ladybird/Libraries/LibRegex/RegexByteCode.h

913 lines
34 KiB
C
Raw Permalink Normal View History

LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
/*
* Copyright (c) 2020, Emanuel Sprung <emanuel.sprung@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
*/
#pragma once
#include "RegexBytecodeStreamOptimizer.h"
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
#include "RegexMatch.h"
#include <AK/Concepts.h>
#include <AK/DisjointChunks.h>
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
#include <AK/Forward.h>
#include <AK/OwnPtr.h>
#include <AK/TypeCasts.h>
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
#include <AK/Types.h>
#include <AK/Vector.h>
#include <LibUnicode/Forward.h>
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
namespace regex {
using ByteCodeValueType = u64;
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
#define ENUMERATE_OPCODES \
__ENUMERATE_OPCODE(Compare) \
__ENUMERATE_OPCODE(Jump) \
__ENUMERATE_OPCODE(JumpNonEmpty) \
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
__ENUMERATE_OPCODE(ForkJump) \
__ENUMERATE_OPCODE(ForkStay) \
__ENUMERATE_OPCODE(ForkReplaceJump) \
__ENUMERATE_OPCODE(ForkReplaceStay) \
__ENUMERATE_OPCODE(FailForks) \
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
__ENUMERATE_OPCODE(SaveLeftCaptureGroup) \
__ENUMERATE_OPCODE(SaveRightCaptureGroup) \
__ENUMERATE_OPCODE(SaveRightNamedCaptureGroup) \
__ENUMERATE_OPCODE(CheckBegin) \
__ENUMERATE_OPCODE(CheckEnd) \
__ENUMERATE_OPCODE(CheckBoundary) \
__ENUMERATE_OPCODE(Save) \
__ENUMERATE_OPCODE(Restore) \
__ENUMERATE_OPCODE(GoBack) \
__ENUMERATE_OPCODE(ClearCaptureGroup) \
__ENUMERATE_OPCODE(Repeat) \
__ENUMERATE_OPCODE(ResetRepeat) \
__ENUMERATE_OPCODE(Checkpoint) \
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
__ENUMERATE_OPCODE(Exit)
// clang-format off
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
enum class OpCodeId : ByteCodeValueType {
#define __ENUMERATE_OPCODE(x) x,
ENUMERATE_OPCODES
#undef __ENUMERATE_OPCODE
First = Compare,
Last = Exit,
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
};
// clang-format on
#define ENUMERATE_CHARACTER_COMPARE_TYPES \
__ENUMERATE_CHARACTER_COMPARE_TYPE(Undefined) \
__ENUMERATE_CHARACTER_COMPARE_TYPE(Inverse) \
__ENUMERATE_CHARACTER_COMPARE_TYPE(TemporaryInverse) \
__ENUMERATE_CHARACTER_COMPARE_TYPE(AnyChar) \
__ENUMERATE_CHARACTER_COMPARE_TYPE(Char) \
__ENUMERATE_CHARACTER_COMPARE_TYPE(String) \
__ENUMERATE_CHARACTER_COMPARE_TYPE(CharClass) \
__ENUMERATE_CHARACTER_COMPARE_TYPE(CharRange) \
__ENUMERATE_CHARACTER_COMPARE_TYPE(Reference) \
__ENUMERATE_CHARACTER_COMPARE_TYPE(Property) \
__ENUMERATE_CHARACTER_COMPARE_TYPE(GeneralCategory) \
__ENUMERATE_CHARACTER_COMPARE_TYPE(Script) \
__ENUMERATE_CHARACTER_COMPARE_TYPE(ScriptExtension) \
__ENUMERATE_CHARACTER_COMPARE_TYPE(RangeExpressionDummy) \
__ENUMERATE_CHARACTER_COMPARE_TYPE(LookupTable) \
__ENUMERATE_CHARACTER_COMPARE_TYPE(And) \
__ENUMERATE_CHARACTER_COMPARE_TYPE(Or) \
__ENUMERATE_CHARACTER_COMPARE_TYPE(EndAndOr)
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
enum class CharacterCompareType : ByteCodeValueType {
#define __ENUMERATE_CHARACTER_COMPARE_TYPE(x) x,
ENUMERATE_CHARACTER_COMPARE_TYPES
#undef __ENUMERATE_CHARACTER_COMPARE_TYPE
};
#define ENUMERATE_CHARACTER_CLASSES \
__ENUMERATE_CHARACTER_CLASS(Alnum) \
__ENUMERATE_CHARACTER_CLASS(Cntrl) \
__ENUMERATE_CHARACTER_CLASS(Lower) \
__ENUMERATE_CHARACTER_CLASS(Space) \
__ENUMERATE_CHARACTER_CLASS(Alpha) \
__ENUMERATE_CHARACTER_CLASS(Digit) \
__ENUMERATE_CHARACTER_CLASS(Print) \
__ENUMERATE_CHARACTER_CLASS(Upper) \
__ENUMERATE_CHARACTER_CLASS(Blank) \
__ENUMERATE_CHARACTER_CLASS(Graph) \
__ENUMERATE_CHARACTER_CLASS(Punct) \
__ENUMERATE_CHARACTER_CLASS(Word) \
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
__ENUMERATE_CHARACTER_CLASS(Xdigit)
enum class CharClass : ByteCodeValueType {
#define __ENUMERATE_CHARACTER_CLASS(x) x,
ENUMERATE_CHARACTER_CLASSES
#undef __ENUMERATE_CHARACTER_CLASS
};
#define ENUMERATE_BOUNDARY_CHECK_TYPES \
__ENUMERATE_BOUNDARY_CHECK_TYPE(Word) \
__ENUMERATE_BOUNDARY_CHECK_TYPE(NonWord)
enum class BoundaryCheckType : ByteCodeValueType {
#define __ENUMERATE_BOUNDARY_CHECK_TYPE(x) x,
ENUMERATE_BOUNDARY_CHECK_TYPES
#undef __ENUMERATE_BOUNDARY_CHECK_TYPE
};
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
struct CharRange {
2021-07-23 15:55:14 +00:00
u32 const from;
u32 const to;
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
CharRange(u64 value)
: from(value >> 32)
, to(value & 0xffffffff)
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
{
}
CharRange(u32 from, u32 to)
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
: from(from)
, to(to)
{
}
operator ByteCodeValueType() const { return ((u64)from << 32) | to; }
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
};
struct CompareTypeAndValuePair {
CharacterCompareType type;
ByteCodeValueType value;
};
class OpCode;
class ByteCode : public DisjointChunks<ByteCodeValueType> {
using Base = DisjointChunks<ByteCodeValueType>;
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
public:
ByteCode()
{
ensure_opcodes_initialized();
}
2021-07-23 15:55:14 +00:00
ByteCode(ByteCode const&) = default;
ByteCode(ByteCode&&) = default;
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
virtual ~ByteCode() = default;
ByteCode& operator=(ByteCode const&) = default;
ByteCode& operator=(ByteCode&&) = default;
ByteCode& operator=(Base&& value)
{
static_cast<Base&>(*this) = move(value);
return *this;
}
template<typename... Args>
void empend(Args&&... args)
{
if (is_empty())
Base::append({});
Base::last_chunk().empend(forward<Args>(args)...);
}
template<typename T>
void append(T&& value)
{
if (is_empty())
Base::append({});
Base::last_chunk().append(forward<T>(value));
}
template<typename T>
void prepend(T&& value)
{
if (is_empty())
return append(forward<T>(value));
Base::first_chunk().prepend(forward<T>(value));
}
void append(Span<ByteCodeValueType const> value)
{
if (is_empty())
Base::append({});
auto& last = Base::last_chunk();
last.ensure_capacity(value.size());
for (auto v : value)
last.unchecked_append(v);
}
void ensure_capacity(size_t capacity)
{
if (is_empty())
Base::append({});
Base::last_chunk().ensure_capacity(capacity);
}
void last_chunk() const = delete;
void first_chunk() const = delete;
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
void insert_bytecode_compare_values(Vector<CompareTypeAndValuePair>&& pairs)
{
Optimizer::append_character_class(*this, move(pairs));
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
}
void insert_bytecode_check_boundary(BoundaryCheckType type)
{
ByteCode bytecode;
bytecode.empend((ByteCodeValueType)OpCodeId::CheckBoundary);
bytecode.empend((ByteCodeValueType)type);
extend(move(bytecode));
}
void insert_bytecode_clear_capture_group(size_t index)
{
empend(static_cast<ByteCodeValueType>(OpCodeId::ClearCaptureGroup));
empend(index);
}
void insert_bytecode_compare_string(StringView view)
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
{
empend(static_cast<ByteCodeValueType>(OpCodeId::Compare));
empend(static_cast<u64>(1)); // number of arguments
empend(2 + view.length()); // size of arguments
empend(static_cast<ByteCodeValueType>(CharacterCompareType::String));
insert_string(view);
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
}
void insert_bytecode_group_capture_left(size_t capture_groups_count)
{
empend(static_cast<ByteCodeValueType>(OpCodeId::SaveLeftCaptureGroup));
empend(capture_groups_count);
}
void insert_bytecode_group_capture_right(size_t capture_groups_count)
{
empend(static_cast<ByteCodeValueType>(OpCodeId::SaveRightCaptureGroup));
empend(capture_groups_count);
}
void insert_bytecode_group_capture_right(size_t capture_groups_count, StringView name)
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
{
empend(static_cast<ByteCodeValueType>(OpCodeId::SaveRightNamedCaptureGroup));
empend(reinterpret_cast<ByteCodeValueType>(name.characters_without_null_termination()));
empend(name.length());
empend(capture_groups_count);
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
}
enum class LookAroundType {
LookAhead,
LookBehind,
NegatedLookAhead,
NegatedLookBehind,
};
void insert_bytecode_lookaround(ByteCode&& lookaround_body, LookAroundType type, size_t match_length = 0)
{
// FIXME: The save stack will grow infinitely with repeated failures
// as we do not discard that on failure (we don't necessarily know how many to pop with the current architecture).
switch (type) {
case LookAroundType::LookAhead: {
// SAVE
// REGEXP BODY
// RESTORE
empend((ByteCodeValueType)OpCodeId::Save);
extend(move(lookaround_body));
empend((ByteCodeValueType)OpCodeId::Restore);
return;
}
case LookAroundType::NegatedLookAhead: {
// JUMP _A
// LABEL _L
// REGEXP BODY
// FAIL
// LABEL _A
// SAVE
// FORKJUMP _L
// RESTORE
auto body_length = lookaround_body.size();
empend((ByteCodeValueType)OpCodeId::Jump);
empend((ByteCodeValueType)body_length + 1); // JUMP to label _A
extend(move(lookaround_body));
empend((ByteCodeValueType)OpCodeId::FailForks);
empend((ByteCodeValueType)OpCodeId::Save);
empend((ByteCodeValueType)OpCodeId::ForkJump);
empend((ByteCodeValueType) - (body_length + 4)); // JUMP to label _L
empend((ByteCodeValueType)OpCodeId::Restore);
return;
}
case LookAroundType::LookBehind:
// SAVE
// GOBACK match_length(BODY)
// REGEXP BODY
// RESTORE
empend((ByteCodeValueType)OpCodeId::Save);
empend((ByteCodeValueType)OpCodeId::GoBack);
empend((ByteCodeValueType)match_length);
extend(move(lookaround_body));
empend((ByteCodeValueType)OpCodeId::Restore);
return;
case LookAroundType::NegatedLookBehind: {
// JUMP _A
// LABEL _L
// GOBACK match_length(BODY)
// REGEXP BODY
// FAIL
// LABEL _A
// SAVE
// FORKJUMP _L
// RESTORE
auto body_length = lookaround_body.size();
empend((ByteCodeValueType)OpCodeId::Jump);
empend((ByteCodeValueType)body_length + 3); // JUMP to label _A
empend((ByteCodeValueType)OpCodeId::GoBack);
empend((ByteCodeValueType)match_length);
extend(move(lookaround_body));
empend((ByteCodeValueType)OpCodeId::FailForks);
empend((ByteCodeValueType)OpCodeId::Save);
empend((ByteCodeValueType)OpCodeId::ForkJump);
empend((ByteCodeValueType) - (body_length + 6)); // JUMP to label _L
empend((ByteCodeValueType)OpCodeId::Restore);
return;
}
}
VERIFY_NOT_REACHED();
}
void insert_bytecode_alternation(ByteCode&& left, ByteCode&& right)
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
{
// FORKJUMP _ALT
// REGEXP ALT2
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
// JUMP _END
// LABEL _ALT
// REGEXP ALT1
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
// LABEL _END
// Optimisation: Eliminate extra work by unifying common pre-and-postfix exprs.
Optimizer::append_alternation(*this, move(left), move(right));
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
}
template<Integral T>
2022-10-16 22:06:11 +00:00
static void transform_bytecode_repetition_min_max(ByteCode& bytecode_to_repeat, T minimum, Optional<T> maximum, size_t min_repetition_mark_id, size_t max_repetition_mark_id, bool greedy = true)
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
{
if (!maximum.has_value()) {
if (minimum == 0)
return transform_bytecode_repetition_any(bytecode_to_repeat, greedy);
if (minimum == 1)
return transform_bytecode_repetition_min_one(bytecode_to_repeat, greedy);
}
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
ByteCode new_bytecode;
new_bytecode.insert_bytecode_repetition_n(bytecode_to_repeat, minimum, min_repetition_mark_id);
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
if (maximum.has_value()) {
// (REPEAT REGEXP MIN)
// LABEL _MAX_LOOP |
// FORK END |
// REGEXP |
// REPEAT _MAX_LOOP MAX-MIN | if max > min
// FORK END |
// REGEXP |
// LABEL END |
// RESET _MAX_LOOP |
auto jump_kind = static_cast<ByteCodeValueType>(greedy ? OpCodeId::ForkStay : OpCodeId::ForkJump);
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
if (maximum.value() > minimum) {
new_bytecode.empend(jump_kind);
new_bytecode.empend((ByteCodeValueType)0); // Placeholder for the jump target.
auto pre_loop_fork_jump_index = new_bytecode.size();
new_bytecode.extend(bytecode_to_repeat);
auto repetitions = maximum.value() - minimum;
auto fork_jump_address = new_bytecode.size();
if (repetitions > 1) {
new_bytecode.empend((ByteCodeValueType)OpCodeId::Repeat);
new_bytecode.empend(bytecode_to_repeat.size() + 2);
new_bytecode.empend(static_cast<ByteCodeValueType>(repetitions - 1));
new_bytecode.empend(max_repetition_mark_id);
new_bytecode.empend(jump_kind);
new_bytecode.empend((ByteCodeValueType)0); // Placeholder for the jump target.
auto post_loop_fork_jump_index = new_bytecode.size();
new_bytecode.extend(bytecode_to_repeat);
fork_jump_address = new_bytecode.size();
new_bytecode[post_loop_fork_jump_index - 1] = (ByteCodeValueType)(fork_jump_address - post_loop_fork_jump_index);
new_bytecode.empend((ByteCodeValueType)OpCodeId::ResetRepeat);
new_bytecode.empend((ByteCodeValueType)max_repetition_mark_id);
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
}
new_bytecode[pre_loop_fork_jump_index - 1] = (ByteCodeValueType)(fork_jump_address - pre_loop_fork_jump_index);
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
}
} else {
// no maximum value set, repeat finding if possible:
// (REPEAT REGEXP MIN)
// LABEL _START
// CHECKPOINT _C
// REGEXP
// JUMP_NONEMPTY _C _START FORK
// Note: This is only safe because REPEAT will leave one iteration outside (see repetition_n)
auto checkpoint = s_next_checkpoint_serial_id++;
new_bytecode.insert(new_bytecode.size() - bytecode_to_repeat.size(), (ByteCodeValueType)OpCodeId::Checkpoint);
new_bytecode.insert(new_bytecode.size() - bytecode_to_repeat.size(), (ByteCodeValueType)checkpoint);
auto jump_kind = static_cast<ByteCodeValueType>(greedy ? OpCodeId::ForkJump : OpCodeId::ForkStay);
new_bytecode.empend((ByteCodeValueType)OpCodeId::JumpNonEmpty);
new_bytecode.empend(-bytecode_to_repeat.size() - 4 - 2); // Jump to the last iteration
new_bytecode.empend(checkpoint); // if _C is not empty.
new_bytecode.empend(jump_kind);
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
}
bytecode_to_repeat = move(new_bytecode);
}
template<Integral T>
2022-10-16 22:06:11 +00:00
void insert_bytecode_repetition_n(ByteCode& bytecode_to_repeat, T n, size_t repetition_mark_id)
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
{
// LABEL _LOOP
// REGEXP
// REPEAT _LOOP N-1
// REGEXP
if (n == 0)
return;
// Note: this bytecode layout allows callers to repeat the last REGEXP instruction without the
// REPEAT instruction forcing another loop.
extend(bytecode_to_repeat);
if (n > 1) {
empend(static_cast<ByteCodeValueType>(OpCodeId::Repeat));
empend(bytecode_to_repeat.size());
empend(static_cast<ByteCodeValueType>(n - 1));
empend(repetition_mark_id);
extend(bytecode_to_repeat);
}
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
}
static void transform_bytecode_repetition_min_one(ByteCode& bytecode_to_repeat, bool greedy)
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
{
// LABEL _START = -bytecode_to_repeat.size()
// CHECKPOINT _C
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
// REGEXP
// JUMP_NONEMPTY _C _START FORKSTAY (FORKJUMP -> Greedy)
auto checkpoint = s_next_checkpoint_serial_id++;
bytecode_to_repeat.prepend((ByteCodeValueType)checkpoint);
bytecode_to_repeat.prepend((ByteCodeValueType)OpCodeId::Checkpoint);
bytecode_to_repeat.empend((ByteCodeValueType)OpCodeId::JumpNonEmpty);
bytecode_to_repeat.empend(-bytecode_to_repeat.size() - 3); // Jump to the _START label...
bytecode_to_repeat.empend(checkpoint); // ...if _C is not empty
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
if (greedy)
bytecode_to_repeat.empend(static_cast<ByteCodeValueType>(OpCodeId::ForkJump));
else
bytecode_to_repeat.empend(static_cast<ByteCodeValueType>(OpCodeId::ForkStay));
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
}
static void transform_bytecode_repetition_any(ByteCode& bytecode_to_repeat, bool greedy)
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
{
// LABEL _START
// FORKJUMP _END (FORKSTAY -> Greedy)
// CHECKPOINT _C
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
// REGEXP
// JUMP_NONEMPTY _C _START JUMP
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
// LABEL _END
// LABEL _START = m_bytes.size();
ByteCode bytecode;
if (greedy)
bytecode.empend(static_cast<ByteCodeValueType>(OpCodeId::ForkStay));
else
bytecode.empend(static_cast<ByteCodeValueType>(OpCodeId::ForkJump));
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
bytecode.empend(bytecode_to_repeat.size() + 2 + 4); // Jump to the _END label
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
auto checkpoint = s_next_checkpoint_serial_id++;
bytecode.empend(static_cast<ByteCodeValueType>(OpCodeId::Checkpoint));
bytecode.empend(static_cast<ByteCodeValueType>(checkpoint));
bytecode.extend(bytecode_to_repeat);
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
bytecode.empend(static_cast<ByteCodeValueType>(OpCodeId::JumpNonEmpty));
bytecode.empend(-bytecode.size() - 3); // Jump(...) to the _START label...
bytecode.empend(checkpoint); // ...only if _C passes.
bytecode.empend((ByteCodeValueType)OpCodeId::Jump);
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
// LABEL _END = bytecode.size()
bytecode_to_repeat = move(bytecode);
}
static void transform_bytecode_repetition_zero_or_one(ByteCode& bytecode_to_repeat, bool greedy)
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
{
// FORKJUMP _END (FORKSTAY -> Greedy)
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
// REGEXP
// LABEL _END
ByteCode bytecode;
if (greedy)
bytecode.empend(static_cast<ByteCodeValueType>(OpCodeId::ForkStay));
else
bytecode.empend(static_cast<ByteCodeValueType>(OpCodeId::ForkJump));
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
bytecode.empend(bytecode_to_repeat.size()); // Jump to the _END label
bytecode.extend(move(bytecode_to_repeat));
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
// LABEL _END = bytecode.size()
bytecode_to_repeat = move(bytecode);
}
OpCode& get_opcode(MatchState& state) const;
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
static void reset_checkpoint_serial_id() { s_next_checkpoint_serial_id = 0; }
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
private:
void insert_string(StringView view)
{
empend((ByteCodeValueType)view.length());
for (size_t i = 0; i < view.length(); ++i)
empend((ByteCodeValueType)view[i]);
}
void ensure_opcodes_initialized();
ALWAYS_INLINE OpCode& get_opcode_by_id(OpCodeId id) const;
static OwnPtr<OpCode> s_opcodes[(size_t)OpCodeId::Last + 1];
static bool s_opcodes_initialized;
static size_t s_next_checkpoint_serial_id;
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
};
#define ENUMERATE_EXECUTION_RESULTS \
__ENUMERATE_EXECUTION_RESULT(Continue) \
__ENUMERATE_EXECUTION_RESULT(Fork_PrioHigh) \
__ENUMERATE_EXECUTION_RESULT(Fork_PrioLow) \
__ENUMERATE_EXECUTION_RESULT(Failed) \
__ENUMERATE_EXECUTION_RESULT(Failed_ExecuteLowPrioForks) \
__ENUMERATE_EXECUTION_RESULT(Succeeded)
enum class ExecutionResult : u8 {
#define __ENUMERATE_EXECUTION_RESULT(x) x,
ENUMERATE_EXECUTION_RESULTS
#undef __ENUMERATE_EXECUTION_RESULT
};
StringView execution_result_name(ExecutionResult result);
StringView opcode_id_name(OpCodeId opcode_id);
StringView boundary_check_type_name(BoundaryCheckType);
StringView character_compare_type_name(CharacterCompareType result);
StringView character_class_name(CharClass ch_class);
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
class OpCode {
public:
OpCode() = default;
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
virtual ~OpCode() = default;
virtual OpCodeId opcode_id() const = 0;
virtual size_t size() const = 0;
virtual ExecutionResult execute(MatchInput const& input, MatchState& state) const = 0;
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
ALWAYS_INLINE ByteCodeValueType argument(size_t offset) const
{
return m_bytecode->at(state().instruction_position + 1 + offset);
}
ALWAYS_INLINE StringView name() const;
static StringView name(OpCodeId);
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
ALWAYS_INLINE void set_state(MatchState& state) { m_state = &state; }
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
ALWAYS_INLINE void set_bytecode(ByteCode& bytecode) { m_bytecode = &bytecode; }
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
2021-07-23 15:55:14 +00:00
ALWAYS_INLINE MatchState const& state() const
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
{
VERIFY(m_state);
return *m_state;
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
}
ByteString to_byte_string() const
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
{
return ByteString::formatted("[{:#02X}] {}", (int)opcode_id(), name(opcode_id()));
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
}
virtual ByteString arguments_string() const = 0;
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
2021-07-23 15:55:14 +00:00
ALWAYS_INLINE ByteCode const& bytecode() const { return *m_bytecode; }
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
protected:
ByteCode* m_bytecode { nullptr };
MatchState* m_state { nullptr };
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
};
class OpCode_Exit final : public OpCode {
public:
ExecutionResult execute(MatchInput const& input, MatchState& state) const override;
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
ALWAYS_INLINE OpCodeId opcode_id() const override { return OpCodeId::Exit; }
ALWAYS_INLINE size_t size() const override { return 1; }
ByteString arguments_string() const override { return ByteString::empty(); }
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
};
class OpCode_FailForks final : public OpCode {
public:
ExecutionResult execute(MatchInput const& input, MatchState& state) const override;
ALWAYS_INLINE OpCodeId opcode_id() const override { return OpCodeId::FailForks; }
ALWAYS_INLINE size_t size() const override { return 1; }
ByteString arguments_string() const override { return ByteString::empty(); }
};
class OpCode_Save final : public OpCode {
public:
ExecutionResult execute(MatchInput const& input, MatchState& state) const override;
ALWAYS_INLINE OpCodeId opcode_id() const override { return OpCodeId::Save; }
ALWAYS_INLINE size_t size() const override { return 1; }
ByteString arguments_string() const override { return ByteString::empty(); }
};
class OpCode_Restore final : public OpCode {
public:
ExecutionResult execute(MatchInput const& input, MatchState& state) const override;
ALWAYS_INLINE OpCodeId opcode_id() const override { return OpCodeId::Restore; }
ALWAYS_INLINE size_t size() const override { return 1; }
ByteString arguments_string() const override { return ByteString::empty(); }
};
class OpCode_GoBack final : public OpCode {
public:
ExecutionResult execute(MatchInput const& input, MatchState& state) const override;
ALWAYS_INLINE OpCodeId opcode_id() const override { return OpCodeId::GoBack; }
ALWAYS_INLINE size_t size() const override { return 2; }
ALWAYS_INLINE size_t count() const { return argument(0); }
ByteString arguments_string() const override { return ByteString::formatted("count={}", count()); }
};
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
class OpCode_Jump final : public OpCode {
public:
ExecutionResult execute(MatchInput const& input, MatchState& state) const override;
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
ALWAYS_INLINE OpCodeId opcode_id() const override { return OpCodeId::Jump; }
ALWAYS_INLINE size_t size() const override { return 2; }
ALWAYS_INLINE ssize_t offset() const { return argument(0); }
ByteString arguments_string() const override
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
{
return ByteString::formatted("offset={} [&{}]", offset(), state().instruction_position + size() + offset());
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
}
};
class OpCode_ForkJump : public OpCode {
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
public:
ExecutionResult execute(MatchInput const& input, MatchState& state) const override;
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
ALWAYS_INLINE OpCodeId opcode_id() const override { return OpCodeId::ForkJump; }
ALWAYS_INLINE size_t size() const override { return 2; }
ALWAYS_INLINE ssize_t offset() const { return argument(0); }
ByteString arguments_string() const override
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
{
return ByteString::formatted("offset={} [&{}], sp: {}", offset(), state().instruction_position + size() + offset(), state().string_position);
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
}
};
class OpCode_ForkReplaceJump final : public OpCode_ForkJump {
public:
ExecutionResult execute(MatchInput const& input, MatchState& state) const override;
ALWAYS_INLINE OpCodeId opcode_id() const override { return OpCodeId::ForkReplaceJump; }
};
class OpCode_ForkStay : public OpCode {
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
public:
ExecutionResult execute(MatchInput const& input, MatchState& state) const override;
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
ALWAYS_INLINE OpCodeId opcode_id() const override { return OpCodeId::ForkStay; }
ALWAYS_INLINE size_t size() const override { return 2; }
ALWAYS_INLINE ssize_t offset() const { return argument(0); }
ByteString arguments_string() const override
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
{
return ByteString::formatted("offset={} [&{}], sp: {}", offset(), state().instruction_position + size() + offset(), state().string_position);
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
}
};
class OpCode_ForkReplaceStay final : public OpCode_ForkStay {
public:
ExecutionResult execute(MatchInput const& input, MatchState& state) const override;
ALWAYS_INLINE OpCodeId opcode_id() const override { return OpCodeId::ForkReplaceStay; }
};
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
class OpCode_CheckBegin final : public OpCode {
public:
ExecutionResult execute(MatchInput const& input, MatchState& state) const override;
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
ALWAYS_INLINE OpCodeId opcode_id() const override { return OpCodeId::CheckBegin; }
ALWAYS_INLINE size_t size() const override { return 1; }
ByteString arguments_string() const override { return ByteString::empty(); }
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
};
class OpCode_CheckEnd final : public OpCode {
public:
ExecutionResult execute(MatchInput const& input, MatchState& state) const override;
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
ALWAYS_INLINE OpCodeId opcode_id() const override { return OpCodeId::CheckEnd; }
ALWAYS_INLINE size_t size() const override { return 1; }
ByteString arguments_string() const override { return ByteString::empty(); }
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
};
class OpCode_CheckBoundary final : public OpCode {
public:
ExecutionResult execute(MatchInput const& input, MatchState& state) const override;
ALWAYS_INLINE OpCodeId opcode_id() const override { return OpCodeId::CheckBoundary; }
ALWAYS_INLINE size_t size() const override { return 2; }
ALWAYS_INLINE size_t arguments_count() const { return 1; }
ALWAYS_INLINE BoundaryCheckType type() const { return static_cast<BoundaryCheckType>(argument(0)); }
ByteString arguments_string() const override { return ByteString::formatted("kind={} ({})", (long unsigned int)argument(0), boundary_check_type_name(type())); }
};
class OpCode_ClearCaptureGroup final : public OpCode {
public:
ExecutionResult execute(MatchInput const& input, MatchState& state) const override;
ALWAYS_INLINE OpCodeId opcode_id() const override { return OpCodeId::ClearCaptureGroup; }
ALWAYS_INLINE size_t size() const override { return 2; }
ALWAYS_INLINE size_t id() const { return argument(0); }
ByteString arguments_string() const override { return ByteString::formatted("id={}", id()); }
};
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
class OpCode_SaveLeftCaptureGroup final : public OpCode {
public:
ExecutionResult execute(MatchInput const& input, MatchState& state) const override;
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
ALWAYS_INLINE OpCodeId opcode_id() const override { return OpCodeId::SaveLeftCaptureGroup; }
ALWAYS_INLINE size_t size() const override { return 2; }
ALWAYS_INLINE size_t id() const { return argument(0); }
ByteString arguments_string() const override { return ByteString::formatted("id={}", id()); }
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
};
class OpCode_SaveRightCaptureGroup final : public OpCode {
public:
ExecutionResult execute(MatchInput const& input, MatchState& state) const override;
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
ALWAYS_INLINE OpCodeId opcode_id() const override { return OpCodeId::SaveRightCaptureGroup; }
ALWAYS_INLINE size_t size() const override { return 2; }
ALWAYS_INLINE size_t id() const { return argument(0); }
ByteString arguments_string() const override { return ByteString::formatted("id={}", id()); }
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
};
class OpCode_SaveRightNamedCaptureGroup final : public OpCode {
public:
ExecutionResult execute(MatchInput const& input, MatchState& state) const override;
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
ALWAYS_INLINE OpCodeId opcode_id() const override { return OpCodeId::SaveRightNamedCaptureGroup; }
ALWAYS_INLINE size_t size() const override { return 4; }
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
ALWAYS_INLINE StringView name() const { return { reinterpret_cast<char*>(argument(0)), length() }; }
ALWAYS_INLINE size_t length() const { return argument(1); }
ALWAYS_INLINE size_t id() const { return argument(2); }
ByteString arguments_string() const override
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
{
return ByteString::formatted("name={}, length={}", name(), length());
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
}
};
class OpCode_Compare final : public OpCode {
public:
ExecutionResult execute(MatchInput const& input, MatchState& state) const override;
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
ALWAYS_INLINE OpCodeId opcode_id() const override { return OpCodeId::Compare; }
ALWAYS_INLINE size_t size() const override { return arguments_size() + 3; }
ALWAYS_INLINE size_t arguments_count() const { return argument(0); }
ALWAYS_INLINE size_t arguments_size() const { return argument(1); }
ByteString arguments_string() const override;
Vector<ByteString> variable_arguments_to_byte_string(Optional<MatchInput const&> input = {}) const;
Vector<CompareTypeAndValuePair> flat_compares() const;
static bool matches_character_class(CharClass, u32, bool insensitive);
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
private:
2021-07-23 15:55:14 +00:00
ALWAYS_INLINE static void compare_char(MatchInput const& input, MatchState& state, u32 ch1, bool inverse, bool& inverse_matched);
ALWAYS_INLINE static bool compare_string(MatchInput const& input, MatchState& state, RegexStringView str, bool& had_zero_length_match);
2021-07-23 15:55:14 +00:00
ALWAYS_INLINE static void compare_character_class(MatchInput const& input, MatchState& state, CharClass character_class, u32 ch, bool inverse, bool& inverse_matched);
ALWAYS_INLINE static void compare_character_range(MatchInput const& input, MatchState& state, u32 from, u32 to, u32 ch, bool inverse, bool& inverse_matched);
ALWAYS_INLINE static void compare_property(MatchInput const& input, MatchState& state, Unicode::Property property, bool inverse, bool& inverse_matched);
ALWAYS_INLINE static void compare_general_category(MatchInput const& input, MatchState& state, Unicode::GeneralCategory general_category, bool inverse, bool& inverse_matched);
ALWAYS_INLINE static void compare_script(MatchInput const& input, MatchState& state, Unicode::Script script, bool inverse, bool& inverse_matched);
ALWAYS_INLINE static void compare_script_extension(MatchInput const& input, MatchState& state, Unicode::Script script, bool inverse, bool& inverse_matched);
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
};
class OpCode_Repeat : public OpCode {
public:
ExecutionResult execute(MatchInput const& input, MatchState& state) const override;
ALWAYS_INLINE OpCodeId opcode_id() const override { return OpCodeId::Repeat; }
ALWAYS_INLINE size_t size() const override { return 4; }
ALWAYS_INLINE size_t offset() const { return argument(0); }
ALWAYS_INLINE u64 count() const { return argument(1); }
ALWAYS_INLINE size_t id() const { return argument(2); }
ByteString arguments_string() const override
{
auto reps = id() < state().repetition_marks.size() ? state().repetition_marks.at(id()) : 0;
return ByteString::formatted("offset={} count={} id={} rep={}, sp: {}", offset(), count() + 1, id(), reps + 1, state().string_position);
}
};
class OpCode_ResetRepeat : public OpCode {
public:
ExecutionResult execute(MatchInput const& input, MatchState& state) const override;
ALWAYS_INLINE OpCodeId opcode_id() const override { return OpCodeId::ResetRepeat; }
ALWAYS_INLINE size_t size() const override { return 2; }
ALWAYS_INLINE size_t id() const { return argument(0); }
ByteString arguments_string() const override
{
auto reps = id() < state().repetition_marks.size() ? state().repetition_marks.at(id()) : 0;
return ByteString::formatted("id={} rep={}", id(), reps + 1);
}
};
class OpCode_Checkpoint final : public OpCode {
public:
ExecutionResult execute(MatchInput const& input, MatchState& state) const override;
ALWAYS_INLINE OpCodeId opcode_id() const override { return OpCodeId::Checkpoint; }
ALWAYS_INLINE size_t size() const override { return 2; }
ALWAYS_INLINE size_t id() const { return argument(0); }
ByteString arguments_string() const override { return ByteString::formatted("id={}", id()); }
};
class OpCode_JumpNonEmpty final : public OpCode {
public:
ExecutionResult execute(MatchInput const& input, MatchState& state) const override;
ALWAYS_INLINE OpCodeId opcode_id() const override { return OpCodeId::JumpNonEmpty; }
ALWAYS_INLINE size_t size() const override { return 4; }
ALWAYS_INLINE ssize_t offset() const { return argument(0); }
ALWAYS_INLINE ssize_t checkpoint() const { return argument(1); }
ALWAYS_INLINE OpCodeId form() const { return (OpCodeId)argument(2); }
ByteString arguments_string() const override
{
return ByteString::formatted("{} offset={} [&{}], cp={}",
opcode_id_name(form()),
offset(), state().instruction_position + size() + offset(),
checkpoint());
}
};
ALWAYS_INLINE OpCode& ByteCode::get_opcode(regex::MatchState& state) const
{
OpCodeId opcode_id;
if (auto opcode_ptr = static_cast<DisjointChunks<ByteCodeValueType> const&>(*this).find(state.instruction_position))
opcode_id = (OpCodeId)*opcode_ptr;
else
opcode_id = OpCodeId::Exit;
auto& opcode = get_opcode_by_id(opcode_id);
opcode.set_state(state);
return opcode;
}
ALWAYS_INLINE OpCode& ByteCode::get_opcode_by_id(OpCodeId id) const
{
VERIFY(id >= OpCodeId::First && id <= OpCodeId::Last);
auto& opcode = s_opcodes[(u32)id];
opcode->set_bytecode(*const_cast<ByteCode*>(this));
return *opcode;
}
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
template<typename T>
2021-07-23 15:55:14 +00:00
bool is(OpCode const&);
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
template<typename T>
2021-07-23 15:55:14 +00:00
ALWAYS_INLINE bool is(OpCode const&)
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
{
return false;
}
template<typename T>
2021-07-23 15:55:14 +00:00
ALWAYS_INLINE bool is(OpCode const* opcode)
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
{
return is<T>(*opcode);
}
template<>
2021-07-23 15:55:14 +00:00
ALWAYS_INLINE bool is<OpCode_ForkStay>(OpCode const& opcode)
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
{
return opcode.opcode_id() == OpCodeId::ForkStay;
}
template<>
2021-07-23 15:55:14 +00:00
ALWAYS_INLINE bool is<OpCode_Exit>(OpCode const& opcode)
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
{
return opcode.opcode_id() == OpCodeId::Exit;
}
template<>
2021-07-23 15:55:14 +00:00
ALWAYS_INLINE bool is<OpCode_Compare>(OpCode const& opcode)
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
{
return opcode.opcode_id() == OpCodeId::Compare;
}
template<typename T>
ALWAYS_INLINE T const& to(OpCode const& opcode)
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
{
return verify_cast<T>(opcode);
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
}
template<typename T>
ALWAYS_INLINE T* to(OpCode* opcode)
{
return verify_cast<T>(opcode);
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
}
template<typename T>
ALWAYS_INLINE T const* to(OpCode const* opcode)
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
{
return verify_cast<T>(opcode);
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
}
template<typename T>
ALWAYS_INLINE T& to(OpCode& opcode)
{
return verify_cast<T>(opcode);
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
}
}