ladybird/Libraries/LibCore/EventLoop.cpp

797 lines
24 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Badge.h>
#include <AK/ByteBuffer.h>
#include <AK/IDAllocator.h>
#include <AK/JsonObject.h>
#include <AK/JsonValue.h>
#include <AK/NeverDestroyed.h>
#include <AK/TemporaryChange.h>
#include <AK/Time.h>
#include <LibCore/Event.h>
#include <LibCore/EventLoop.h>
#include <LibCore/LocalServer.h>
#include <LibCore/LocalSocket.h>
#include <LibCore/Notifier.h>
#include <LibCore/Object.h>
#include <LibCore/SyscallUtils.h>
#include <LibThread/Lock.h>
#include <errno.h>
#include <fcntl.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/select.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <time.h>
#include <unistd.h>
//#define EVENTLOOP_DEBUG
//#define DEFERRED_INVOKE_DEBUG
namespace Core {
class RPCClient;
struct EventLoopTimer {
int timer_id { 0 };
int interval { 0 };
timeval fire_time { 0, 0 };
bool should_reload { false };
TimerShouldFireWhenNotVisible fire_when_not_visible { TimerShouldFireWhenNotVisible::No };
WeakPtr<Object> owner;
void reload(const timeval& now);
bool has_expired(const timeval& now) const;
};
struct EventLoop::Private {
LibThread::Lock lock;
};
static EventLoop* s_main_event_loop;
static Vector<EventLoop*>* s_event_loop_stack;
static NeverDestroyed<IDAllocator> s_id_allocator;
static HashMap<int, NonnullOwnPtr<EventLoopTimer>>* s_timers;
static HashTable<Notifier*>* s_notifiers;
int EventLoop::s_wake_pipe_fds[2];
HashMap<int, NonnullRefPtr<EventLoop::SignalHandlers>> EventLoop::s_signal_handlers;
int EventLoop::s_next_signal_id = 0;
pid_t EventLoop::s_pid;
static RefPtr<LocalServer> s_rpc_server;
HashMap<int, RefPtr<RPCClient>> s_rpc_clients;
class RPCClient : public Object {
C_OBJECT(RPCClient)
public:
explicit RPCClient(RefPtr<LocalSocket> socket)
: m_socket(move(socket))
, m_client_id(s_id_allocator->allocate())
{
s_rpc_clients.set(m_client_id, this);
add_child(*m_socket);
m_socket->on_ready_to_read = [this] {
u32 length;
int nread = m_socket->read((u8*)&length, sizeof(length));
if (nread == 0) {
#ifdef EVENTLOOP_DEBUG
dbgln("RPC client disconnected");
#endif
shutdown();
return;
}
ASSERT(nread == sizeof(length));
auto request = m_socket->read(length);
auto request_json = JsonValue::from_string(request);
if (!request_json.has_value() || !request_json.value().is_object()) {
dbgln("RPC client sent invalid request");
shutdown();
return;
}
handle_request(request_json.value().as_object());
};
}
virtual ~RPCClient() override
{
if (auto inspected_object = m_inspected_object.strong_ref())
inspected_object->decrement_inspector_count({});
}
void send_response(const JsonObject& response)
{
auto serialized = response.to_string();
u32 length = serialized.length();
m_socket->write((const u8*)&length, sizeof(length));
m_socket->write(serialized);
}
void handle_request(const JsonObject& request)
{
auto type = request.get("type").as_string_or({});
if (type.is_null()) {
dbgln("RPC client sent request without type field");
return;
}
if (type == "Identify") {
JsonObject response;
response.set("type", type);
response.set("pid", getpid());
#ifdef __serenity__
char buffer[1024];
if (get_process_name(buffer, sizeof(buffer)) >= 0) {
response.set("process_name", buffer);
} else {
response.set("process_name", JsonValue());
}
#endif
send_response(response);
return;
}
if (type == "GetAllObjects") {
JsonObject response;
response.set("type", type);
JsonArray objects;
for (auto& object : Object::all_objects()) {
JsonObject json_object;
object.save_to(json_object);
objects.append(move(json_object));
}
response.set("objects", move(objects));
send_response(response);
return;
}
if (type == "SetInspectedObject") {
auto address = request.get("address").to_number<FlatPtr>();
for (auto& object : Object::all_objects()) {
if ((FlatPtr)&object == address) {
if (auto inspected_object = m_inspected_object.strong_ref())
inspected_object->decrement_inspector_count({});
m_inspected_object = object;
object.increment_inspector_count({});
break;
}
}
return;
}
if (type == "SetProperty") {
auto address = request.get("address").to_number<FlatPtr>();
for (auto& object : Object::all_objects()) {
if ((FlatPtr)&object == address) {
bool success = object.set_property(request.get("name").to_string(), request.get("value"));
JsonObject response;
response.set("type", "SetProperty");
response.set("success", success);
send_response(response);
break;
}
}
return;
}
if (type == "Disconnect") {
shutdown();
return;
}
}
void shutdown()
{
s_rpc_clients.remove(m_client_id);
s_id_allocator->deallocate(m_client_id);
}
private:
RefPtr<LocalSocket> m_socket;
WeakPtr<Object> m_inspected_object;
int m_client_id { -1 };
};
EventLoop::EventLoop()
: m_private(make<Private>())
{
if (!s_event_loop_stack) {
s_event_loop_stack = new Vector<EventLoop*>;
s_timers = new HashMap<int, NonnullOwnPtr<EventLoopTimer>>;
s_notifiers = new HashTable<Notifier*>;
}
if (!s_main_event_loop) {
s_main_event_loop = this;
s_pid = getpid();
#if defined(SOCK_NONBLOCK)
int rc = pipe2(s_wake_pipe_fds, O_CLOEXEC);
#else
int rc = pipe(s_wake_pipe_fds);
fcntl(s_wake_pipe_fds[0], F_SETFD, FD_CLOEXEC);
fcntl(s_wake_pipe_fds[1], F_SETFD, FD_CLOEXEC);
#endif
ASSERT(rc == 0);
s_event_loop_stack->append(this);
if (!s_rpc_server) {
if (!start_rpc_server())
dbgln("Core::EventLoop: Failed to start an RPC server");
}
}
#ifdef EVENTLOOP_DEBUG
dbgln("{} Core::EventLoop constructed :)", getpid());
#endif
}
EventLoop::~EventLoop()
{
}
bool EventLoop::start_rpc_server()
{
// Create /tmp/rpc if it doesn't exist.
int rc = mkdir("/tmp/rpc", 0777);
if (rc == 0) {
// Ensure it gets created as 0777 despite our umask.
rc = chmod("/tmp/rpc", 0777);
if (rc < 0) {
perror("chmod /tmp/rpc");
// Continue further.
}
} else if (errno != EEXIST) {
perror("mkdir /tmp/rpc");
return false;
}
auto rpc_path = String::format("/tmp/rpc/%d", getpid());
rc = unlink(rpc_path.characters());
if (rc < 0 && errno != ENOENT) {
perror("unlink");
return false;
}
s_rpc_server = LocalServer::construct();
s_rpc_server->set_name("Core::EventLoop_RPC_server");
s_rpc_server->on_ready_to_accept = [&] {
RPCClient::construct(s_rpc_server->accept());
};
return s_rpc_server->listen(rpc_path);
}
EventLoop& EventLoop::main()
{
ASSERT(s_main_event_loop);
return *s_main_event_loop;
}
EventLoop& EventLoop::current()
{
EventLoop* event_loop = s_event_loop_stack->last();
ASSERT(event_loop != nullptr);
return *event_loop;
}
void EventLoop::quit(int code)
{
#ifdef EVENTLOOP_DEBUG
dbgln("Core::EventLoop::quit({})", code);
#endif
m_exit_requested = true;
m_exit_code = code;
}
void EventLoop::unquit()
{
#ifdef EVENTLOOP_DEBUG
dbgln("Core::EventLoop::unquit()");
#endif
m_exit_requested = false;
m_exit_code = 0;
}
struct EventLoopPusher {
public:
EventLoopPusher(EventLoop& event_loop)
: m_event_loop(event_loop)
{
if (&m_event_loop != s_main_event_loop) {
m_event_loop.take_pending_events_from(EventLoop::current());
s_event_loop_stack->append(&event_loop);
}
}
~EventLoopPusher()
{
if (&m_event_loop != s_main_event_loop) {
s_event_loop_stack->take_last();
EventLoop::current().take_pending_events_from(m_event_loop);
}
}
private:
EventLoop& m_event_loop;
};
int EventLoop::exec()
{
EventLoopPusher pusher(*this);
for (;;) {
if (m_exit_requested)
return m_exit_code;
pump();
}
ASSERT_NOT_REACHED();
}
void EventLoop::pump(WaitMode mode)
{
wait_for_event(mode);
decltype(m_queued_events) events;
{
LOCKER(m_private->lock);
events = move(m_queued_events);
}
for (size_t i = 0; i < events.size(); ++i) {
auto& queued_event = events.at(i);
auto receiver = queued_event.receiver.strong_ref();
auto& event = *queued_event.event;
#ifdef EVENTLOOP_DEBUG
if (receiver)
dbgln("Core::EventLoop: {} event {}", *receiver, event.type());
#endif
if (!receiver) {
switch (event.type()) {
case Event::Quit:
ASSERT_NOT_REACHED();
return;
default:
#ifdef EVENTLOOP_DEBUG
dbgln("Event type {} with no receiver :(", event.type());
#endif
break;
}
} else if (event.type() == Event::Type::DeferredInvoke) {
#ifdef DEFERRED_INVOKE_DEBUG
dbgln("DeferredInvoke: receiver = {}", *receiver);
#endif
static_cast<DeferredInvocationEvent&>(event).m_invokee(*receiver);
} else {
NonnullRefPtr<Object> protector(*receiver);
receiver->dispatch_event(event);
}
if (m_exit_requested) {
LOCKER(m_private->lock);
#ifdef EVENTLOOP_DEBUG
dbgln("Core::EventLoop: Exit requested. Rejigging {} events.", events.size() - i);
#endif
decltype(m_queued_events) new_event_queue;
new_event_queue.ensure_capacity(m_queued_events.size() + events.size());
for (++i; i < events.size(); ++i)
new_event_queue.unchecked_append(move(events[i]));
new_event_queue.append(move(m_queued_events));
m_queued_events = move(new_event_queue);
return;
}
}
}
void EventLoop::post_event(Object& receiver, NonnullOwnPtr<Event>&& event)
{
LOCKER(m_private->lock);
#ifdef EVENTLOOP_DEBUG
dbgln("Core::EventLoop::post_event: ({}) << receivier={}, event={}", m_queued_events.size(), receiver, event);
#endif
m_queued_events.empend(receiver, move(event));
}
EventLoop::SignalHandlers::SignalHandlers(int signo)
: m_signo(signo)
, m_original_handler(signal(signo, EventLoop::handle_signal))
{
#ifdef EVENTLOOP_DEBUG
dbgln("Core::EventLoop: Registered handler for signal {}", m_signo);
#endif
}
EventLoop::SignalHandlers::~SignalHandlers()
{
#ifdef EVENTLOOP_DEBUG
dbgln("Core::EventLoop: Unregistering handler for signal {}", m_signo);
#endif
signal(m_signo, m_original_handler);
}
void EventLoop::SignalHandlers::dispatch()
{
TemporaryChange change(m_calling_handlers, true);
for (auto& handler : m_handlers)
handler.value(m_signo);
if (!m_handlers_pending.is_empty()) {
// Apply pending adds/removes
for (auto& handler : m_handlers_pending) {
if (handler.value) {
auto result = m_handlers.set(handler.key, move(handler.value));
ASSERT(result == AK::HashSetResult::InsertedNewEntry);
} else {
m_handlers.remove(handler.key);
}
}
m_handlers_pending.clear();
}
}
int EventLoop::SignalHandlers::add(Function<void(int)>&& handler)
{
int id = ++EventLoop::s_next_signal_id; // TODO: worry about wrapping and duplicates?
if (m_calling_handlers)
m_handlers_pending.set(id, move(handler));
else
m_handlers.set(id, move(handler));
return id;
}
bool EventLoop::SignalHandlers::remove(int handler_id)
{
ASSERT(handler_id != 0);
if (m_calling_handlers) {
auto it = m_handlers.find(handler_id);
if (it != m_handlers.end()) {
// Mark pending remove
m_handlers_pending.set(handler_id, nullptr);
return true;
}
it = m_handlers_pending.find(handler_id);
if (it != m_handlers_pending.end()) {
if (!it->value)
return false; // already was marked as deleted
it->value = nullptr;
return true;
}
return false;
}
return m_handlers.remove(handler_id);
}
void EventLoop::dispatch_signal(int signo)
{
auto handlers = s_signal_handlers.find(signo);
if (handlers != s_signal_handlers.end()) {
// Make sure we bump the ref count while dispatching the handlers!
// This allows a handler to unregister/register while the handlers
// are being called!
auto handler = handlers->value;
#ifdef EVENTLOOP_DEBUG
dbgln("Core::EventLoop: dispatching signal {}", signo);
#endif
handler->dispatch();
}
}
void EventLoop::handle_signal(int signo)
{
ASSERT(signo != 0);
// We MUST check if the current pid still matches, because there
// is a window between fork() and exec() where a signal delivered
// to our fork could be inadvertedly routed to the parent process!
if (getpid() == s_pid) {
int nwritten = write(s_wake_pipe_fds[1], &signo, sizeof(signo));
if (nwritten < 0) {
perror("EventLoop::register_signal: write");
ASSERT_NOT_REACHED();
}
} else {
// We're a fork who received a signal, reset s_pid
s_pid = 0;
}
}
int EventLoop::register_signal(int signo, Function<void(int)> handler)
{
ASSERT(signo != 0);
auto handlers = s_signal_handlers.find(signo);
if (handlers == s_signal_handlers.end()) {
auto signal_handlers = adopt(*new SignalHandlers(signo));
auto handler_id = signal_handlers->add(move(handler));
s_signal_handlers.set(signo, move(signal_handlers));
return handler_id;
} else {
return handlers->value->add(move(handler));
}
}
void EventLoop::unregister_signal(int handler_id)
{
ASSERT(handler_id != 0);
int remove_signo = 0;
for (auto& h : s_signal_handlers) {
auto& handlers = *h.value;
if (handlers.remove(handler_id)) {
if (handlers.is_empty())
remove_signo = handlers.m_signo;
break;
}
}
if (remove_signo != 0)
s_signal_handlers.remove(remove_signo);
}
void EventLoop::notify_forked(ForkEvent event)
{
switch (event) {
case ForkEvent::Child:
s_main_event_loop = nullptr;
s_event_loop_stack->clear();
s_timers->clear();
s_notifiers->clear();
s_signal_handlers.clear();
s_next_signal_id = 0;
s_pid = 0;
s_rpc_server = nullptr;
s_rpc_clients.clear();
return;
}
ASSERT_NOT_REACHED();
}
void EventLoop::wait_for_event(WaitMode mode)
{
fd_set rfds;
fd_set wfds;
retry:
FD_ZERO(&rfds);
FD_ZERO(&wfds);
int max_fd = 0;
auto add_fd_to_set = [&max_fd](int fd, fd_set& set) {
FD_SET(fd, &set);
if (fd > max_fd)
max_fd = fd;
};
int max_fd_added = -1;
add_fd_to_set(s_wake_pipe_fds[0], rfds);
max_fd = max(max_fd, max_fd_added);
for (auto& notifier : *s_notifiers) {
if (notifier->event_mask() & Notifier::Read)
add_fd_to_set(notifier->fd(), rfds);
if (notifier->event_mask() & Notifier::Write)
add_fd_to_set(notifier->fd(), wfds);
if (notifier->event_mask() & Notifier::Exceptional)
ASSERT_NOT_REACHED();
}
bool queued_events_is_empty;
{
LOCKER(m_private->lock);
queued_events_is_empty = m_queued_events.is_empty();
}
timeval now;
struct timeval timeout = { 0, 0 };
bool should_wait_forever = false;
if (mode == WaitMode::WaitForEvents && queued_events_is_empty) {
auto next_timer_expiration = get_next_timer_expiration();
if (next_timer_expiration.has_value()) {
timespec now_spec;
clock_gettime(CLOCK_MONOTONIC_COARSE, &now_spec);
now.tv_sec = now_spec.tv_sec;
now.tv_usec = now_spec.tv_nsec / 1000;
timeval_sub(next_timer_expiration.value(), now, timeout);
if (timeout.tv_sec < 0 || (timeout.tv_sec == 0 && timeout.tv_usec < 0)) {
timeout.tv_sec = 0;
timeout.tv_usec = 0;
}
} else {
should_wait_forever = true;
}
}
try_select_again:
int marked_fd_count = select(max_fd + 1, &rfds, &wfds, nullptr, should_wait_forever ? nullptr : &timeout);
if (marked_fd_count < 0) {
int saved_errno = errno;
if (saved_errno == EINTR) {
if (m_exit_requested)
return;
goto try_select_again;
}
#ifdef EVENTLOOP_DEBUG
dbgln("Core::EventLoop::wait_for_event: {} ({}: {})", marked_fd_count, saved_errno, strerror(saved_errno));
#endif
// Blow up, similar to Core::safe_syscall.
ASSERT_NOT_REACHED();
}
if (FD_ISSET(s_wake_pipe_fds[0], &rfds)) {
int wake_events[8];
auto nread = read(s_wake_pipe_fds[0], wake_events, sizeof(wake_events));
if (nread < 0) {
perror("read from wake pipe");
ASSERT_NOT_REACHED();
}
ASSERT(nread > 0);
bool wake_requested = false;
int event_count = nread / sizeof(wake_events[0]);
for (int i = 0; i < event_count; i++) {
if (wake_events[i] != 0)
dispatch_signal(wake_events[i]);
else
wake_requested = true;
}
if (!wake_requested && nread == sizeof(wake_events))
goto retry;
}
if (!s_timers->is_empty()) {
timespec now_spec;
clock_gettime(CLOCK_MONOTONIC_COARSE, &now_spec);
now.tv_sec = now_spec.tv_sec;
now.tv_usec = now_spec.tv_nsec / 1000;
}
for (auto& it : *s_timers) {
auto& timer = *it.value;
if (!timer.has_expired(now))
continue;
auto owner = timer.owner.strong_ref();
if (timer.fire_when_not_visible == TimerShouldFireWhenNotVisible::No
&& owner && !owner->is_visible_for_timer_purposes()) {
continue;
}
#ifdef EVENTLOOP_DEBUG
dbgln("Core::EventLoop: Timer {} has expired, sending Core::TimerEvent to {}", timer.timer_id, *owner);
#endif
if (owner)
post_event(*owner, make<TimerEvent>(timer.timer_id));
if (timer.should_reload) {
timer.reload(now);
} else {
// FIXME: Support removing expired timers that don't want to reload.
ASSERT_NOT_REACHED();
}
}
if (!marked_fd_count)
return;
for (auto& notifier : *s_notifiers) {
if (FD_ISSET(notifier->fd(), &rfds)) {
if (notifier->event_mask() & Notifier::Event::Read)
post_event(*notifier, make<NotifierReadEvent>(notifier->fd()));
}
if (FD_ISSET(notifier->fd(), &wfds)) {
if (notifier->event_mask() & Notifier::Event::Write)
post_event(*notifier, make<NotifierWriteEvent>(notifier->fd()));
}
}
}
bool EventLoopTimer::has_expired(const timeval& now) const
{
return now.tv_sec > fire_time.tv_sec || (now.tv_sec == fire_time.tv_sec && now.tv_usec >= fire_time.tv_usec);
}
void EventLoopTimer::reload(const timeval& now)
{
fire_time = now;
fire_time.tv_sec += interval / 1000;
fire_time.tv_usec += (interval % 1000) * 1000;
}
Optional<struct timeval> EventLoop::get_next_timer_expiration()
{
Optional<struct timeval> soonest {};
for (auto& it : *s_timers) {
auto& fire_time = it.value->fire_time;
auto owner = it.value->owner.strong_ref();
if (it.value->fire_when_not_visible == TimerShouldFireWhenNotVisible::No
&& owner && !owner->is_visible_for_timer_purposes()) {
continue;
}
if (!soonest.has_value() || fire_time.tv_sec < soonest.value().tv_sec || (fire_time.tv_sec == soonest.value().tv_sec && fire_time.tv_usec < soonest.value().tv_usec))
soonest = fire_time;
}
return soonest;
}
int EventLoop::register_timer(Object& object, int milliseconds, bool should_reload, TimerShouldFireWhenNotVisible fire_when_not_visible)
{
ASSERT(milliseconds >= 0);
auto timer = make<EventLoopTimer>();
timer->owner = object;
timer->interval = milliseconds;
timeval now;
timespec now_spec;
clock_gettime(CLOCK_MONOTONIC_COARSE, &now_spec);
now.tv_sec = now_spec.tv_sec;
now.tv_usec = now_spec.tv_nsec / 1000;
timer->reload(now);
timer->should_reload = should_reload;
timer->fire_when_not_visible = fire_when_not_visible;
int timer_id = s_id_allocator->allocate();
timer->timer_id = timer_id;
s_timers->set(timer_id, move(timer));
return timer_id;
}
bool EventLoop::unregister_timer(int timer_id)
{
s_id_allocator->deallocate(timer_id);
auto it = s_timers->find(timer_id);
if (it == s_timers->end())
return false;
s_timers->remove(it);
return true;
}
void EventLoop::register_notifier(Badge<Notifier>, Notifier& notifier)
{
s_notifiers->set(&notifier);
}
void EventLoop::unregister_notifier(Badge<Notifier>, Notifier& notifier)
{
s_notifiers->remove(&notifier);
}
void EventLoop::wake()
{
int wake_event = 0;
int nwritten = write(s_wake_pipe_fds[1], &wake_event, sizeof(wake_event));
if (nwritten < 0) {
perror("EventLoop::wake: write");
ASSERT_NOT_REACHED();
}
}
EventLoop::QueuedEvent::QueuedEvent(Object& receiver, NonnullOwnPtr<Event> event)
: receiver(receiver)
, event(move(event))
{
}
EventLoop::QueuedEvent::QueuedEvent(QueuedEvent&& other)
: receiver(other.receiver)
, event(move(other.event))
{
}
EventLoop::QueuedEvent::~QueuedEvent()
{
}
}