGNED_SHORT_5_6_5_REV),
GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(!(format == GL_RGBA || format == GL_BGRA)
&& (type == GL_UNSIGNED_SHORT_4_4_4_4
|| type == GL_UNSIGNED_SHORT_4_4_4_4_REV
|| type == GL_UNSIGNED_SHORT_5_5_5_1
|| type == GL_UNSIGNED_SHORT_1_5_5_5_REV
|| type == GL_UNSIGNED_INT_8_8_8_8
|| type == GL_UNSIGNED_INT_8_8_8_8_REV
|| type == GL_UNSIGNED_INT_10_10_10_2
|| type == GL_UNSIGNED_INT_2_10_10_10_REV),
GL_INVALID_OPERATION);
// FIXME: GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the GL_PIXEL_UNPACK_BUFFER
// target and the buffer object's data store is currently mapped.
// FIXME: GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the GL_PIXEL_UNPACK_BUFFER
// target and the data would be unpacked from the buffer object such that the memory reads required would
// exceed the data store size.
// FIXME: GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the GL_PIXEL_UNPACK_BUFFER
// target and data is not evenly divisible into the number of bytes needed to store in memory a datum
// indicated by type.
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: we only support RGBA + UNSIGNED_BYTE and DEPTH_COMPONENT + UNSIGNED_SHORT, implement all combinations!
if (!((format == GL_RGBA && type == GL_UNSIGNED_BYTE) || (format == GL_DEPTH_COMPONENT && type == GL_UNSIGNED_SHORT))) {
dbgln_if(GL_DEBUG, "gl_draw_pixels(): support for format {:#x} and/or type {:#x} not implemented", format, type);
return;
}
// FIXME: implement support for pixel parameters such as GL_UNPACK_ALIGNMENT
if (format == GL_RGBA) {
auto bitmap_or_error = Gfx::Bitmap::try_create(Gfx::BitmapFormat::BGRA8888, { width, height });
RETURN_WITH_ERROR_IF(bitmap_or_error.is_error(), GL_OUT_OF_MEMORY);
auto bitmap = bitmap_or_error.release_value();
auto pixel_data = static_cast<u32 const*>(data);
for (int y = 0; y < height; ++y)
for (int x = 0; x < width; ++x)
bitmap->set_pixel(x, y, Color::from_argb(*(pixel_data++)));
m_rasterizer->blit_to_color_buffer_at_raster_position(bitmap);
} else if (format == GL_DEPTH_COMPONENT) {
Vector<float> depth_values;
depth_values.ensure_capacity(width * height);
auto depth_data = static_cast<u16 const*>(data);
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
auto u16_value = *(depth_data++);
auto float_value = static_cast<float>(u16_value) / NumericLimits<u16>::max();
depth_values.append(float_value);
}
}
m_rasterizer->blit_to_depth_buffer_at_raster_position(depth_values, width, height);
} else {
VERIFY_NOT_REACHED();
}
}
2022-03-09 13:11:35 +00:00
void GLContext::gl_array_element(GLint i)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_array_element, i);
RETURN_WITH_ERROR_IF(i < 0, GL_INVALID_VALUE);
// This is effectively the same as `gl_draw_elements`, except we only output a single
// vertex (this is done between a `gl_begin/end` call) that is to be rendered.
if (!m_client_side_vertex_array_enabled)
return;
if (m_client_side_color_array_enabled) {
float color[4] { 0, 0, 0, 1 };
read_from_vertex_attribute_pointer(m_client_color_pointer, i, color);
gl_color(color[0], color[1], color[2], color[3]);
}
for (size_t t = 0; t < m_client_tex_coord_pointer.size(); ++t) {
if (m_client_side_texture_coord_array_enabled[t]) {
float tex_coords[4] { 0, 0, 0, 0 };
read_from_vertex_attribute_pointer(m_client_tex_coord_pointer[t], i, tex_coords);
gl_multi_tex_coord(GL_TEXTURE0 + t, tex_coords[0], tex_coords[1], tex_coords[2], tex_coords[3]);
}
}
if (m_client_side_normal_array_enabled) {
float normal[3];
read_from_vertex_attribute_pointer(m_client_normal_pointer, i, normal);
gl_normal(normal[0], normal[1], normal[2]);
}
float vertex[4] { 0, 0, 0, 1 };
read_from_vertex_attribute_pointer(m_client_vertex_pointer, i, vertex);
gl_vertex(vertex[0], vertex[1], vertex[2], vertex[3]);
}
void GLContext::gl_depth_range(GLdouble min, GLdouble max)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_depth_range, min, max);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
auto options = m_rasterizer->options();
options.depth_min = clamp<float>(min, 0.f, 1.f);
options.depth_max = clamp<float>(max, 0.f, 1.f);
m_rasterizer->set_options(options);
}
void GLContext::gl_depth_func(GLenum func)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_depth_func, func);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(!(func == GL_NEVER
|| func == GL_LESS
|| func == GL_EQUAL
|| func == GL_LEQUAL
|| func == GL_GREATER
|| func == GL_NOTEQUAL
|| func == GL_GEQUAL
|| func == GL_ALWAYS),
GL_INVALID_ENUM);
auto options = m_rasterizer->options();
switch (func) {
case GL_NEVER:
options.depth_func = GPU::DepthTestFunction::Never;
break;
case GL_ALWAYS:
options.depth_func = GPU::DepthTestFunction::Always;
break;
case GL_LESS:
options.depth_func = GPU::DepthTestFunction::Less;
break;
case GL_LEQUAL:
options.depth_func = GPU::DepthTestFunction::LessOrEqual;
break;
case GL_EQUAL:
options.depth_func = GPU::DepthTestFunction::Equal;
break;
case GL_NOTEQUAL:
options.depth_func = GPU::DepthTestFunction::NotEqual;
break;
case GL_GEQUAL:
options.depth_func = GPU::DepthTestFunction::GreaterOrEqual;
break;
case GL_GREATER:
options.depth_func = GPU::DepthTestFunction::Greater;
break;
default:
VERIFY_NOT_REACHED();
}
m_rasterizer->set_options(options);
}
// General helper function to read arbitrary vertex attribute data into a float array
void GLContext::read_from_vertex_attribute_pointer(VertexAttribPointer const& attrib, int index, float* elements)
{
2022-04-01 17:58:27 +00:00
auto byte_ptr = reinterpret_cast<char const*>(attrib.pointer);
auto normalize = attrib.normalize;
size_t stride = attrib.stride;
switch (attrib.type) {
case GL_BYTE: {
if (stride == 0)
stride = sizeof(GLbyte) * attrib.size;
for (int i = 0; i < attrib.size; i++) {
2022-04-01 17:58:27 +00:00
elements[i] = *(reinterpret_cast<GLbyte const*>(byte_ptr + stride * index) + i);
if (normalize)
elements[i] /= 0x80;
}
break;
}
case GL_UNSIGNED_BYTE: {
if (stride == 0)
stride = sizeof(GLubyte) * attrib.size;
for (int i = 0; i < attrib.size; i++) {
2022-04-01 17:58:27 +00:00
elements[i] = *(reinterpret_cast<GLubyte const*>(byte_ptr + stride * index) + i);
if (normalize)
elements[i] /= 0xff;
}
break;
}
case GL_SHORT: {
if (stride == 0)
stride = sizeof(GLshort) * attrib.size;
for (int i = 0; i < attrib.size; i++) {
2022-04-01 17:58:27 +00:00
elements[i] = *(reinterpret_cast<GLshort const*>(byte_ptr + stride * index) + i);
if (normalize)
elements[i] /= 0x8000;
}
break;
}
case GL_UNSIGNED_SHORT: {
if (stride == 0)
stride = sizeof(GLushort) * attrib.size;
for (int i = 0; i < attrib.size; i++) {
2022-04-01 17:58:27 +00:00
elements[i] = *(reinterpret_cast<GLushort const*>(byte_ptr + stride * index) + i);
if (normalize)
elements[i] /= 0xffff;
}
break;
}
case GL_INT: {
if (stride == 0)
stride = sizeof(GLint) * attrib.size;
for (int i = 0; i < attrib.size; i++) {
2022-04-01 17:58:27 +00:00
elements[i] = *(reinterpret_cast<GLint const*>(byte_ptr + stride * index) + i);
if (normalize)
elements[i] /= 0x80000000;
}
break;
}
case GL_UNSIGNED_INT: {
if (stride == 0)
stride = sizeof(GLuint) * attrib.size;
for (int i = 0; i < attrib.size; i++) {
2022-04-01 17:58:27 +00:00
elements[i] = *(reinterpret_cast<GLuint const*>(byte_ptr + stride * index) + i);
if (normalize)
elements[i] /= 0xffffffff;
}
break;
}
case GL_FLOAT: {
if (stride == 0)
stride = sizeof(GLfloat) * attrib.size;
for (int i = 0; i < attrib.size; i++)
2022-04-01 17:58:27 +00:00
elements[i] = *(reinterpret_cast<GLfloat const*>(byte_ptr + stride * index) + i);
break;
}
case GL_DOUBLE: {
if (stride == 0)
stride = sizeof(GLdouble) * attrib.size;
for (int i = 0; i < attrib.size; i++)
2022-04-01 17:58:27 +00:00
elements[i] = static_cast<float>(*(reinterpret_cast<GLdouble const*>(byte_ptr + stride * index) + i));
break;
}
}
}
void GLContext::gl_color_mask(GLboolean red, GLboolean green, GLboolean blue, GLboolean alpha)
{
auto options = m_rasterizer->options();
auto mask = options.color_mask;
if (!red)
mask &= ~0x000000ff;
else
mask |= 0x000000ff;
if (!green)
mask &= ~0x0000ff00;
else
mask |= 0x0000ff00;
if (!blue)
mask &= ~0x00ff0000;
else
mask |= 0x00ff0000;
if (!alpha)
mask &= ~0xff000000;
else
mask |= 0xff000000;
options.color_mask = mask;
m_rasterizer->set_options(options);
}
void GLContext::gl_polygon_mode(GLenum face, GLenum mode)
{
RETURN_WITH_ERROR_IF(!(face == GL_BACK || face == GL_FRONT || face == GL_FRONT_AND_BACK), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!(mode == GL_POINT || mode == GL_LINE || mode == GL_FILL), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
auto options = m_rasterizer->options();
// FIXME: This must support different polygon modes for front- and backside
if (face == GL_BACK) {
dbgln_if(GL_DEBUG, "gl_polygon_mode(GL_BACK, {:#x}): unimplemented", mode);
return;
}
auto map_mode = [](GLenum mode) -> GPU::PolygonMode {
switch (mode) {
case GL_FILL:
return GPU::PolygonMode::Fill;
case GL_LINE:
return GPU::PolygonMode::Line;
case GL_POINT:
return GPU::PolygonMode::Point;
default:
VERIFY_NOT_REACHED();
}
};
options.polygon_mode = map_mode(mode);
m_rasterizer->set_options(options);
}
void GLContext::gl_polygon_offset(GLfloat factor, GLfloat units)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_polygon_offset, factor, units);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
auto rasterizer_options = m_rasterizer->options();
rasterizer_options.depth_offset_factor = factor;
rasterizer_options.depth_offset_constant = units;
m_rasterizer->set_options(rasterizer_options);
}
void GLContext::gl_fogfv(GLenum pname, GLfloat* params)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_fogfv, pname, params);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
auto options = m_rasterizer->options();
switch (pname) {
case GL_FOG_COLOR:
options.fog_color = { params[0], params[1], params[2], params[3] };
break;
default:
RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM);
}
m_rasterizer->set_options(options);
}
void GLContext::gl_fogf(GLenum pname, GLfloat param)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_fogf, pname, param);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(param < 0.0f, GL_INVALID_VALUE);
auto options = m_rasterizer->options();
switch (pname) {
case GL_FOG_DENSITY:
options.fog_density = param;
break;
case GL_FOG_END:
options.fog_end = param;
break;
case GL_FOG_START:
options.fog_start = param;
break;
default:
RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM);
}
m_rasterizer->set_options(options);
}
void GLContext::gl_fogi(GLenum pname, GLint param)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_fogi, pname, param);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(param != GL_LINEAR && param != GL_EXP && param != GL_EXP2, GL_INVALID_ENUM);
auto options = m_rasterizer->options();
switch (pname) {
case GL_FOG_MODE:
switch (param) {
case GL_LINEAR:
options.fog_mode = GPU::FogMode::Linear;
break;
case GL_EXP:
options.fog_mode = GPU::FogMode::Exp;
break;
case GL_EXP2:
options.fog_mode = GPU::FogMode::Exp2;
break;
}
break;
default:
RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM);
}
m_rasterizer->set_options(options);
}
void GLContext::gl_pixel_storei(GLenum pname, GLint param)
{
// FIXME: Implement missing parameters
switch (pname) {
case GL_PACK_ALIGNMENT:
RETURN_WITH_ERROR_IF(param != 1 && param != 2 && param != 4 && param != 8, GL_INVALID_VALUE);
m_pack_alignment = param;
break;
case GL_UNPACK_ROW_LENGTH:
RETURN_WITH_ERROR_IF(param < 0, GL_INVALID_VALUE);
m_unpack_row_length = static_cast<size_t>(param);
break;
case GL_UNPACK_ALIGNMENT:
RETURN_WITH_ERROR_IF(param != 1 && param != 2 && param != 4 && param != 8, GL_INVALID_VALUE);
m_unpack_alignment = param;
break;
default:
RETURN_WITH_ERROR_IF(true, GL_INVALID_ENUM);
break;
}
}
void GLContext::gl_scissor(GLint x, GLint y, GLsizei width, GLsizei height)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_scissor, x, y, width, height);
RETURN_WITH_ERROR_IF(width < 0 || height < 0, GL_INVALID_VALUE);
auto options = m_rasterizer->options();
options.scissor_box = { x, y, width, height };
m_rasterizer->set_options(options);
}
void GLContext::gl_stencil_func_separate(GLenum face, GLenum func, GLint ref, GLuint mask)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_stencil_func_separate, face, func, ref, mask);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(!(face == GL_FRONT || face == GL_BACK || face == GL_FRONT_AND_BACK), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!(func == GL_NEVER
|| func == GL_LESS
|| func == GL_LEQUAL
|| func == GL_GREATER
|| func == GL_GEQUAL
|| func == GL_EQUAL
|| func == GL_NOTEQUAL
|| func == GL_ALWAYS),
GL_INVALID_ENUM);
ref = clamp(ref, 0, (1 << m_device_info.stencil_bits) - 1);
StencilFunctionOptions new_options = { func, ref, mask };
if (face == GL_FRONT || face == GL_FRONT_AND_BACK)
m_stencil_function[Face::Front] = new_options;
if (face == GL_BACK || face == GL_FRONT_AND_BACK)
m_stencil_function[Face::Back] = new_options;
m_stencil_configuration_dirty = true;
}
void GLContext::gl_stencil_mask_separate(GLenum face, GLuint mask)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_stencil_mask_separate, face, mask);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
if (face == GL_FRONT || face == GL_FRONT_AND_BACK)
m_stencil_operation[Face::Front].write_mask = mask;
if (face == GL_BACK || face == GL_FRONT_AND_BACK)
m_stencil_operation[Face::Back].write_mask = mask;
m_stencil_configuration_dirty = true;
}
void GLContext::gl_stencil_op_separate(GLenum face, GLenum sfail, GLenum dpfail, GLenum dppass)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_stencil_op_separate, face, sfail, dpfail, dppass);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(!(face == GL_FRONT || face == GL_BACK || face == GL_FRONT_AND_BACK), GL_INVALID_ENUM);
auto is_valid_op = [](GLenum op) -> bool {
return op == GL_KEEP || op == GL_ZERO || op == GL_REPLACE || op == GL_INCR || op == GL_INCR_WRAP
|| op == GL_DECR || op == GL_DECR_WRAP || op == GL_INVERT;
};
RETURN_WITH_ERROR_IF(!is_valid_op(sfail), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!is_valid_op(dpfail), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!is_valid_op(dppass), GL_INVALID_ENUM);
auto update_stencil_operation = [&](Face face, GLenum sfail, GLenum dpfail, GLenum dppass) {
auto& stencil_operation = m_stencil_operation[face];
stencil_operation.op_fail = sfail;
stencil_operation.op_depth_fail = dpfail;
stencil_operation.op_pass = dppass;
};
if (face == GL_FRONT || face == GL_FRONT_AND_BACK)
update_stencil_operation(Face::Front, sfail, dpfail, dppass);
if (face == GL_BACK || face == GL_FRONT_AND_BACK)
update_stencil_operation(Face::Back, sfail, dpfail, dppass);
m_stencil_configuration_dirty = true;
}
void GLContext::gl_normal(GLfloat nx, GLfloat ny, GLfloat nz)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_normal, nx, ny, nz);
m_current_vertex_normal = { nx, ny, nz };
}
void GLContext::gl_raster_pos(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_raster_pos, x, y, z, w);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
m_rasterizer->set_raster_position({ x, y, z, w }, m_model_view_matrix, m_projection_matrix);
}
void GLContext::gl_line_width(GLfloat width)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_line_width, width);
RETURN_WITH_ERROR_IF(width <= 0, GL_INVALID_VALUE);
m_line_width = width;
}
void GLContext::gl_push_attrib(GLbitfield mask)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_push_attrib, mask);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: implement
dbgln_if(GL_DEBUG, "GLContext FIXME: implement gl_push_attrib({})", mask);
}
void GLContext::gl_pop_attrib()
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_pop_attrib);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: implement
dbgln_if(GL_DEBUG, "GLContext FIXME: implement gl_pop_attrib()");
}
void GLContext::gl_light_model(GLenum pname, GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_light_model, pname, x, y, z, w);
RETURN_WITH_ERROR_IF(pname != GL_LIGHT_MODEL_AMBIENT
&& pname != GL_LIGHT_MODEL_COLOR_CONTROL
&& pname != GL_LIGHT_MODEL_LOCAL_VIEWER
&& pname != GL_LIGHT_MODEL_TWO_SIDE,
GL_INVALID_ENUM);
auto lighting_params = m_rasterizer->light_model();
switch (pname) {
case GL_LIGHT_MODEL_AMBIENT:
lighting_params.scene_ambient_color = { x, y, z, w };
break;
case GL_LIGHT_MODEL_COLOR_CONTROL: {
GLenum color_control = static_cast<GLenum>(x);
RETURN_WITH_ERROR_IF(color_control != GL_SINGLE_COLOR && color_control != GL_SEPARATE_SPECULAR_COLOR, GL_INVALID_ENUM);
lighting_params.color_control = (color_control == GL_SINGLE_COLOR) ? GPU::ColorControl::SingleColor : GPU::ColorControl::SeparateSpecularColor;
break;
}
case GL_LIGHT_MODEL_LOCAL_VIEWER:
// 0 means the viewer is at infinity
// 1 means they're in local (eye) space
lighting_params.viewer_at_infinity = (x != 1.0f);
break;
case GL_LIGHT_MODEL_TWO_SIDE:
VERIFY(y == 0.0f && z == 0.0f && w == 0.0f);
lighting_params.two_sided_lighting = x;
break;
default:
VERIFY_NOT_REACHED();
}
m_rasterizer->set_light_model_params(lighting_params);
}
void GLContext::gl_bitmap(GLsizei width, GLsizei height, GLfloat xorig, GLfloat yorig, GLfloat xmove, GLfloat ymove, GLubyte const* bitmap)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_bitmap, width, height, xorig, yorig, xmove, ymove, bitmap);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
if (bitmap != nullptr) {
// FIXME: implement
dbgln_if(GL_DEBUG, "gl_bitmap({}, {}, {}, {}, {}, {}, {}): unimplemented", width, height, xorig, yorig, xmove, ymove, bitmap);
}
auto raster_position = m_rasterizer->raster_position();
raster_position.window_coordinates += { xmove, ymove, 0.f, 0.f };
m_rasterizer->set_raster_position(raster_position);
}
void GLContext::gl_copy_tex_image_2d(GLenum target, GLint level, GLenum internalformat, GLint x, GLint y, GLsizei width, GLsizei height, GLint border)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_copy_tex_image_2d, target, level, internalformat, x, y, width, height, border);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: implement
dbgln_if(GL_DEBUG, "GLContext FIXME: implement gl_copy_tex_image_2d({:#x}, {}, {:#x}, {}, {}, {}, {}, {})",
target, level, internalformat, x, y, width, height, border);
}
void GLContext::gl_get_tex_parameter_integerv(GLenum target, GLint level, GLenum pname, GLint* params)
{
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: support targets other than GL_TEXTURE_2D
RETURN_WITH_ERROR_IF(target != GL_TEXTURE_2D, GL_INVALID_ENUM);
// FIXME: support other parameter names
RETURN_WITH_ERROR_IF(pname < GL_TEXTURE_WIDTH || pname > GL_TEXTURE_HEIGHT, GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(level < 0 || level > Texture2D::LOG2_MAX_TEXTURE_SIZE, GL_INVALID_VALUE);
// FIXME: GL_INVALID_VALUE is generated if target is GL_TEXTURE_BUFFER and level is not zero
// FIXME: GL_INVALID_OPERATION is generated if GL_TEXTURE_COMPRESSED_IMAGE_SIZE is queried on texture images with an uncompressed internal format or on proxy targets
VERIFY(!m_active_texture_unit->texture_2d_target_texture().is_null());
auto const texture_2d = m_active_texture_unit->texture_2d_target_texture();
switch (pname) {
case GL_TEXTURE_HEIGHT:
*params = texture_2d->height_at_lod(level);
break;
case GL_TEXTURE_WIDTH:
*params = texture_2d->width_at_lod(level);
break;
}
}
void GLContext::gl_rect(GLdouble x1, GLdouble y1, GLdouble x2, GLdouble y2)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_rect, x1, y1, x2, y2);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
gl_begin(GL_POLYGON);
gl_vertex(x1, y1, 0.0, 1.0);
gl_vertex(x2, y1, 0.0, 1.0);
gl_vertex(x2, y2, 0.0, 1.0);
gl_vertex(x1, y2, 0.0, 1.0);
gl_end();
}
void GLContext::gl_tex_gen(GLenum coord, GLenum pname, GLint param)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_tex_gen, coord, pname, param);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(coord < GL_S || coord > GL_Q, GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(pname != GL_TEXTURE_GEN_MODE, GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(param != GL_EYE_LINEAR
&& param != GL_OBJECT_LINEAR
&& param != GL_SPHERE_MAP
&& param != GL_NORMAL_MAP
&& param != GL_REFLECTION_MAP,
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF((coord == GL_R || coord == GL_Q) && param == GL_SPHERE_MAP, GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(coord == GL_Q && (param == GL_REFLECTION_MAP || param == GL_NORMAL_MAP), GL_INVALID_ENUM);
GLenum const capability = GL_TEXTURE_GEN_S + (coord - GL_S);
texture_coordinate_generation(m_active_texture_unit_index, capability).generation_mode = param;
m_texcoord_generation_dirty = true;
}
void GLContext::gl_tex_gen_floatv(GLenum coord, GLenum pname, GLfloat const* params)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_tex_gen_floatv, coord, pname, params);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(coord < GL_S || coord > GL_Q, GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(pname != GL_TEXTURE_GEN_MODE
&& pname != GL_OBJECT_PLANE
&& pname != GL_EYE_PLANE,
GL_INVALID_ENUM);
GLenum const capability = GL_TEXTURE_GEN_S + (coord - GL_S);
switch (pname) {
case GL_TEXTURE_GEN_MODE: {
auto param = static_cast<GLenum>(params[0]);
RETURN_WITH_ERROR_IF(param != GL_EYE_LINEAR
&& param != GL_OBJECT_LINEAR
&& param != GL_SPHERE_MAP
&& param != GL_NORMAL_MAP
&& param != GL_REFLECTION_MAP,
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF((coord == GL_R || coord == GL_Q) && param == GL_SPHERE_MAP, GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(coord == GL_Q && (param == GL_REFLECTION_MAP || param == GL_NORMAL_MAP), GL_INVALID_ENUM);
texture_coordinate_generation(m_active_texture_unit_index, capability).generation_mode = param;
break;
}
case GL_OBJECT_PLANE:
texture_coordinate_generation(m_active_texture_unit_index, capability).object_plane_coefficients = { params[0], params[1], params[2], params[3] };
break;
case GL_EYE_PLANE: {
auto const& inverse_model_view = m_model_view_matrix.inverse();
auto input_coefficients = FloatVector4 { params[0], params[1], params[2], params[3] };
// Note: we are allowed to store transformed coefficients here, according to the documentation on
// `glGetTexGen`:
//
// "The returned values are those maintained in eye coordinates. They are not equal to the values
// specified using glTexGen, unless the modelview matrix was identity when glTexGen was called."
texture_coordinate_generation(m_active_texture_unit_index, capability).eye_plane_coefficients = inverse_model_view * input_coefficients;
break;
}
default:
VERIFY_NOT_REACHED();
}
m_texcoord_generation_dirty = true;
}
void GLContext::present()
{
m_rasterizer->blit_color_buffer_to(*m_frontbuffer);
}
void GLContext::sync_device_config()
{
sync_device_sampler_config();
sync_device_texcoord_config();
sync_light_state();
sync_stencil_configuration();
}
void GLContext::sync_device_sampler_config()
{
if (!m_sampler_config_is_dirty)
return;
m_sampler_config_is_dirty = false;
for (unsigned i = 0; i < m_texture_units.size(); ++i) {
auto const& texture_unit = m_texture_units[i];
if (!texture_unit.texture_2d_enabled())
continue;
GPU::SamplerConfig config;
auto texture_2d = texture_unit.texture_2d_target_texture();
if (texture_2d.is_null()) {
config.bound_image = nullptr;
m_rasterizer->set_sampler_config(i, config);
continue;
}
config.bound_image = texture_2d->device_image();
auto const& sampler = texture_2d->sampler();
switch (sampler.min_filter()) {
case GL_NEAREST:
config.texture_min_filter = GPU::TextureFilter::Nearest;
config.mipmap_filter = GPU::MipMapFilter::None;
break;
case GL_LINEAR:
config.texture_min_filter = GPU::TextureFilter::Linear;
config.mipmap_filter = GPU::MipMapFilter::None;
break;
case GL_NEAREST_MIPMAP_NEAREST:
config.texture_min_filter = GPU::TextureFilter::Nearest;
config.mipmap_filter = GPU::MipMapFilter::Nearest;
break;
case GL_LINEAR_MIPMAP_NEAREST:
config.texture_min_filter = GPU::TextureFilter::Linear;
config.mipmap_filter = GPU::MipMapFilter::Nearest;
break;
case GL_NEAREST_MIPMAP_LINEAR:
config.texture_min_filter = GPU::TextureFilter::Nearest;
config.mipmap_filter = GPU::MipMapFilter::Linear;
break;
case GL_LINEAR_MIPMAP_LINEAR:
config.texture_min_filter = GPU::TextureFilter::Linear;
config.mipmap_filter = GPU::MipMapFilter::Linear;
break;
default:
VERIFY_NOT_REACHED();
}
switch (sampler.mag_filter()) {
case GL_NEAREST:
config.texture_mag_filter = GPU::TextureFilter::Nearest;
break;
case GL_LINEAR:
config.texture_mag_filter = GPU::TextureFilter::Linear;
break;
default:
VERIFY_NOT_REACHED();
}
switch (sampler.wrap_s_mode()) {
case GL_CLAMP:
config.texture_wrap_u = GPU::TextureWrapMode::Clamp;
break;
case GL_CLAMP_TO_BORDER:
config.texture_wrap_u = GPU::TextureWrapMode::ClampToBorder;
break;
case GL_CLAMP_TO_EDGE:
config.texture_wrap_u = GPU::TextureWrapMode::ClampToEdge;
break;
case GL_REPEAT:
config.texture_wrap_u = GPU::TextureWrapMode::Repeat;
break;
case GL_MIRRORED_REPEAT:
config.texture_wrap_u = GPU::TextureWrapMode::MirroredRepeat;
break;
default:
VERIFY_NOT_REACHED();
}
switch (sampler.wrap_t_mode()) {
case GL_CLAMP:
config.texture_wrap_v = GPU::TextureWrapMode::Clamp;
break;
case GL_CLAMP_TO_BORDER:
config.texture_wrap_v = GPU::TextureWrapMode::ClampToBorder;
break;
case GL_CLAMP_TO_EDGE:
config.texture_wrap_v = GPU::TextureWrapMode::ClampToEdge;
break;
case GL_REPEAT:
config.texture_wrap_v = GPU::TextureWrapMode::Repeat;
break;
case GL_MIRRORED_REPEAT:
config.texture_wrap_v = GPU::TextureWrapMode::MirroredRepeat;
break;
default:
VERIFY_NOT_REACHED();
}
switch (texture_unit.env_mode()) {
case GL_MODULATE:
config.fixed_function_texture_env_mode = GPU::TextureEnvMode::Modulate;
break;
case GL_REPLACE:
config.fixed_function_texture_env_mode = GPU::TextureEnvMode::Replace;
break;
case GL_DECAL:
config.fixed_function_texture_env_mode = GPU::TextureEnvMode::Decal;
break;
case GL_ADD:
config.fixed_function_texture_env_mode = GPU::TextureEnvMode::Add;
break;
default:
VERIFY_NOT_REACHED();
}
config.border_color = sampler.border_color();
m_rasterizer->set_sampler_config(i, config);
}
}
void GLContext::sync_light_state()
{
if (!m_light_state_is_dirty)
return;
m_light_state_is_dirty = false;
auto options = m_rasterizer->options();
options.color_material_enabled = m_color_material_enabled;
switch (m_color_material_face) {
case GL_BACK:
options.color_material_face = GPU::ColorMaterialFace::Back;
break;
case GL_FRONT:
options.color_material_face = GPU::ColorMaterialFace::Front;
break;
case GL_FRONT_AND_BACK:
options.color_material_face = GPU::ColorMaterialFace::FrontAndBack;
break;
default:
VERIFY_NOT_REACHED();
}
switch (m_color_material_mode) {
case GL_AMBIENT:
options.color_material_mode = GPU::ColorMaterialMode::Ambient;
break;
case GL_AMBIENT_AND_DIFFUSE:
options.color_material_mode = GPU::ColorMaterialMode::Ambient;
options.color_material_mode = GPU::ColorMaterialMode::Diffuse;
break;
case GL_DIFFUSE:
options.color_material_mode = GPU::ColorMaterialMode::Diffuse;
break;
case GL_EMISSION:
options.color_material_mode = GPU::ColorMaterialMode::Emissive;
break;
case GL_SPECULAR:
options.color_material_mode = GPU::ColorMaterialMode::Specular;
break;
default:
VERIFY_NOT_REACHED();
}
m_rasterizer->set_options(options);
for (auto light_id = 0u; light_id < m_device_info.num_lights; light_id++) {
auto const& current_light_state = m_light_states.at(light_id);
m_rasterizer->set_light_state(light_id, current_light_state);
}
m_rasterizer->set_material_state(GPU::Face::Front, m_material_states[Face::Front]);
m_rasterizer->set_material_state(GPU::Face::Back, m_material_states[Face::Back]);
}
void GLContext::sync_device_texcoord_config()
{
if (!m_texcoord_generation_dirty)
return;
m_texcoord_generation_dirty = false;
auto options = m_rasterizer->options();
for (size_t i = 0; i < m_device_info.num_texture_units; ++i) {
u8 enabled_coordinates = GPU::TexCoordGenerationCoordinate::None;
for (GLenum capability = GL_TEXTURE_GEN_S; capability <= GL_TEXTURE_GEN_Q; ++capability) {
auto const context_coordinate_config = texture_coordinate_generation(i, capability);
if (!context_coordinate_config.enabled)
continue;
GPU::TexCoordGenerationConfig* texcoord_generation_config;
switch (capability) {
case GL_TEXTURE_GEN_S:
enabled_coordinates |= GPU::TexCoordGenerationCoordinate::S;
texcoord_generation_config = &options.texcoord_generation_config[i][0];
break;
case GL_TEXTURE_GEN_T:
enabled_coordinates |= GPU::TexCoordGenerationCoordinate::T;
texcoord_generation_config = &options.texcoord_generation_config[i][1];
break;
case GL_TEXTURE_GEN_R:
enabled_coordinates |= GPU::TexCoordGenerationCoordinate::R;
texcoord_generation_config = &options.texcoord_generation_config[i][2];
break;
case GL_TEXTURE_GEN_Q:
enabled_coordinates |= GPU::TexCoordGenerationCoordinate::Q;
texcoord_generation_config = &options.texcoord_generation_config[i][3];
break;
default:
VERIFY_NOT_REACHED();
}
switch (context_coordinate_config.generation_mode) {
case GL_OBJECT_LINEAR:
texcoord_generation_config->mode = GPU::TexCoordGenerationMode::ObjectLinear;
texcoord_generation_config->coefficients = context_coordinate_config.object_plane_coefficients;
break;
case GL_EYE_LINEAR:
texcoord_generation_config->mode = GPU::TexCoordGenerationMode::EyeLinear;
texcoord_generation_config->coefficients = context_coordinate_config.eye_plane_coefficients;
break;
case GL_SPHERE_MAP:
texcoord_generation_config->mode = GPU::TexCoordGenerationMode::SphereMap;
break;
case GL_REFLECTION_MAP:
texcoord_generation_config->mode = GPU::TexCoordGenerationMode::ReflectionMap;
break;
case GL_NORMAL_MAP:
texcoord_generation_config->mode = GPU::TexCoordGenerationMode::NormalMap;
break;
}
}
options.texcoord_generation_enabled_coordinates[i] = enabled_coordinates;
}
m_rasterizer->set_options(options);
}
void GLContext::sync_stencil_configuration()
{
if (!m_stencil_configuration_dirty)
return;
m_stencil_configuration_dirty = false;
auto set_device_stencil = [&](GPU::Face face, StencilFunctionOptions func, StencilOperationOptions op) {
GPU::StencilConfiguration device_configuration;
// Stencil test function
auto map_func = [](GLenum func) -> GPU::StencilTestFunction {
switch (func) {
case GL_ALWAYS:
return GPU::StencilTestFunction::Always;
case GL_EQUAL:
return GPU::StencilTestFunction::Equal;
case GL_GEQUAL:
return GPU::StencilTestFunction::GreaterOrEqual;
case GL_GREATER:
return GPU::StencilTestFunction::Greater;
case GL_LESS:
return GPU::StencilTestFunction::Less;
case GL_LEQUAL:
return GPU::StencilTestFunction::LessOrEqual;
case GL_NEVER:
return GPU::StencilTestFunction::Never;
case GL_NOTEQUAL:
return GPU::StencilTestFunction::NotEqual;
}
VERIFY_NOT_REACHED();
};
device_configuration.test_function = map_func(func.func);
device_configuration.reference_value = func.reference_value;
device_configuration.test_mask = func.mask;
// Stencil operation
auto map_operation = [](GLenum operation) -> GPU::StencilOperation {
switch (operation) {
case GL_DECR:
return GPU::StencilOperation::Decrement;
case GL_DECR_WRAP:
return GPU::StencilOperation::DecrementWrap;
case GL_INCR:
return GPU::StencilOperation::Increment;
case GL_INCR_WRAP:
return GPU::StencilOperation::IncrementWrap;
case GL_INVERT:
return GPU::StencilOperation::Invert;
case GL_KEEP:
return GPU::StencilOperation::Keep;
case GL_REPLACE:
return GPU::StencilOperation::Replace;
case GL_ZERO:
return GPU::StencilOperation::Zero;
}
VERIFY_NOT_REACHED();
};
device_configuration.on_stencil_test_fail = map_operation(op.op_fail);
device_configuration.on_depth_test_fail = map_operation(op.op_depth_fail);
device_configuration.on_pass = map_operation(op.op_pass);
device_configuration.write_mask = op.write_mask;
m_rasterizer->set_stencil_configuration(face, device_configuration);
};
set_device_stencil(GPU::Face::Front, m_stencil_function[Face::Front], m_stencil_operation[Face::Front]);
set_device_stencil(GPU::Face::Back, m_stencil_function[Face::Back], m_stencil_operation[Face::Back]);
}
void GLContext::build_extension_string()
{
Vector<StringView> extensions;
// FIXME: npot texture support became a required core feature starting with OpenGL 2.0 (https://www.khronos.org/opengl/wiki/NPOT_Texture)
// Ideally we would verify if the selected device adheres to the requested OpenGL context version before context creation
// and refuse to create a context if it doesn't.
if (m_device_info.supports_npot_textures)
extensions.append("GL_ARB_texture_non_power_of_two");
if (m_device_info.num_texture_units > 1)
extensions.append("GL_ARB_multitexture");
m_extensions = String::join(" ", extensions);
}
void GLContext::gl_lightf(GLenum light, GLenum pname, GLfloat param)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_lightf, light, pname, param);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(light < GL_LIGHT0 || light >= (GL_LIGHT0 + m_device_info.num_lights), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!(pname == GL_CONSTANT_ATTENUATION || pname == GL_LINEAR_ATTENUATION || pname == GL_QUADRATIC_ATTENUATION || pname != GL_SPOT_EXPONENT || pname != GL_SPOT_CUTOFF), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(param < 0.f, GL_INVALID_VALUE);
auto& light_state = m_light_states.at(light - GL_LIGHT0);
switch (pname) {
case GL_CONSTANT_ATTENUATION:
light_state.constant_attenuation = param;
break;
case GL_LINEAR_ATTENUATION:
light_state.linear_attenuation = param;
break;
case GL_QUADRATIC_ATTENUATION:
light_state.quadratic_attenuation = param;
break;
case GL_SPOT_EXPONENT:
RETURN_WITH_ERROR_IF(param > 128.f, GL_INVALID_VALUE);
light_state.spotlight_exponent = param;
break;
case GL_SPOT_CUTOFF:
RETURN_WITH_ERROR_IF(param > 90.f && param != 180.f, GL_INVALID_VALUE);
light_state.spotlight_cutoff_angle = param;
break;
default:
VERIFY_NOT_REACHED();
}
m_light_state_is_dirty = true;
}
void GLContext::gl_lightfv(GLenum light, GLenum pname, GLfloat const* params)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_lightfv, light, pname, params);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(light < GL_LIGHT0 || light >= (GL_LIGHT0 + m_device_info.num_lights), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!(pname == GL_AMBIENT || pname == GL_DIFFUSE || pname == GL_SPECULAR || pname == GL_POSITION || pname == GL_CONSTANT_ATTENUATION || pname == GL_LINEAR_ATTENUATION || pname == GL_QUADRATIC_ATTENUATION || pname == GL_SPOT_CUTOFF || pname == GL_SPOT_EXPONENT || pname == GL_SPOT_DIRECTION), GL_INVALID_ENUM);
auto& light_state = m_light_states.at(light - GL_LIGHT0);
switch (pname) {
case GL_AMBIENT:
light_state.ambient_intensity = { params[0], params[1], params[2], params[3] };
break;
case GL_DIFFUSE:
light_state.diffuse_intensity = { params[0], params[1], params[2], params[3] };
break;
case GL_SPECULAR:
light_state.specular_intensity = { params[0], params[1], params[2], params[3] };
break;
case GL_POSITION:
light_state.position = { params[0], params[1], params[2], params[3] };
light_state.position = m_model_view_matrix * light_state.position;
break;
case GL_CONSTANT_ATTENUATION:
RETURN_WITH_ERROR_IF(params[0] < 0.f, GL_INVALID_VALUE);
light_state.constant_attenuation = params[0];
break;
case GL_LINEAR_ATTENUATION:
RETURN_WITH_ERROR_IF(params[0] < 0.f, GL_INVALID_VALUE);
light_state.linear_attenuation = params[0];
break;
case GL_QUADRATIC_ATTENUATION:
RETURN_WITH_ERROR_IF(params[0] < 0.f, GL_INVALID_VALUE);
light_state.quadratic_attenuation = params[0];
break;
case GL_SPOT_EXPONENT: {
auto exponent = params[0];
RETURN_WITH_ERROR_IF(exponent < 0.f || exponent > 128.f, GL_INVALID_VALUE);
light_state.spotlight_exponent = exponent;
break;
}
case GL_SPOT_CUTOFF: {
auto cutoff = params[0];
RETURN_WITH_ERROR_IF((cutoff < 0.f || cutoff > 90.f) && cutoff != 180.f, GL_INVALID_VALUE);
light_state.spotlight_cutoff_angle = cutoff;
break;
}
case GL_SPOT_DIRECTION: {
FloatVector4 direction_vector = { params[0], params[1], params[2], 0.f };
direction_vector = m_model_view_matrix * direction_vector;
light_state.spotlight_direction = direction_vector.xyz();
break;
}
default:
VERIFY_NOT_REACHED();
}
m_light_state_is_dirty = true;
}
void GLContext::gl_lightiv(GLenum light, GLenum pname, GLint const* params)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_lightiv, light, pname, params);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(light < GL_LIGHT0 || light >= (GL_LIGHT0 + m_device_info.num_lights), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!(pname == GL_AMBIENT || pname == GL_DIFFUSE || pname == GL_SPECULAR || pname == GL_POSITION || pname == GL_CONSTANT_ATTENUATION || pname == GL_LINEAR_ATTENUATION || pname == GL_QUADRATIC_ATTENUATION || pname == GL_SPOT_CUTOFF || pname == GL_SPOT_EXPONENT || pname == GL_SPOT_DIRECTION), GL_INVALID_ENUM);
auto& light_state = m_light_states[light - GL_LIGHT0];
auto const to_float_vector = [](GLfloat x, GLfloat y, GLfloat z, GLfloat w) {
return FloatVector4(x, y, z, w);
};
switch (pname) {
case GL_AMBIENT:
light_state.ambient_intensity = to_float_vector(params[0], params[1], params[2], params[3]);
break;
case GL_DIFFUSE:
light_state.diffuse_intensity = to_float_vector(params[0], params[1], params[2], params[3]);
break;
case GL_SPECULAR:
light_state.specular_intensity = to_float_vector(params[0], params[1], params[2], params[3]);
break;
case GL_POSITION:
light_state.position = to_float_vector(params[0], params[1], params[2], params[3]);
light_state.position = m_model_view_matrix * light_state.position;
break;
case GL_CONSTANT_ATTENUATION:
RETURN_WITH_ERROR_IF(params[0] < 0, GL_INVALID_VALUE);
light_state.constant_attenuation = static_cast<float>(params[0]);
break;
case GL_LINEAR_ATTENUATION:
RETURN_WITH_ERROR_IF(params[0] < 0, GL_INVALID_VALUE);
light_state.linear_attenuation = static_cast<float>(params[0]);
break;
case GL_QUADRATIC_ATTENUATION:
RETURN_WITH_ERROR_IF(params[0] < 0, GL_INVALID_VALUE);
light_state.quadratic_attenuation = static_cast<float>(params[0]);
break;
case GL_SPOT_EXPONENT: {
auto exponent = static_cast<float>(params[0]);
RETURN_WITH_ERROR_IF(exponent < 0.f || exponent > 128.f, GL_INVALID_VALUE);
light_state.spotlight_exponent = exponent;
break;
}
case GL_SPOT_CUTOFF: {
auto cutoff = static_cast<float>(params[0]);
RETURN_WITH_ERROR_IF((cutoff < 0.f || cutoff > 90.f) && cutoff != 180.f, GL_INVALID_VALUE);
light_state.spotlight_cutoff_angle = cutoff;
break;
}
case GL_SPOT_DIRECTION: {
auto direction_vector = to_float_vector(params[0], params[1], params[2], 0.0f);
direction_vector = m_model_view_matrix * direction_vector;
light_state.spotlight_direction = direction_vector.xyz();
break;
}
default:
VERIFY_NOT_REACHED();
}
m_light_state_is_dirty = true;
}
void GLContext::gl_materialf(GLenum face, GLenum pname, GLfloat param)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_materialf, face, pname, param);
RETURN_WITH_ERROR_IF(!(face == GL_FRONT || face == GL_BACK || face == GL_FRONT_AND_BACK), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(pname != GL_SHININESS, GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(param > 128.0f, GL_INVALID_VALUE);
switch (face) {
case GL_FRONT:
m_material_states[Face::Front].shininess = param;
break;
case GL_BACK:
m_material_states[Face::Back].shininess = param;
break;
case GL_FRONT_AND_BACK:
m_material_states[Face::Front].shininess = param;
m_material_states[Face::Back].shininess = param;
break;
default:
VERIFY_NOT_REACHED();
}
m_light_state_is_dirty = true;
}
void GLContext::gl_materialfv(GLenum face, GLenum pname, GLfloat const* params)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_materialfv, face, pname, params);
RETURN_WITH_ERROR_IF(!(face == GL_FRONT || face == GL_BACK || face == GL_FRONT_AND_BACK), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!(pname == GL_AMBIENT || pname == GL_DIFFUSE || pname == GL_SPECULAR || pname == GL_EMISSION || pname == GL_SHININESS || pname == GL_AMBIENT_AND_DIFFUSE), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF((pname == GL_SHININESS && *params > 128.0f), GL_INVALID_VALUE);
auto update_material = [](GPU::Material& material, GLenum pname, GLfloat const* params) {
switch (pname) {
case GL_AMBIENT:
material.ambient = { params[0], params[1], params[2], params[3] };
break;
case GL_DIFFUSE:
material.diffuse = { params[0], params[1], params[2], params[3] };
break;
case GL_SPECULAR:
material.specular = { params[0], params[1], params[2], params[3] };
break;
case GL_EMISSION:
material.emissive = { params[0], params[1], params[2], params[3] };
break;
case GL_SHININESS:
material.shininess = *params;
break;
case GL_AMBIENT_AND_DIFFUSE:
material.ambient = { params[0], params[1], params[2], params[3] };
material.diffuse = { params[0], params[1], params[2], params[3] };
break;
}
};
switch (face) {
case GL_FRONT:
update_material(m_material_states[Face::Front], pname, params);
break;
case GL_BACK:
update_material(m_material_states[Face::Back], pname, params);
break;
case GL_FRONT_AND_BACK:
update_material(m_material_states[Face::Front], pname, params);
update_material(m_material_states[Face::Back], pname, params);
break;
}
m_light_state_is_dirty = true;
}
void GLContext::gl_materialiv(GLenum face, GLenum pname, GLint const* params)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_materialiv, face, pname, params);
RETURN_WITH_ERROR_IF(!(face == GL_FRONT || face == GL_BACK || face == GL_FRONT_AND_BACK), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!(pname == GL_AMBIENT || pname == GL_DIFFUSE || pname == GL_SPECULAR || pname == GL_EMISSION || pname == GL_SHININESS || pname == GL_AMBIENT_AND_DIFFUSE), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF((pname == GL_SHININESS && *params > 128), GL_INVALID_VALUE);
auto update_material = [](GPU::Material& material, GLenum pname, GLint const* params) {
switch (pname) {
case GL_AMBIENT:
material.ambient = { static_cast<float>(params[0]), static_cast<float>(params[1]), static_cast<float>(params[2]), static_cast<float>(params[3]) };
break;
case GL_DIFFUSE:
material.diffuse = { static_cast<float>(params[0]), static_cast<float>(params[1]), static_cast<float>(params[2]), static_cast<float>(params[3]) };
break;
case GL_SPECULAR:
material.specular = { static_cast<float>(params[0]), static_cast<float>(params[1]), static_cast<float>(params[2]), static_cast<float>(params[3]) };
break;
case GL_EMISSION:
material.emissive = { static_cast<float>(params[0]), static_cast<float>(params[1]), static_cast<float>(params[2]), static_cast<float>(params[3]) };
break;
case GL_SHININESS:
material.shininess = static_cast<float>(params[0]);
break;
case GL_AMBIENT_AND_DIFFUSE:
material.ambient = { static_cast<float>(params[0]), static_cast<float>(params[1]), static_cast<float>(params[2]), static_cast<float>(params[3]) };
material.diffuse = { static_cast<float>(params[0]), static_cast<float>(params[1]), static_cast<float>(params[2]), static_cast<float>(params[3]) };
break;
}
};
switch (face) {
case GL_FRONT:
update_material(m_material_states[Face::Front], pname, params);
break;
case GL_BACK:
update_material(m_material_states[Face::Back], pname, params);
break;
case GL_FRONT_AND_BACK:
update_material(m_material_states[Face::Front], pname, params);
update_material(m_material_states[Face::Back], pname, params);
break;
}
m_light_state_is_dirty = true;
}
void GLContext::gl_color_material(GLenum face, GLenum mode)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_color_material, face, mode);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(face != GL_FRONT
&& face != GL_BACK
&& face != GL_FRONT_AND_BACK,
GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(mode != GL_EMISSION
&& mode != GL_AMBIENT
&& mode != GL_DIFFUSE
&& mode != GL_SPECULAR
&& mode != GL_AMBIENT_AND_DIFFUSE,
GL_INVALID_ENUM);
m_color_material_face = face;
m_color_material_mode = mode;
m_light_state_is_dirty = true;
}
void GLContext::gl_get_light(GLenum light, GLenum pname, void* params, GLenum type)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_get_light, light, pname, params, type);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(light < GL_LIGHT0 || light > GL_LIGHT0 + m_device_info.num_lights, GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!(pname == GL_AMBIENT || pname == GL_DIFFUSE || pname == GL_SPECULAR || pname == GL_SPOT_DIRECTION || pname == GL_SPOT_EXPONENT || pname == GL_SPOT_CUTOFF || pname == GL_CONSTANT_ATTENUATION || pname == GL_LINEAR_ATTENUATION || pname == GL_QUADRATIC_ATTENUATION), GL_INVALID_ENUM);
if (type == GL_FLOAT)
get_light_param<GLfloat>(light, pname, static_cast<GLfloat*>(params));
else if (type == GL_INT)
get_light_param<GLint>(light, pname, static_cast<GLint*>(params));
else
VERIFY_NOT_REACHED();
}
template<typename T>
void GLContext::get_light_param(GLenum light, GLenum pname, T* params)
{
auto const& light_state = m_light_states[light - GL_LIGHT0];
switch (pname) {
case GL_AMBIENT:
params[0] = light_state.ambient_intensity.x();
params[1] = light_state.ambient_intensity.y();
params[2] = light_state.ambient_intensity.z();
params[3] = light_state.ambient_intensity.w();
break;
case GL_DIFFUSE:
params[0] = light_state.diffuse_intensity.x();
params[1] = light_state.diffuse_intensity.y();
params[2] = light_state.diffuse_intensity.z();
params[3] = light_state.diffuse_intensity.w();
break;
case GL_SPECULAR:
params[0] = light_state.specular_intensity.x();
params[1] = light_state.specular_intensity.y();
params[2] = light_state.specular_intensity.z();
params[3] = light_state.specular_intensity.w();
break;
case GL_SPOT_DIRECTION:
params[0] = light_state.spotlight_direction.x();
params[1] = light_state.spotlight_direction.y();
params[2] = light_state.spotlight_direction.z();
break;
case GL_SPOT_EXPONENT:
*params = light_state.spotlight_exponent;
break;
case GL_SPOT_CUTOFF:
*params = light_state.spotlight_cutoff_angle;
break;
case GL_CONSTANT_ATTENUATION:
*params = light_state.constant_attenuation;
break;
case GL_LINEAR_ATTENUATION:
*params = light_state.linear_attenuation;
break;
case GL_QUADRATIC_ATTENUATION:
*params = light_state.quadratic_attenuation;
break;
}
}
void GLContext::gl_get_material(GLenum face, GLenum pname, void* params, GLenum type)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_get_material, face, pname, params, type);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
RETURN_WITH_ERROR_IF(!(pname == GL_AMBIENT || pname == GL_DIFFUSE || pname == GL_SPECULAR || pname == GL_EMISSION), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(!(face == GL_FRONT || face == GL_BACK), GL_INVALID_ENUM);
Face material_face = Front;
switch (face) {
case GL_FRONT:
material_face = Front;
break;
case GL_BACK:
material_face = Back;
break;
}
if (type == GL_FLOAT)
get_material_param<GLfloat>(material_face, pname, static_cast<GLfloat*>(params));
else if (type == GL_INT)
get_material_param<GLint>(material_face, pname, static_cast<GLint*>(params));
else
VERIFY_NOT_REACHED();
}
template<typename T>
void GLContext::get_material_param(Face face, GLenum pname, T* params)
{
auto const& material = m_material_states[face];
switch (pname) {
case GL_AMBIENT:
params[0] = static_cast<T>(material.ambient.x());
params[1] = static_cast<T>(material.ambient.y());
params[2] = static_cast<T>(material.ambient.z());
params[3] = static_cast<T>(material.ambient.w());
break;
case GL_DIFFUSE:
params[0] = static_cast<T>(material.diffuse.x());
params[1] = static_cast<T>(material.diffuse.y());
params[2] = static_cast<T>(material.diffuse.z());
params[3] = static_cast<T>(material.diffuse.w());
break;
case GL_SPECULAR:
params[0] = static_cast<T>(material.specular.x());
params[1] = static_cast<T>(material.specular.y());
params[2] = static_cast<T>(material.specular.z());
params[3] = static_cast<T>(material.specular.w());
break;
case GL_EMISSION:
params[0] = static_cast<T>(material.emissive.x());
params[1] = static_cast<T>(material.emissive.y());
params[2] = static_cast<T>(material.emissive.z());
params[3] = static_cast<T>(material.emissive.w());
break;
case GL_SHININESS:
*params = material.shininess;
break;
}
}
void GLContext::gl_copy_tex_sub_image_2d(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint x, GLint y, GLsizei width, GLsizei height)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_copy_tex_sub_image_2d, target, level, xoffset, yoffset, x, y, width, height);
RETURN_WITH_ERROR_IF(!(target == GL_TEXTURE_2D || target == GL_TEXTURE_1D_ARRAY), GL_INVALID_ENUM);
RETURN_WITH_ERROR_IF(level < 0, GL_INVALID_VALUE);
RETURN_WITH_ERROR_IF(m_in_draw_state, GL_INVALID_OPERATION);
// FIXME: implement
dbgln_if(GL_DEBUG, "GLContext FIXME: implement gl_copy_tex_sub_image_2d({:#x}, {}, {}, {}, {}, {}, {}, {})",
target, level, xoffset, yoffset, x, y, width, height);
}
NonnullOwnPtr<GLContext> create_context(Gfx::Bitmap& bitmap)
{
// FIXME: Make driver selectable. This is currently hardcoded to LibSoftGPU
auto driver = MUST(GPU::Driver::try_create("softgpu"));
auto device = MUST(driver->try_create_device(bitmap.size()));
auto context = make<GLContext>(driver, move(device), bitmap);
dbgln_if(GL_DEBUG, "GL::create_context({}) -> {:p}", bitmap.size(), context.ptr());
if (!g_gl_context)
make_context_current(context);
return context;
}
void make_context_current(GLContext* context)
{
if (g_gl_context == context)
return;
dbgln_if(GL_DEBUG, "GL::make_context_current({:p})", context);
g_gl_context = context;
}
void present_context(GLContext* context)
{
context->present();
}
}