ladybird/AK/Utf8View.h

332 lines
10 KiB
C
Raw Normal View History

/*
* Copyright (c) 2019-2020, Sergey Bugaev <bugaevc@serenityos.org>
* Copyright (c) 2021, Max Wipfli <mail@maxwipfli.ch>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/ByteString.h>
#include <AK/Debug.h>
#include <AK/Format.h>
#include <AK/Function.h>
#include <AK/StringView.h>
#include <AK/Types.h>
namespace AK {
class Utf8View;
class Utf8CodePointIterator {
friend class Utf8View;
friend class ByteString;
public:
Utf8CodePointIterator() = default;
~Utf8CodePointIterator() = default;
bool operator==(Utf8CodePointIterator const&) const = default;
bool operator!=(Utf8CodePointIterator const&) const = default;
Utf8CodePointIterator& operator++();
u32 operator*() const;
// NOTE: This returns {} if the peek is at or past EOF.
Optional<u32> peek(size_t offset = 0) const;
2022-04-01 17:58:27 +00:00
ssize_t operator-(Utf8CodePointIterator const& other) const
{
return m_ptr - other.m_ptr;
}
u8 const* ptr() const { return m_ptr; }
// Note : These methods return the information about the underlying UTF-8 bytes.
// If the UTF-8 string encoding is not valid at the iterator's position, then the underlying bytes might be different from the
// decoded character's re-encoded bytes (which will be an `0xFFFD REPLACEMENT CHARACTER` with an UTF-8 length of three bytes).
// If your code relies on the decoded character being equivalent to the re-encoded character, use the `UTF8View::validate()`
// method on the view prior to using its iterator.
size_t underlying_code_point_length_in_bytes() const;
ReadonlyBytes underlying_code_point_bytes() const { return { m_ptr, underlying_code_point_length_in_bytes() }; }
2021-01-01 23:28:24 +00:00
bool done() const { return m_length == 0; }
private:
Utf8CodePointIterator(u8 const* ptr, size_t length)
: m_ptr(ptr)
, m_length(length)
{
}
u8 const* m_ptr { nullptr };
size_t m_length { 0 };
};
class Utf8View {
public:
using Iterator = Utf8CodePointIterator;
Utf8View() = default;
explicit constexpr Utf8View(StringView string)
: m_string(string)
{
}
explicit Utf8View(ByteString& string)
: m_string(string.view())
{
}
explicit Utf8View(ByteString&&) = delete;
enum class AllowSurrogates {
Yes,
No,
};
~Utf8View() = default;
StringView as_string() const { return m_string; }
Utf8CodePointIterator begin() const { return { begin_ptr(), m_string.length() }; }
Utf8CodePointIterator end() const { return { end_ptr(), 0 }; }
Utf8CodePointIterator iterator_at_byte_offset(size_t) const;
Utf8CodePointIterator iterator_at_byte_offset_without_validation(size_t) const;
2022-04-01 17:58:27 +00:00
unsigned char const* bytes() const { return begin_ptr(); }
size_t byte_length() const { return m_string.length(); }
[[nodiscard]] size_t byte_offset_of(Utf8CodePointIterator const& it) const
{
VERIFY(it.m_ptr >= begin_ptr());
VERIFY(it.m_ptr <= end_ptr());
return it.m_ptr - begin_ptr();
}
size_t byte_offset_of(size_t code_point_offset) const;
Utf8View substring_view(size_t byte_offset, size_t byte_length) const { return Utf8View { m_string.substring_view(byte_offset, byte_length) }; }
Utf8View substring_view(size_t byte_offset) const { return substring_view(byte_offset, byte_length() - byte_offset); }
2021-06-01 08:01:11 +00:00
Utf8View unicode_substring_view(size_t code_point_offset, size_t code_point_length) const;
Utf8View unicode_substring_view(size_t code_point_offset) const { return unicode_substring_view(code_point_offset, length() - code_point_offset); }
bool is_empty() const { return m_string.is_empty(); }
bool is_null() const { return m_string.is_null(); }
2022-04-01 17:58:27 +00:00
bool starts_with(Utf8View const&) const;
bool contains(u32) const;
2022-04-01 17:58:27 +00:00
Utf8View trim(Utf8View const& characters, TrimMode mode = TrimMode::Both) const;
2022-04-01 17:58:27 +00:00
size_t iterator_offset(Utf8CodePointIterator const& it) const
{
return byte_offset_of(it);
}
size_t length() const
{
if (!m_have_length) {
m_length = calculate_length();
m_have_length = true;
}
return m_length;
}
bool validate(AllowSurrogates allow_surrogates = AllowSurrogates::Yes) const
{
size_t valid_bytes = 0;
return validate(valid_bytes, allow_surrogates);
}
bool validate(size_t& valid_bytes, AllowSurrogates allow_surrogates = AllowSurrogates::Yes) const;
template<typename Callback>
auto for_each_split_view(Function<bool(u32)> splitter, SplitBehavior split_behavior, Callback callback) const
{
bool keep_empty = has_flag(split_behavior, SplitBehavior::KeepEmpty);
bool keep_trailing_separator = has_flag(split_behavior, SplitBehavior::KeepTrailingSeparator);
auto start_offset = 0u;
auto offset = 0u;
auto run_callback = [&]() {
auto length = offset - start_offset;
if (length == 0 && !keep_empty)
return;
auto substring = unicode_substring_view(start_offset, length);
// Reject splitter-only entries if we're not keeping empty results
if (keep_trailing_separator && !keep_empty && length == 1 && splitter(*substring.begin()))
return;
callback(substring);
};
auto iterator = begin();
while (iterator != end()) {
if (splitter(*iterator)) {
if (keep_trailing_separator)
++offset;
run_callback();
if (!keep_trailing_separator)
++offset;
start_offset = offset;
++iterator;
continue;
}
++offset;
++iterator;
}
run_callback();
}
private:
friend class Utf8CodePointIterator;
2023-03-07 14:28:21 +00:00
u8 const* begin_ptr() const { return reinterpret_cast<u8 const*>(m_string.characters_without_null_termination()); }
u8 const* end_ptr() const { return begin_ptr() + m_string.length(); }
size_t calculate_length() const;
struct Utf8EncodedByteData {
size_t byte_length { 0 };
u8 encoding_bits { 0 };
u8 encoding_mask { 0 };
u32 first_code_point { 0 };
u32 last_code_point { 0 };
};
static constexpr Array<Utf8EncodedByteData, 4> utf8_encoded_byte_data { {
{ 1, 0b0000'0000, 0b1000'0000, 0x0000, 0x007F },
{ 2, 0b1100'0000, 0b1110'0000, 0x0080, 0x07FF },
{ 3, 0b1110'0000, 0b1111'0000, 0x0800, 0xFFFF },
{ 4, 0b1111'0000, 0b1111'1000, 0x10000, 0x10FFFF },
} };
struct LeadingByte {
size_t byte_length { 0 };
u32 code_point_bits { 0 };
bool is_valid { false };
};
static constexpr LeadingByte decode_leading_byte(u8 byte)
{
for (auto const& data : utf8_encoded_byte_data) {
if ((byte & data.encoding_mask) != data.encoding_bits)
continue;
byte &= ~data.encoding_mask;
return { data.byte_length, byte, true };
}
return { .is_valid = false };
}
StringView m_string;
mutable size_t m_length { 0 };
mutable bool m_have_length { false };
};
template<>
struct Formatter<Utf8View> : Formatter<StringView> {
ErrorOr<void> format(FormatBuilder&, Utf8View const&);
};
inline Utf8CodePointIterator& Utf8CodePointIterator::operator++()
{
VERIFY(m_length > 0);
// OPTIMIZATION: Fast path for ASCII characters.
if (*m_ptr <= 0x7F) {
m_ptr += 1;
m_length -= 1;
return *this;
}
size_t code_point_length_in_bytes = underlying_code_point_length_in_bytes();
if (code_point_length_in_bytes > m_length) {
// We don't have enough data for the next code point. Skip one character and try again.
// The rest of the code will output replacement characters as needed for any eventual extension bytes we might encounter afterwards.
dbgln_if(UTF8_DEBUG, "Expected code point size {} is too big for the remaining length {}. Moving forward one byte.", code_point_length_in_bytes, m_length);
m_ptr += 1;
m_length -= 1;
return *this;
}
m_ptr += code_point_length_in_bytes;
m_length -= code_point_length_in_bytes;
return *this;
}
inline size_t Utf8CodePointIterator::underlying_code_point_length_in_bytes() const
{
VERIFY(m_length > 0);
auto [code_point_length_in_bytes, value, first_byte_makes_sense] = Utf8View::decode_leading_byte(*m_ptr);
// If any of these tests fail, we will output a replacement character for this byte and treat it as a code point of size 1.
if (!first_byte_makes_sense)
return 1;
if (code_point_length_in_bytes > m_length)
return 1;
for (size_t offset = 1; offset < code_point_length_in_bytes; offset++) {
if (m_ptr[offset] >> 6 != 2)
return 1;
}
return code_point_length_in_bytes;
}
inline u32 Utf8CodePointIterator::operator*() const
{
VERIFY(m_length > 0);
// OPTIMIZATION: Fast path for ASCII characters.
if (*m_ptr <= 0x7F)
return *m_ptr;
auto [code_point_length_in_bytes, code_point_value_so_far, first_byte_makes_sense] = Utf8View::decode_leading_byte(*m_ptr);
if (!first_byte_makes_sense) {
// The first byte of the code point doesn't make sense: output a replacement character
dbgln_if(UTF8_DEBUG, "First byte doesn't make sense: {:#02x}.", m_ptr[0]);
return 0xFFFD;
}
if (code_point_length_in_bytes > m_length) {
// There is not enough data left for the full code point: output a replacement character
dbgln_if(UTF8_DEBUG, "Not enough bytes (need {}, have {}), first byte is: {:#02x}.", code_point_length_in_bytes, m_length, m_ptr[0]);
return 0xFFFD;
}
for (size_t offset = 1; offset < code_point_length_in_bytes; offset++) {
if (m_ptr[offset] >> 6 != 2) {
// One of the extension bytes of the code point doesn't make sense: output a replacement character
dbgln_if(UTF8_DEBUG, "Extension byte {:#02x} in {} position after first byte {:#02x} doesn't make sense.", m_ptr[offset], offset, m_ptr[0]);
return 0xFFFD;
}
code_point_value_so_far <<= 6;
code_point_value_so_far |= m_ptr[offset] & 63;
}
if (code_point_value_so_far > 0x10FFFF) {
dbgln_if(UTF8_DEBUG, "Multi-byte sequence is otherwise valid, but code point {:#x} is not permissible.", code_point_value_so_far);
return 0xFFFD;
}
return code_point_value_so_far;
}
}
#if USING_AK_GLOBALLY
using AK::Utf8CodePointIterator;
using AK::Utf8View;
#endif