ladybird/Libraries/LibGfx/GradientPainting.cpp

472 lines
20 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2022-2023, MacDue <macdue@dueutil.tech>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Math.h>
#include <LibGfx/DeprecatedPainter.h>
#include <LibGfx/Gradients.h>
#include <LibGfx/PaintStyle.h>
#if defined(AK_COMPILER_GCC)
# pragma GCC optimize("O3")
#endif
namespace Gfx {
// Note: This file implements the CSS/Canvas gradients for LibWeb according to the spec.
// Please do not make ad-hoc changes that may break spec compliance!
float color_stop_step(ColorStop const& previous_stop, ColorStop const& next_stop, float position)
{
if (position < previous_stop.position)
return 0;
if (position > next_stop.position)
return 1;
// For any given point between the two color stops,
// determine the points location as a percentage of the distance between the two color stops.
// Let this percentage be P.
auto stop_length = next_stop.position - previous_stop.position;
// FIXME: Avoids NaNs... Still not quite correct?
if (stop_length <= 0)
return 1;
auto p = (position - previous_stop.position) / stop_length;
if (!next_stop.transition_hint.has_value())
return p;
if (*next_stop.transition_hint >= 1)
return 0;
if (*next_stop.transition_hint <= 0)
return 1;
// Let C, the color weighting at that point, be equal to P^(logH(.5)).
auto c = AK::pow(p, AK::log<float>(0.5) / AK::log(*next_stop.transition_hint));
// The color at that point is then a linear blend between the colors of the two color stops,
// blending (1 - C) of the first stop and C of the second stop.
return c;
}
class GradientLine {
public:
GradientLine(int gradient_length, ReadonlySpan<ColorStop> color_stops, Optional<float> repeat_length, AlphaType alpha_type = AlphaType::Premultiplied)
: m_repeat_mode(repeat_length.has_value() ? RepeatMode::Repeat : RepeatMode::None)
, m_start_offset(round_to<int>((repeating() ? color_stops.first().position : 0.0f) * gradient_length))
, m_color_stops(color_stops)
, m_alpha_type(alpha_type)
{
// Avoid generating excessive amounts of colors when the not enough shades to fill that length.
auto necessary_length = min<int>((color_stops.size() - 1) * 255, gradient_length);
m_sample_scale = float(necessary_length) / gradient_length;
// Note: color_count will be < gradient_length for repeating gradients.
auto color_count = round_to<int>(repeat_length.value_or(1.0f) * necessary_length);
m_gradient_line_colors.resize(color_count);
for (int loc = 0; loc < color_count; loc++) {
auto relative_loc = float(loc + m_start_offset) / necessary_length;
Color gradient_color = color_blend(color_stops[0].color, color_stops[1].color,
color_stop_step(color_stops[0], color_stops[1], relative_loc));
for (size_t i = 1; i < color_stops.size() - 1; i++) {
gradient_color = color_blend(gradient_color, color_stops[i + 1].color,
color_stop_step(color_stops[i], color_stops[i + 1], relative_loc));
}
m_gradient_line_colors[loc] = gradient_color;
if (gradient_color.alpha() < 255)
m_requires_blending = true;
}
}
Color color_blend(Color a, Color b, float amount) const
{
// Note: color.mixed_with() performs premultiplied alpha mixing when necessary as defined in:
// https://drafts.csswg.org/css-images/#coloring-gradient-line
if (m_alpha_type == AlphaType::Premultiplied)
return a.mixed_with(b, amount);
return a.interpolate(b, amount);
}
Color get_color(i64 index) const
{
if (index < 0)
return m_color_stops.first().color;
if (index >= static_cast<i64>(m_gradient_line_colors.size()))
return m_color_stops.last().color;
return m_gradient_line_colors[index];
}
Color sample_color(float loc) const
{
if (!isfinite(loc))
return Color();
if (m_sample_scale != 1.0f)
loc *= m_sample_scale;
auto repeat_wrap_if_required = [&](i64 loc) {
if (m_repeat_mode != RepeatMode::None) {
auto current_loc = loc + m_start_offset;
auto gradient_len = static_cast<i64>(m_gradient_line_colors.size());
if (m_repeat_mode == RepeatMode::Repeat) {
auto color_loc = current_loc % gradient_len;
return color_loc < 0 ? gradient_len + color_loc : color_loc;
} else if (m_repeat_mode == RepeatMode::Reflect) {
auto color_loc = AK::abs(current_loc % gradient_len);
auto repeats = current_loc / gradient_len;
return (repeats & 1) ? gradient_len - color_loc : color_loc;
}
}
return loc;
};
auto int_loc = static_cast<i64>(floor(loc));
auto blend = loc - int_loc;
auto color = get_color(repeat_wrap_if_required(int_loc));
// Blend between the two neighboring colors (this fixes some nasty aliasing issues at small angles)
if (blend >= 0.004f)
color = color_blend(color, get_color(repeat_wrap_if_required(int_loc + 1)), blend);
return color;
}
void paint_into_physical_rect(DeprecatedPainter& painter, IntRect rect, auto location_transform)
{
auto clipped_rect = rect.intersected(painter.clip_rect());
auto start_offset = clipped_rect.location() - rect.location();
for (int y = 0; y < clipped_rect.height(); y++) {
for (int x = 0; x < clipped_rect.width(); x++) {
auto pixel = sample_color(location_transform(x + start_offset.x(), y + start_offset.y()));
painter.set_physical_pixel(clipped_rect.location().translated(x, y), pixel, m_requires_blending);
}
}
}
bool repeating() const
{
return m_repeat_mode != RepeatMode::None;
}
enum class RepeatMode {
None,
Repeat,
Reflect
};
void set_repeat_mode(RepeatMode repeat_mode)
{
// Note: A gradient can be set to repeating without a repeat length.
// The repeat length is used for CSS gradients but not for SVG gradients.
m_repeat_mode = repeat_mode;
}
private:
RepeatMode m_repeat_mode { RepeatMode::None };
int m_start_offset { 0 };
float m_sample_scale { 1 };
ReadonlySpan<ColorStop> m_color_stops {};
AlphaType m_alpha_type { AlphaType::Premultiplied };
Vector<Color, 1024> m_gradient_line_colors;
bool m_requires_blending = false;
};
template<typename TransformFunction>
struct Gradient {
Gradient(GradientLine gradient_line, TransformFunction transform_function)
: m_gradient_line(move(gradient_line))
, m_transform_function(move(transform_function))
{
}
void paint(DeprecatedPainter& painter, IntRect rect)
{
m_gradient_line.paint_into_physical_rect(painter, rect, m_transform_function);
}
template<typename CoordinateType = int>
auto sample_function()
{
return [this](Point<CoordinateType> point) {
return m_gradient_line.sample_color(m_transform_function(point.x(), point.y()));
};
}
GradientLine& gradient_line()
{
return m_gradient_line;
}
private:
GradientLine m_gradient_line;
TransformFunction m_transform_function;
};
static auto create_conic_gradient(ReadonlySpan<ColorStop> color_stops, FloatPoint center_point, float start_angle, Optional<float> repeat_length, AlphaType alpha_type = AlphaType::Premultiplied)
{
// FIXME: Do we need/want sub-degree accuracy for the gradient line?
GradientLine gradient_line(360, color_stops, repeat_length, alpha_type);
float normalized_start_angle = (360.0f - start_angle) + 90.0f;
// The flooring can make gradients that want soft edges look worse, so only floor if we have hard edges.
// Which makes sure the hard edge stay hard edges :^)
bool should_floor_angles = false;
for (size_t i = 0; i < color_stops.size() - 1; i++) {
if (color_stops[i + 1].position - color_stops[i].position <= 0.01f) {
should_floor_angles = true;
break;
}
}
return Gradient {
move(gradient_line),
[=](int x, int y) {
auto point = FloatPoint { x, y } - center_point;
// FIXME: We could probably get away with some approximation here:
auto loc = fmod((AK::to_degrees(AK::atan2(point.y(), point.x())) + 360.0f + normalized_start_angle), 360.0f);
return should_floor_angles ? floor(loc) : loc;
}
};
}
// The following implements the gradient fill/stoke styles for the HTML canvas: https://html.spec.whatwg.org/multipage/canvas.html#fill-and-stroke-styles
static auto make_sample_non_relative(IntPoint draw_location, auto sample)
{
return [=, sample = move(sample)](IntPoint point) { return sample(point.translated(draw_location)); };
}
static auto make_linear_gradient_between_two_points(FloatPoint p0, FloatPoint p1, ReadonlySpan<ColorStop> color_stops, Optional<float> repeat_length)
{
auto delta = p1 - p0;
auto angle = AK::atan2(delta.y(), delta.x());
float sin_angle, cos_angle;
AK::sincos(angle, sin_angle, cos_angle);
int gradient_length = ceilf(p1.distance_from(p0));
auto rotated_start_point_x = p0.x() * cos_angle - p0.y() * -sin_angle;
return Gradient {
GradientLine(gradient_length, color_stops, repeat_length, AlphaType::Unpremultiplied),
[=](int x, int y) {
return (x * cos_angle - y * -sin_angle) - rotated_start_point_x;
}
};
}
void CanvasLinearGradientPaintStyle::paint(IntRect physical_bounding_box, PaintFunction paint) const
{
// If x0 = x1 and y0 = y1, then the linear gradient must paint nothing.
if (m_p0 == m_p1)
return;
if (color_stops().is_empty())
return;
if (color_stops().size() < 2)
return paint([this](IntPoint) { return color_stops().first().color; });
auto linear_gradient = make_linear_gradient_between_two_points(m_p0, m_p1, color_stops(), repeat_length());
paint(make_sample_non_relative(physical_bounding_box.location(), linear_gradient.sample_function()));
}
static GradientLine::RepeatMode svg_spread_method_to_repeat_mode(SVGGradientPaintStyle::SpreadMethod spread_method)
{
switch (spread_method) {
case SVGGradientPaintStyle::SpreadMethod::Pad:
return GradientLine::RepeatMode::None;
case SVGGradientPaintStyle::SpreadMethod::Reflect:
return GradientLine::RepeatMode::Reflect;
case SVGGradientPaintStyle::SpreadMethod::Repeat:
return GradientLine::RepeatMode::Repeat;
default:
VERIFY_NOT_REACHED();
}
}
void SVGGradientPaintStyle::set_gradient_transform(AffineTransform transform)
{
// Note: The scaling is removed so enough points on the gradient line are generated.
// Otherwise, if you scale a tiny path the gradient looks pixelated.
m_scale = 1.0f;
if (auto inverse = transform.inverse(); inverse.has_value()) {
auto transform_scale = transform.scale();
m_scale = max(transform_scale.x(), transform_scale.y());
m_inverse_transform = AffineTransform {}.scale(m_scale, m_scale).multiply(*inverse);
} else {
m_inverse_transform = OptionalNone {};
}
}
void SVGLinearGradientPaintStyle::paint(IntRect physical_bounding_box, PaintFunction paint) const
{
if (color_stops().is_empty())
return;
// If x1 = x2 and y1 = y2, then the area to be painted will be painted as
// a single color using the color and opacity of the last gradient stop.
if (m_p0 == m_p1)
return paint([this](IntPoint) { return color_stops().last().color; });
if (color_stops().size() < 2)
return paint([this](IntPoint) { return color_stops().first().color; });
float scale = gradient_transform_scale();
auto linear_gradient = make_linear_gradient_between_two_points(
m_p0.scaled(scale, scale), m_p1.scaled(scale, scale),
color_stops(), repeat_length());
linear_gradient.gradient_line().set_repeat_mode(
svg_spread_method_to_repeat_mode(spread_method()));
paint([&, sampler = linear_gradient.sample_function<float>()](IntPoint target_point) {
auto point = target_point.translated(physical_bounding_box.location()).to_type<float>();
if (auto inverse_transform = scale_adjusted_inverse_gradient_transform(); inverse_transform.has_value())
point = inverse_transform->map(point);
return sampler(point);
});
}
void CanvasConicGradientPaintStyle::paint(IntRect physical_bounding_box, PaintFunction paint) const
{
if (color_stops().is_empty())
return;
if (color_stops().size() < 2)
return paint([this](IntPoint) { return color_stops().first().color; });
// Follows the same rendering rule as CSS 'conic-gradient' and it is equivalent to CSS
// 'conic-gradient(from adjustedStartAnglerad at xpx ypx, angularColorStopList)'.
// Here:
// adjustedStartAngle is given by startAngle + π/2;
auto conic_gradient = create_conic_gradient(color_stops(), m_center, m_start_angle + 90.0f, repeat_length(), AlphaType::Unpremultiplied);
paint(make_sample_non_relative(physical_bounding_box.location(), conic_gradient.sample_function()));
}
static auto create_radial_gradient_between_two_circles(Gfx::FloatPoint start_center, float start_radius, Gfx::FloatPoint end_center, float end_radius, ReadonlySpan<ColorStop> color_stops, Optional<float> repeat_length)
{
bool reverse_gradient = end_radius < start_radius;
if (reverse_gradient) {
swap(end_radius, start_radius);
swap(end_center, start_center);
}
// FIXME: Handle the start_radius == end_radius special case separately.
// This hack is not quite correct.
if (end_radius - start_radius < 1)
end_radius += 1;
// Spec steps: Useless for writing an actual implementation (give it a go :P):
//
// 2. Let x(ω) = (x1-x0)ω + x0
// Let y(ω) = (y1-y0)ω + y0
// Let r(ω) = (r1-r0)ω + r0
// Let the color at ω be the color at that position on the gradient
// (with the colors coming from the interpolation and extrapolation described above).
//
// 3. For all values of ω where r(ω) > 0, starting with the value of ω nearest to positive infinity and
// ending with the value of ω nearest to negative infinity, draw the circumference of the circle with
// radius r(ω) at position (x(ω), y(ω)), with the color at ω, but only painting on the parts of the
// bitmap that have not yet been painted on by earlier circles in this step for this rendering of the gradient.
auto center_dist = end_center.distance_from(start_center);
bool inner_contained = ((center_dist + start_radius) < end_radius);
auto start_point = start_center;
if (start_radius != 0) {
// Set the start point to the focal point.
auto f = end_radius / (end_radius - start_radius);
auto one_minus_f = 1 - f;
start_point = start_center.scaled(f) + end_center.scaled(one_minus_f);
}
// This is just an approximate upperbound (the gradient line class will shorten this if necessary).
int gradient_length = AK::ceil(center_dist + end_radius + start_radius);
GradientLine gradient_line(gradient_length, color_stops, repeat_length, AlphaType::Unpremultiplied);
// If you can simplify this please do, this is "best guess" implementation due to lack of specification.
// It was implemented to visually match chrome/firefox in all cases:
// - Start circle inside end circle
// - Start circle outside end circle
// - Start circle radius == end circle radius
// - Start circle larger than end circle (inside end circle)
// - Start circle larger than end circle (outside end circle)
// - Start circle or end circle radius == 0
auto circle_distance_finder = [=](auto radius, auto center) {
auto radius2 = radius * radius;
auto delta = center - start_point;
auto delta_xy = delta.x() * delta.y();
auto dx2_factor = radius2 - delta.y() * delta.y();
auto dy2_factor = radius2 - delta.x() * delta.x();
return [=](bool positive_root, auto vec) {
// This works out the distance to the nearest point on the circle
// in the direction of the "vec" vector.
auto dx2 = vec.x() * vec.x();
auto dy2 = vec.y() * vec.y();
auto root = sqrtf(dx2 * dx2_factor + dy2 * dy2_factor
+ 2 * vec.x() * vec.y() * delta_xy);
auto dot = vec.x() * delta.x() + vec.y() * delta.y();
return ((positive_root ? root : -root) + dot) / (dx2 + dy2);
};
};
auto end_circle_dist = circle_distance_finder(end_radius, end_center);
auto start_circle_dist = [=, dist = circle_distance_finder(start_radius, start_center)](bool positive_root, auto vec) {
if (start_center == start_point)
return start_radius;
return dist(positive_root, vec);
};
return Gradient {
move(gradient_line),
[=](float x, float y) {
auto loc = [&] {
FloatPoint point { x, y };
// Add a little to avoid division by zero at the focal point.
if (point == start_point)
point += FloatPoint { 0.001f, 0.001f };
// The "vec" (unit) vector points from the focal point to the current point.
auto dist = point.distance_from(start_point);
auto vec = (point - start_point) / dist;
bool use_positive_root = inner_contained || reverse_gradient;
auto dist_end = end_circle_dist(use_positive_root, vec);
auto dist_start = start_circle_dist(use_positive_root, vec);
// FIXME: Returning nan is a hack for "Don't paint me!"
if (dist_end < 0)
return AK::NaN<float>;
if (dist_end - dist_start < 0)
return float(gradient_length);
return (dist - dist_start) / (dist_end - dist_start);
}();
if (reverse_gradient)
loc = 1.0f - loc;
return loc * gradient_length;
}
};
}
void CanvasRadialGradientPaintStyle::paint(IntRect physical_bounding_box, PaintFunction paint) const
{
// 1. If x0 = x1 and y0 = y1 and r0 = r1, then the radial gradient must paint nothing. Return.
if (m_start_center == m_end_center && m_start_radius == m_end_radius)
return;
if (color_stops().is_empty())
return;
if (color_stops().size() < 2)
return paint([this](IntPoint) { return color_stops().first().color; });
if (m_end_radius == 0 && m_start_radius == 0)
return;
auto radial_gradient = create_radial_gradient_between_two_circles(m_start_center, m_start_radius, m_end_center, m_end_radius, color_stops(), repeat_length());
paint(make_sample_non_relative(physical_bounding_box.location(), radial_gradient.sample_function()));
}
void SVGRadialGradientPaintStyle::paint(IntRect physical_bounding_box, PaintFunction paint) const
{
// FIXME: Ensure this handles all the edge cases of SVG gradients.
if (color_stops().is_empty())
return;
if (color_stops().size() < 2 || (m_end_radius == 0 && m_start_radius == 0))
return paint([this](IntPoint) { return color_stops().last().color; });
float scale = gradient_transform_scale();
auto radial_gradient = create_radial_gradient_between_two_circles(
m_start_center.scaled(scale, scale), m_start_radius * scale, m_end_center.scaled(scale, scale), m_end_radius * scale,
color_stops(), repeat_length());
radial_gradient.gradient_line().set_repeat_mode(
svg_spread_method_to_repeat_mode(spread_method()));
paint([&, sampler = radial_gradient.sample_function<float>()](IntPoint target_point) {
auto point = target_point.translated(physical_bounding_box.location()).to_type<float>();
if (auto inverse_transform = scale_adjusted_inverse_gradient_transform(); inverse_transform.has_value())
point = inverse_transform->map(point);
return sampler(point);
});
}
}