ladybird/AK/Time.h

375 lines
12 KiB
C
Raw Normal View History

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Array.h>
#include <AK/Assertions.h>
#include <AK/Platform.h>
#include <AK/Types.h>
// Kernel and Userspace pull in the definitions from different places.
// Avoid trying to figure out which one.
struct timeval;
struct timespec;
namespace AK {
// Concept to detect types which look like timespec without requiring the type.
template<typename T>
concept TimeSpecType = requires(T t)
{
t.tv_sec;
t.tv_nsec;
};
constexpr bool is_leap_year(int year)
{
return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0);
}
// Month and day start at 1. Month must be >= 1 and <= 12.
// The return value is 0-indexed, that is 0 is Sunday, 1 is Monday, etc.
// Day may be negative or larger than the number of days
// in the given month.
unsigned day_of_week(int year, unsigned month, int day);
// Month and day start at 1. Month must be >= 1 and <= 12.
// The return value is 0-indexed, that is Jan 1 is day 0.
// Day may be negative or larger than the number of days
// in the given month. If day is negative enough, the result
// can be negative.
constexpr int day_of_year(int year, unsigned month, int day)
{
VERIFY(month >= 1 && month <= 12);
constexpr Array seek_table = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
int day_of_year = seek_table[month - 1] + day - 1;
if (is_leap_year(year) && month >= 3)
day_of_year++;
return day_of_year;
}
// Month starts at 1. Month must be >= 1 and <= 12.
int days_in_month(int year, unsigned month);
constexpr int days_in_year(int year)
{
return 365 + (is_leap_year(year) ? 1 : 0);
}
constexpr int years_to_days_since_epoch(int year)
{
int days = 0;
for (int current_year = 1970; current_year < year; ++current_year)
days += days_in_year(current_year);
for (int current_year = year; current_year < 1970; ++current_year)
days -= days_in_year(current_year);
return days;
}
constexpr int days_since_epoch(int year, int month, int day)
{
return years_to_days_since_epoch(year) + day_of_year(year, month, day);
}
constexpr i64 seconds_since_epoch_to_year(i64 seconds)
{
constexpr double seconds_per_year = 60.0 * 60.0 * 24.0 * 365.2425;
// NOTE: We are not using floor() from <math.h> to avoid LibC / DynamicLoader dependency issues.
auto round_down = [](double value) -> i64 {
auto as_i64 = static_cast<i64>(value);
if ((value == as_i64) || (as_i64 >= 0))
return as_i64;
return as_i64 - 1;
};
auto years_since_epoch = static_cast<double>(seconds) / seconds_per_year;
return 1970 + round_down(years_since_epoch);
}
/*
* Represents a time amount in a "safe" way.
* Minimum: 0 seconds, 0 nanoseconds
* Maximum: 2**63-1 seconds, 999'999'999 nanoseconds
* If any operation (e.g. 'from_timeval' or operator-) would over- or underflow, the closest legal value is returned instead.
* Inputs (e.g. to 'from_timespec') are allowed to be in non-normal form (e.g. "1 second, 2'012'345'678 nanoseconds" or "1 second, -2 microseconds").
* Outputs (e.g. from 'to_timeval') are always in normal form.
*/
class Time {
public:
2021-02-27 22:54:10 +00:00
Time() = default;
Time(const Time&) = default;
Time& operator=(const Time&) = default;
Time(Time&& other)
: m_seconds(exchange(other.m_seconds, 0))
, m_nanoseconds(exchange(other.m_nanoseconds, 0))
{
}
Time& operator=(Time&& other)
{
if (this != &other) {
m_seconds = exchange(other.m_seconds, 0);
m_nanoseconds = exchange(other.m_nanoseconds, 0);
}
return *this;
}
private:
// This must be part of the header in order to make the various 'from_*' functions constexpr.
// However, sane_mod can only deal with a limited range of values for 'denominator', so this can't be made public.
ALWAYS_INLINE static constexpr i64 sane_mod(i64& numerator, i64 denominator)
{
VERIFY(2 <= denominator && denominator <= 1'000'000'000);
// '%' in C/C++ does not work in the obvious way:
// For example, -9 % 7 is -2, not +5.
// However, we want a representation like "(-2)*7 + (+5)".
i64 dividend = numerator / denominator;
numerator %= denominator;
if (numerator < 0) {
// Does not overflow: different signs.
numerator += denominator;
// Does not underflow: denominator >= 2.
dividend -= 1;
}
return dividend;
}
ALWAYS_INLINE static constexpr i32 sane_mod(i32& numerator, i32 denominator)
{
i64 numerator_64 = numerator;
i64 dividend = sane_mod(numerator_64, denominator);
// Does not underflow: numerator can only become smaller.
numerator = static_cast<i32>(numerator_64);
// Does not overflow: Will be smaller than original value of 'numerator'.
return static_cast<i32>(dividend);
}
public:
[[nodiscard]] constexpr static Time from_timestamp(i32 year, u8 month, u8 day, u8 hour, u8 minute, u8 second, u16 millisecond)
{
constexpr auto milliseconds_per_day = 86'400'000;
constexpr auto milliseconds_per_hour = 3'600'000;
constexpr auto milliseconds_per_minute = 60'000;
constexpr auto milliseconds_per_second = 1'000;
i64 milliseconds_since_epoch = days_since_epoch(year, month, day);
milliseconds_since_epoch *= milliseconds_per_day;
milliseconds_since_epoch += hour * milliseconds_per_hour;
milliseconds_since_epoch += minute * milliseconds_per_minute;
milliseconds_since_epoch += second * milliseconds_per_second;
milliseconds_since_epoch += millisecond;
return from_milliseconds(milliseconds_since_epoch);
}
[[nodiscard]] constexpr static Time from_seconds(i64 seconds) { return Time(seconds, 0); }
[[nodiscard]] constexpr static Time from_nanoseconds(i64 nanoseconds)
{
i64 seconds = sane_mod(nanoseconds, 1'000'000'000);
return Time(seconds, nanoseconds);
}
[[nodiscard]] constexpr static Time from_microseconds(i64 microseconds)
{
i64 seconds = sane_mod(microseconds, 1'000'000);
return Time(seconds, microseconds * 1'000);
}
[[nodiscard]] constexpr static Time from_milliseconds(i64 milliseconds)
{
i64 seconds = sane_mod(milliseconds, 1'000);
return Time(seconds, milliseconds * 1'000'000);
}
[[nodiscard]] static Time from_ticks(clock_t, time_t);
[[nodiscard]] static Time from_timespec(const struct timespec&);
[[nodiscard]] static Time from_timeval(const struct timeval&);
// We don't pull in <stdint.h> for the pretty min/max definitions because this file is also included in the Kernel
[[nodiscard]] constexpr static Time min() { return Time(-__INT64_MAX__ - 1LL, 0); };
[[nodiscard]] constexpr static Time zero() { return Time(0, 0); };
[[nodiscard]] constexpr static Time max() { return Time(__INT64_MAX__, 999'999'999); };
#ifndef KERNEL
[[nodiscard]] static Time now_realtime();
[[nodiscard]] static Time now_realtime_coarse();
[[nodiscard]] static Time now_monotonic();
[[nodiscard]] static Time now_monotonic_coarse();
#endif
// Truncates towards zero (2.8s to 2s, -2.8s to -2s).
[[nodiscard]] i64 to_truncated_seconds() const;
[[nodiscard]] i64 to_truncated_milliseconds() const;
[[nodiscard]] i64 to_truncated_microseconds() const;
// Rounds away from zero (2.3s to 3s, -2.3s to -3s).
[[nodiscard]] i64 to_seconds() const;
[[nodiscard]] i64 to_milliseconds() const;
[[nodiscard]] i64 to_microseconds() const;
[[nodiscard]] i64 to_nanoseconds() const;
[[nodiscard]] timespec to_timespec() const;
// Rounds towards -inf (it was the easiest to implement).
[[nodiscard]] timeval to_timeval() const;
[[nodiscard]] bool is_zero() const { return (m_seconds == 0) && (m_nanoseconds == 0); }
[[nodiscard]] bool is_negative() const { return m_seconds < 0; }
bool operator==(const Time& other) const { return this->m_seconds == other.m_seconds && this->m_nanoseconds == other.m_nanoseconds; }
bool operator!=(const Time& other) const { return !(*this == other); }
Time operator+(const Time& other) const;
Time& operator+=(const Time& other);
Time operator-(const Time& other) const;
Time& operator-=(const Time& other);
2021-02-27 22:54:10 +00:00
bool operator<(const Time& other) const;
bool operator<=(const Time& other) const;
bool operator>(const Time& other) const;
bool operator>=(const Time& other) const;
private:
constexpr explicit Time(i64 seconds, u32 nanoseconds)
: m_seconds(seconds)
, m_nanoseconds(nanoseconds)
{
}
[[nodiscard]] static Time from_half_sanitized(i64 seconds, i32 extra_seconds, u32 nanoseconds);
i64 m_seconds { 0 };
u32 m_nanoseconds { 0 }; // Always less than 1'000'000'000
};
template<typename TimevalType>
inline void timeval_sub(const TimevalType& a, const TimevalType& b, TimevalType& result)
{
result.tv_sec = a.tv_sec - b.tv_sec;
result.tv_usec = a.tv_usec - b.tv_usec;
if (result.tv_usec < 0) {
--result.tv_sec;
2020-06-21 17:41:47 +00:00
result.tv_usec += 1'000'000;
}
}
template<typename TimevalType>
inline void timeval_add(const TimevalType& a, const TimevalType& b, TimevalType& result)
{
result.tv_sec = a.tv_sec + b.tv_sec;
result.tv_usec = a.tv_usec + b.tv_usec;
if (result.tv_usec >= 1'000'000) {
++result.tv_sec;
2020-06-21 17:41:47 +00:00
result.tv_usec -= 1'000'000;
}
}
template<typename TimespecType>
inline void timespec_sub(const TimespecType& a, const TimespecType& b, TimespecType& result)
{
result.tv_sec = a.tv_sec - b.tv_sec;
result.tv_nsec = a.tv_nsec - b.tv_nsec;
if (result.tv_nsec < 0) {
--result.tv_sec;
result.tv_nsec += 1'000'000'000;
}
}
template<typename TimespecType>
inline void timespec_add(const TimespecType& a, const TimespecType& b, TimespecType& result)
{
result.tv_sec = a.tv_sec + b.tv_sec;
result.tv_nsec = a.tv_nsec + b.tv_nsec;
if (result.tv_nsec >= 1000'000'000) {
2020-06-21 17:41:47 +00:00
++result.tv_sec;
result.tv_nsec -= 1000'000'000;
}
}
template<typename TimespecType, typename TimevalType>
inline void timespec_add_timeval(const TimespecType& a, const TimevalType& b, TimespecType& result)
{
result.tv_sec = a.tv_sec + b.tv_sec;
result.tv_nsec = a.tv_nsec + b.tv_usec * 1000;
if (result.tv_nsec >= 1000'000'000) {
++result.tv_sec;
result.tv_nsec -= 1000'000'000;
}
}
template<typename TimevalType, typename TimespecType>
inline void timeval_to_timespec(const TimevalType& tv, TimespecType& ts)
{
2020-09-18 07:49:51 +00:00
ts.tv_sec = tv.tv_sec;
ts.tv_nsec = tv.tv_usec * 1000;
}
template<typename TimespecType, typename TimevalType>
inline void timespec_to_timeval(const TimespecType& ts, TimevalType& tv)
{
tv.tv_sec = ts.tv_sec;
tv.tv_usec = ts.tv_nsec / 1000;
}
template<TimeSpecType T>
inline bool operator>=(const T& a, const T& b)
{
return a.tv_sec > b.tv_sec || (a.tv_sec == b.tv_sec && a.tv_nsec >= b.tv_nsec);
}
template<TimeSpecType T>
inline bool operator>(const T& a, const T& b)
{
return a.tv_sec > b.tv_sec || (a.tv_sec == b.tv_sec && a.tv_nsec > b.tv_nsec);
}
template<TimeSpecType T>
inline bool operator<(const T& a, const T& b)
{
return a.tv_sec < b.tv_sec || (a.tv_sec == b.tv_sec && a.tv_nsec < b.tv_nsec);
}
template<TimeSpecType T>
inline bool operator<=(const T& a, const T& b)
{
return a.tv_sec < b.tv_sec || (a.tv_sec == b.tv_sec && a.tv_nsec <= b.tv_nsec);
}
template<TimeSpecType T>
inline bool operator==(const T& a, const T& b)
{
return a.tv_sec == b.tv_sec && a.tv_nsec == b.tv_nsec;
}
template<TimeSpecType T>
inline bool operator!=(const T& a, const T& b)
{
return a.tv_sec != b.tv_sec || a.tv_nsec != b.tv_nsec;
}
}
using AK::day_of_week;
using AK::day_of_year;
using AK::days_in_month;
using AK::days_in_year;
using AK::days_since_epoch;
using AK::is_leap_year;
using AK::seconds_since_epoch_to_year;
using AK::Time;
2020-06-21 17:41:47 +00:00
using AK::timespec_add;
using AK::timespec_add_timeval;
2020-06-21 17:41:47 +00:00
using AK::timespec_sub;
using AK::timespec_to_timeval;
using AK::timeval_add;
using AK::timeval_sub;
using AK::timeval_to_timespec;
using AK::years_to_days_since_epoch;
using AK::operator<=;
using AK::operator<;
using AK::operator>;
using AK::operator>=;
using AK::operator==;
using AK::operator!=;