ladybird/Userland/Libraries/LibGfx/GradientPainting.cpp

451 lines
20 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2022-2023, MacDue <macdue@dueutil.tech>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Math.h>
#include <LibGfx/Gradients.h>
#include <LibGfx/PaintStyle.h>
#include <LibGfx/Painter.h>
#if defined(AK_COMPILER_GCC)
# pragma GCC optimize("O3")
#endif
namespace Gfx {
// Note: This file implements the CSS/Canvas gradients for LibWeb according to the spec.
// Please do not make ad-hoc changes that may break spec compliance!
static float color_stop_step(ColorStop const& previous_stop, ColorStop const& next_stop, float position)
{
if (position < previous_stop.position)
return 0;
if (position > next_stop.position)
return 1;
// For any given point between the two color stops,
// determine the points location as a percentage of the distance between the two color stops.
// Let this percentage be P.
auto stop_length = next_stop.position - previous_stop.position;
// FIXME: Avoids NaNs... Still not quite correct?
if (stop_length <= 0)
return 1;
auto p = (position - previous_stop.position) / stop_length;
if (!next_stop.transition_hint.has_value())
return p;
if (*next_stop.transition_hint >= 1)
return 0;
if (*next_stop.transition_hint <= 0)
return 1;
// Let C, the color weighting at that point, be equal to P^(logH(.5)).
auto c = AK::pow(p, AK::log<float>(0.5) / AK::log(*next_stop.transition_hint));
// The color at that point is then a linear blend between the colors of the two color stops,
// blending (1 - C) of the first stop and C of the second stop.
return c;
}
enum class UsePremultipliedAlpha {
Yes,
No
};
class GradientLine {
public:
GradientLine(int gradient_length, Span<ColorStop const> color_stops, Optional<float> repeat_length, UsePremultipliedAlpha use_premultiplied_alpha = UsePremultipliedAlpha::Yes)
: m_repeating(repeat_length.has_value())
, m_start_offset(round_to<int>((m_repeating ? color_stops.first().position : 0.0f) * gradient_length))
, m_color_stops(color_stops)
, m_use_premultiplied_alpha(use_premultiplied_alpha)
{
// Avoid generating excessive amounts of colors when the not enough shades to fill that length.
auto necessary_length = min<int>((color_stops.size() - 1) * 255, gradient_length);
m_sample_scale = float(necessary_length) / gradient_length;
// Note: color_count will be < gradient_length for repeating gradients.
auto color_count = round_to<int>(repeat_length.value_or(1.0f) * necessary_length);
m_gradient_line_colors.resize(color_count);
for (int loc = 0; loc < color_count; loc++) {
auto relative_loc = float(loc + m_start_offset) / necessary_length;
Color gradient_color = color_blend(color_stops[0].color, color_stops[1].color,
color_stop_step(color_stops[0], color_stops[1], relative_loc));
for (size_t i = 1; i < color_stops.size() - 1; i++) {
gradient_color = color_blend(gradient_color, color_stops[i + 1].color,
color_stop_step(color_stops[i], color_stops[i + 1], relative_loc));
}
m_gradient_line_colors[loc] = gradient_color;
if (gradient_color.alpha() < 255)
m_requires_blending = true;
}
}
Color color_blend(Color a, Color b, float amount) const
{
// Note: color.mixed_with() performs premultiplied alpha mixing when necessary as defined in:
// https://drafts.csswg.org/css-images/#coloring-gradient-line
if (m_use_premultiplied_alpha == UsePremultipliedAlpha::Yes)
return a.mixed_with(b, amount);
return a.interpolate(b, amount);
};
Color get_color(i64 index) const
{
if (index < 0)
return m_color_stops.first().color;
if (index >= static_cast<i64>(m_gradient_line_colors.size()))
return m_color_stops.last().color;
return m_gradient_line_colors[index];
}
Color sample_color(float loc) const
{
if (!isfinite(loc))
return Color();
if (m_sample_scale != 1.0f)
loc *= m_sample_scale;
auto repeat_wrap_if_required = [&](i64 loc) {
if (m_repeating)
return (loc + m_start_offset) % static_cast<i64>(m_gradient_line_colors.size());
return loc;
};
auto int_loc = static_cast<i64>(floor(loc));
auto blend = loc - int_loc;
auto color = get_color(repeat_wrap_if_required(int_loc));
// Blend between the two neighbouring colors (this fixes some nasty aliasing issues at small angles)
if (blend >= 0.004f)
color = color_blend(color, get_color(repeat_wrap_if_required(int_loc + 1)), blend);
return color;
}
void paint_into_physical_rect(Painter& painter, IntRect rect, auto location_transform)
{
auto clipped_rect = rect.intersected(painter.clip_rect() * painter.scale());
auto start_offset = clipped_rect.location() - rect.location();
for (int y = 0; y < clipped_rect.height(); y++) {
for (int x = 0; x < clipped_rect.width(); x++) {
auto pixel = sample_color(location_transform(x + start_offset.x(), y + start_offset.y()));
painter.set_physical_pixel(clipped_rect.location().translated(x, y), pixel, m_requires_blending);
}
}
}
private:
bool m_repeating { false };
int m_start_offset { 0 };
float m_sample_scale { 1 };
Span<ColorStop const> m_color_stops {};
UsePremultipliedAlpha m_use_premultiplied_alpha { UsePremultipliedAlpha::Yes };
Vector<Color, 1024> m_gradient_line_colors;
bool m_requires_blending = false;
};
template<typename TransformFunction>
struct Gradient {
Gradient(GradientLine gradient_line, TransformFunction transform_function)
: m_gradient_line(move(gradient_line))
, m_transform_function(move(transform_function))
{
}
void paint(Painter& painter, IntRect rect)
{
m_gradient_line.paint_into_physical_rect(painter, rect, m_transform_function);
}
PaintStyle::SamplerFunction sample_function()
{
return [this](IntPoint point) {
return m_gradient_line.sample_color(m_transform_function(point.x(), point.y()));
};
}
private:
GradientLine m_gradient_line;
TransformFunction m_transform_function;
};
static auto create_linear_gradient(IntRect const& physical_rect, Span<ColorStop const> color_stops, float angle, Optional<float> repeat_length)
{
float normalized_angle = normalized_gradient_angle_radians(angle);
float sin_angle, cos_angle;
AK::sincos(normalized_angle, sin_angle, cos_angle);
// Full length of the gradient
auto gradient_length = calculate_gradient_length(physical_rect.size(), sin_angle, cos_angle);
IntPoint offset { cos_angle * (gradient_length / 2), sin_angle * (gradient_length / 2) };
auto center = physical_rect.translated(-physical_rect.location()).center();
auto start_point = center - offset;
// Rotate gradient line to be horizontal
auto rotated_start_point_x = start_point.x() * cos_angle - start_point.y() * -sin_angle;
GradientLine gradient_line(gradient_length, color_stops, repeat_length);
return Gradient {
move(gradient_line),
[=](int x, int y) {
return (x * cos_angle - (physical_rect.height() - y) * -sin_angle) - rotated_start_point_x;
}
};
}
static auto create_conic_gradient(Span<ColorStop const> color_stops, FloatPoint center_point, float start_angle, Optional<float> repeat_length, UsePremultipliedAlpha use_premultiplied_alpha = UsePremultipliedAlpha::Yes)
{
// FIXME: Do we need/want sub-degree accuracy for the gradient line?
GradientLine gradient_line(360, color_stops, repeat_length, use_premultiplied_alpha);
float normalized_start_angle = (360.0f - start_angle) + 90.0f;
// The flooring can make gradients that want soft edges look worse, so only floor if we have hard edges.
// Which makes sure the hard edge stay hard edges :^)
bool should_floor_angles = false;
for (size_t i = 0; i < color_stops.size() - 1; i++) {
if (color_stops[i + 1].position - color_stops[i].position <= 0.01f) {
should_floor_angles = true;
break;
}
}
return Gradient {
move(gradient_line),
[=](int x, int y) {
auto point = FloatPoint { x, y } - center_point;
// FIXME: We could probably get away with some approximation here:
auto loc = fmod((AK::atan2(point.y(), point.x()) * 180.0f / AK::Pi<float> + 360.0f + normalized_start_angle), 360.0f);
return should_floor_angles ? floor(loc) : loc;
}
};
}
static auto create_radial_gradient(IntRect const& physical_rect, Span<ColorStop const> color_stops, IntPoint center, IntSize size, Optional<float> repeat_length)
{
// A conservative guesstimate on how many colors we need to generate:
auto max_dimension = max(physical_rect.width(), physical_rect.height());
auto max_visible_gradient = max(max_dimension / 2, min(size.width(), max_dimension));
GradientLine gradient_line(max_visible_gradient, color_stops, repeat_length);
auto center_point = FloatPoint { center }.translated(0.5, 0.5);
return Gradient {
move(gradient_line),
[=](int x, int y) {
// FIXME: See if there's a more efficient calculation we do there :^)
auto point = FloatPoint(x, y) - center_point;
auto gradient_x = point.x() / size.width();
auto gradient_y = point.y() / size.height();
return AK::sqrt(gradient_x * gradient_x + gradient_y * gradient_y) * max_visible_gradient;
}
};
}
void Painter::fill_rect_with_linear_gradient(IntRect const& rect, Span<ColorStop const> color_stops, float angle, Optional<float> repeat_length)
{
auto a_rect = to_physical(rect);
if (a_rect.intersected(clip_rect() * scale()).is_empty())
return;
auto linear_gradient = create_linear_gradient(a_rect, color_stops, angle, repeat_length);
linear_gradient.paint(*this, a_rect);
}
static FloatPoint pixel_center(IntPoint point)
{
return point.to_type<float>().translated(0.5f, 0.5f);
}
void Painter::fill_rect_with_conic_gradient(IntRect const& rect, Span<ColorStop const> color_stops, IntPoint center, float start_angle, Optional<float> repeat_length)
{
auto a_rect = to_physical(rect);
if (a_rect.intersected(clip_rect() * scale()).is_empty())
return;
// Translate position/center to the center of the pixel (avoids some funky painting)
auto center_point = pixel_center(center * scale());
auto conic_gradient = create_conic_gradient(color_stops, center_point, start_angle, repeat_length);
conic_gradient.paint(*this, a_rect);
}
void Painter::fill_rect_with_radial_gradient(IntRect const& rect, Span<ColorStop const> color_stops, IntPoint center, IntSize size, Optional<float> repeat_length)
{
auto a_rect = to_physical(rect);
if (a_rect.intersected(clip_rect() * scale()).is_empty())
return;
auto radial_gradient = create_radial_gradient(a_rect, color_stops, center * scale(), size * scale(), repeat_length);
radial_gradient.paint(*this, a_rect);
}
// TODO: Figure out how to handle scale() here... Not important while not supported by fill_path()
void LinearGradientPaintStyle::paint(IntRect physical_bounding_box, PaintFunction paint) const
{
VERIFY(color_stops().size() > 2);
auto linear_gradient = create_linear_gradient(physical_bounding_box, color_stops(), m_angle, repeat_length());
paint(linear_gradient.sample_function());
}
void ConicGradientPaintStyle::paint(IntRect physical_bounding_box, PaintFunction paint) const
{
VERIFY(color_stops().size() > 2);
(void)physical_bounding_box;
auto conic_gradient = create_conic_gradient(color_stops(), pixel_center(m_center), m_start_angle, repeat_length());
paint(conic_gradient.sample_function());
}
void RadialGradientPaintStyle::paint(IntRect physical_bounding_box, PaintFunction paint) const
{
VERIFY(color_stops().size() > 2);
auto radial_gradient = create_radial_gradient(physical_bounding_box, color_stops(), m_center, m_size, repeat_length());
paint(radial_gradient.sample_function());
}
// The following implements the gradient fill/stoke styles for the HTML canvas: https://html.spec.whatwg.org/multipage/canvas.html#fill-and-stroke-styles
static auto make_sample_non_relative(IntPoint draw_location, auto sample)
{
return [=, sample = move(sample)](IntPoint point) { return sample(point.translated(draw_location)); };
}
void CanvasLinearGradientPaintStyle::paint(IntRect physical_bounding_box, PaintFunction paint) const
{
// If x0 = x1 and y0 = y1, then the linear gradient must paint nothing.
if (m_p0 == m_p1)
return;
if (color_stops().is_empty())
return;
if (color_stops().size() < 2)
return paint([this](IntPoint) { return color_stops().first().color; });
auto delta = m_p1 - m_p0;
auto angle = AK::atan2(delta.y(), delta.x());
float sin_angle, cos_angle;
AK::sincos(angle, sin_angle, cos_angle);
int gradient_length = ceilf(m_p1.distance_from(m_p0));
auto rotated_start_point_x = m_p0.x() * cos_angle - m_p0.y() * -sin_angle;
Gradient linear_gradient {
GradientLine(gradient_length, color_stops(), repeat_length(), UsePremultipliedAlpha::No),
[=](int x, int y) {
return (x * cos_angle - y * -sin_angle) - rotated_start_point_x;
}
};
paint(make_sample_non_relative(physical_bounding_box.location(), linear_gradient.sample_function()));
}
void CanvasConicGradientPaintStyle::paint(IntRect physical_bounding_box, PaintFunction paint) const
{
if (color_stops().is_empty())
return;
if (color_stops().size() < 2)
return paint([this](IntPoint) { return color_stops().first().color; });
// Follows the same rendering rule as CSS 'conic-gradient' and it is equivalent to CSS
// 'conic-gradient(from adjustedStartAnglerad at xpx ypx, angularColorStopList)'.
// Here:
// adjustedStartAngle is given by startAngle + π/2;
auto conic_gradient = create_conic_gradient(color_stops(), m_center, m_start_angle + 90.0f, repeat_length(), UsePremultipliedAlpha::No);
paint(make_sample_non_relative(physical_bounding_box.location(), conic_gradient.sample_function()));
}
void CanvasRadialGradientPaintStyle::paint(IntRect physical_bounding_box, PaintFunction paint) const
{
// 1. If x0 = x1 and y0 = y1 and r0 = r1, then the radial gradient must paint nothing. Return.
if (m_start_center == m_end_center && m_start_radius == m_end_radius)
return;
if (color_stops().is_empty())
return;
if (color_stops().size() < 2)
return paint([this](IntPoint) { return color_stops().first().color; });
auto start_radius = m_start_radius;
auto start_center = m_start_center;
auto end_radius = m_end_radius;
auto end_center = m_end_center;
if (end_radius == 0 && start_radius == 0)
return;
if (fabs(start_radius - end_radius) < 1)
start_radius += 1;
// Needed for the start circle > end circle case, but FIXME, this seems kind of hacky.
bool reverse_gradient = end_radius < start_radius;
if (reverse_gradient) {
swap(end_radius, start_radius);
swap(end_center, start_center);
}
// Spec steps: Useless for writing an actual implementation (give it a go :P):
//
// 2. Let x(ω) = (x1-x0)ω + x0
// Let y(ω) = (y1-y0)ω + y0
// Let r(ω) = (r1-r0)ω + r0
// Let the color at ω be the color at that position on the gradient
// (with the colors coming from the interpolation and extrapolation described above).
//
// 3. For all values of ω where r(ω) > 0, starting with the value of ω nearest to positive infinity and
// ending with the value of ω nearest to negative infinity, draw the circumference of the circle with
// radius r(ω) at position (x(ω), y(ω)), with the color at ω, but only painting on the parts of the
// bitmap that have not yet been painted on by earlier circles in this step for this rendering of the gradient.
auto center_delta = end_center - start_center;
auto center_dist = end_center.distance_from(start_center);
bool inner_contained = ((center_dist + start_radius) < end_radius);
auto start_point = start_center;
if (!inner_contained) {
// The intersection point of the direct common tangents of the start/end circles.
start_point = FloatPoint {
(start_radius * end_center.x() - end_radius * start_center.x()) / (start_radius - end_radius),
(start_radius * end_center.y() - end_radius * start_center.y()) / (start_radius - end_radius)
};
}
// This is just an approximate upperbound (the gradient line class will shorten this if necessary).
int gradient_length = AK::ceil(center_dist + end_radius + start_radius);
GradientLine gradient_line(gradient_length, color_stops(), repeat_length(), UsePremultipliedAlpha::No);
auto radius2 = end_radius * end_radius;
center_delta = end_center - start_point;
auto dx2_factor = (radius2 - center_delta.y() * center_delta.y());
auto dy2_factor = (radius2 - center_delta.x() * center_delta.x());
// If you can simplify this please do, this is "best guess" implementation due to lack of specification.
// It was implemented to visually match chrome/firefox in all cases:
// - Start circle inside end circle
// - Start circle outside end circle
// - Start circle radius == end circle radius
// - Start circle larger than end circle (inside end circle)
// - Start circle larger than end circle (outside end circle)
// - Start cirlce or end circle radius == 0
Gradient radial_gradient {
move(gradient_line),
[=](int x, int y) {
auto get_gradient_location = [&] {
FloatPoint point { x, y };
auto dist = point.distance_from(start_point);
if (dist == 0)
return 0.0f;
auto vec = (point - start_point) / dist;
auto dx2 = vec.x() * vec.x();
auto dy2 = vec.y() * vec.y();
// This works out the distance to the nearest point on the end circle in the direction of the "vec" vector.
// The "vec" vector points from the center of the start circle to the current point.
auto root = sqrtf(dx2 * dx2_factor + dy2 * dy2_factor
+ 2 * vec.x() * vec.y() * center_delta.x() * center_delta.y());
auto dot = vec.x() * center_delta.x() + vec.y() * center_delta.y();
// Note: When reversed we always want the farthest point
auto edge_dist = (((inner_contained || reverse_gradient ? root : -root) + dot) / (dx2 + dy2));
auto start_offset = inner_contained ? start_radius : (edge_dist / end_radius) * start_radius;
// FIXME: Returning nan is a hack for "Don't paint me!"
if (edge_dist < 0)
return AK::NaN<float>;
if (edge_dist - start_offset < 0)
return float(gradient_length);
return ((dist - start_offset) / (edge_dist - start_offset));
};
auto loc = get_gradient_location();
if (reverse_gradient)
loc = 1.0f - loc;
return loc * gradient_length;
}
};
paint(make_sample_non_relative(physical_bounding_box.location(), radial_gradient.sample_function()));
}
}