ladybird/Libraries/LibJS/Runtime/ArrayBuffer.h

445 lines
20 KiB
C
Raw Permalink Normal View History

2020-12-02 20:49:31 +00:00
/*
* Copyright (c) 2020-2022, Linus Groh <linusg@serenityos.org>
2020-12-02 20:49:31 +00:00
*
* SPDX-License-Identifier: BSD-2-Clause
2020-12-02 20:49:31 +00:00
*/
#pragma once
#include <AK/ByteBuffer.h>
#include <AK/Function.h>
#include <AK/Variant.h>
#include <LibJS/Runtime/BigInt.h>
#include <LibJS/Runtime/Completion.h>
#include <LibJS/Runtime/GlobalObject.h>
2020-12-02 20:49:31 +00:00
#include <LibJS/Runtime/Object.h>
namespace JS {
struct ClampedU8 {
};
// 25.1.1 Notation (read-modify-write modification function), https://tc39.es/ecma262/#sec-arraybuffer-notation
using ReadWriteModifyFunction = Function<ByteBuffer(ByteBuffer, ByteBuffer)>;
enum class PreserveResizability {
FixedLength,
PreserveResizability
};
// 6.2.9 Data Blocks, https://tc39.es/ecma262/#sec-data-blocks
struct DataBlock {
enum class Shared {
No,
Yes,
};
ByteBuffer& buffer()
{
ByteBuffer* ptr { nullptr };
byte_buffer.visit([&](Empty) { VERIFY_NOT_REACHED(); }, [&](auto* pointer) { ptr = pointer; }, [&](auto& value) { ptr = &value; });
return *ptr;
}
ByteBuffer const& buffer() const { return const_cast<DataBlock*>(this)->buffer(); }
size_t size() const
{
return byte_buffer.visit(
[](Empty) -> size_t { return 0u; },
[](ByteBuffer const& buffer) { return buffer.size(); },
[](ByteBuffer const* buffer) { return buffer->size(); });
}
Variant<Empty, ByteBuffer, ByteBuffer*> byte_buffer;
Shared is_shared = { Shared::No };
};
2020-12-02 20:49:31 +00:00
class ArrayBuffer : public Object {
JS_OBJECT(ArrayBuffer, Object);
GC_DECLARE_ALLOCATOR(ArrayBuffer);
2020-12-02 20:49:31 +00:00
public:
static ThrowCompletionOr<GC::Ref<ArrayBuffer>> create(Realm&, size_t);
static GC::Ref<ArrayBuffer> create(Realm&, ByteBuffer);
static GC::Ref<ArrayBuffer> create(Realm&, ByteBuffer*);
2020-12-02 20:49:31 +00:00
virtual ~ArrayBuffer() override = default;
2020-12-02 20:49:31 +00:00
size_t byte_length() const { return m_data_block.size(); }
// [[ArrayBufferData]]
ByteBuffer& buffer() { return m_data_block.buffer(); }
ByteBuffer const& buffer() const { return m_data_block.buffer(); }
2020-12-02 20:49:31 +00:00
// [[ArrayBufferMaxByteLength]]
size_t max_byte_length() const { return m_max_byte_length.value(); }
void set_max_byte_length(size_t max_byte_length) { m_max_byte_length = max_byte_length; }
// Used by allocate_array_buffer() to attach the data block after construction
void set_data_block(DataBlock block) { m_data_block = move(block); }
Value detach_key() const { return m_detach_key; }
void set_detach_key(Value detach_key) { m_detach_key = detach_key; }
void detach_buffer() { m_data_block.byte_buffer = Empty {}; }
// 25.1.3.4 IsDetachedBuffer ( arrayBuffer ), https://tc39.es/ecma262/#sec-isdetachedbuffer
bool is_detached() const
{
// 1. If arrayBuffer.[[ArrayBufferData]] is null, return true.
if (m_data_block.byte_buffer.has<Empty>())
return true;
// 2. Return false.
return false;
}
// 25.1.3.9 IsFixedLengthArrayBuffer ( arrayBuffer ), https://tc39.es/ecma262/#sec-isfixedlengtharraybuffer
bool is_fixed_length() const
{
// 1. If arrayBuffer has an [[ArrayBufferMaxByteLength]] internal slot, return false.
if (m_max_byte_length.has_value())
return false;
// 2. Return true.
return true;
}
// 25.2.2.2 IsSharedArrayBuffer ( obj ), https://tc39.es/ecma262/#sec-issharedarraybuffer
bool is_shared_array_buffer() const
{
// 1. Let bufferData be obj.[[ArrayBufferData]].
// 2. If bufferData is null, return false.
if (m_data_block.byte_buffer.has<Empty>())
return false;
// 3. If bufferData is a Data Block, return false.
if (m_data_block.is_shared == DataBlock::Shared::No)
return false;
// 4. Assert: bufferData is a Shared Data Block.
VERIFY(m_data_block.is_shared == DataBlock::Shared::Yes);
// 5. Return true.
return true;
}
enum Order {
SeqCst,
Unordered
};
template<typename type>
Value get_value(size_t byte_index, bool is_typed_array, Order, bool is_little_endian = true);
template<typename type>
void set_value(size_t byte_index, Value value, bool is_typed_array, Order, bool is_little_endian = true);
template<typename T>
Value get_modify_set_value(size_t byte_index, Value value, ReadWriteModifyFunction operation, bool is_little_endian = true);
2020-12-02 20:49:31 +00:00
private:
ArrayBuffer(ByteBuffer buffer, Object& prototype);
ArrayBuffer(ByteBuffer* buffer, Object& prototype);
virtual void visit_edges(Visitor&) override;
DataBlock m_data_block;
Optional<size_t> m_max_byte_length;
// The various detach related members of ArrayBuffer are not used by any ECMA262 functionality,
// but are required to be available for the use of various harnesses like the Test262 test runner.
Value m_detach_key;
2020-12-02 20:49:31 +00:00
};
ThrowCompletionOr<DataBlock> create_byte_data_block(VM& vm, size_t size);
void copy_data_block_bytes(ByteBuffer& to_block, u64 to_index, ByteBuffer const& from_block, u64 from_index, u64 count);
ThrowCompletionOr<ArrayBuffer*> allocate_array_buffer(VM&, FunctionObject& constructor, size_t byte_length, Optional<size_t> const& max_byte_length = {});
ThrowCompletionOr<ArrayBuffer*> array_buffer_copy_and_detach(VM&, ArrayBuffer& array_buffer, Value new_length, PreserveResizability preserve_resizability);
ThrowCompletionOr<void> detach_array_buffer(VM&, ArrayBuffer& array_buffer, Optional<Value> key = {});
ThrowCompletionOr<Optional<size_t>> get_array_buffer_max_byte_length_option(VM&, Value options);
ThrowCompletionOr<ArrayBuffer*> clone_array_buffer(VM&, ArrayBuffer& source_buffer, size_t source_byte_offset, size_t source_length);
ThrowCompletionOr<GC::Ref<ArrayBuffer>> allocate_shared_array_buffer(VM&, FunctionObject& constructor, size_t byte_length);
// 25.1.3.2 ArrayBufferByteLength ( arrayBuffer, order ), https://tc39.es/ecma262/#sec-arraybufferbytelength
inline size_t array_buffer_byte_length(ArrayBuffer const& array_buffer, ArrayBuffer::Order)
{
// FIXME: 1. If IsSharedArrayBuffer(arrayBuffer) is true and arrayBuffer has an [[ArrayBufferByteLengthData]] internal slot, then
// FIXME: a. Let bufferByteLengthBlock be arrayBuffer.[[ArrayBufferByteLengthData]].
// FIXME: b. Let rawLength be GetRawBytesFromSharedBlock(bufferByteLengthBlock, 0, biguint64, true, order).
// FIXME: c. Let isLittleEndian be the value of the [[LittleEndian]] field of the surrounding agent's Agent Record.
// FIXME: d. Return (RawBytesToNumeric(biguint64, rawLength, isLittleEndian)).
// 2. Assert: IsDetachedBuffer(arrayBuffer) is false.
VERIFY(!array_buffer.is_detached());
// 3. Return arrayBuffer.[[ArrayBufferByteLength]].
return array_buffer.byte_length();
}
// 25.1.3.14 RawBytesToNumeric ( type, rawBytes, isLittleEndian ), https://tc39.es/ecma262/#sec-rawbytestonumeric
// 5 RawBytesToNumeric ( type, rawBytes, isLittleEndian ), https://tc39.es/proposal-float16array/#sec-rawbytestonumeric
template<typename T>
static Value raw_bytes_to_numeric(VM& vm, Bytes raw_value, bool is_little_endian)
{
// 1. Let elementSize be the Element Size value specified in Table 70 for Element Type type.
// NOTE: Used in step 7, but not needed with our implementation of that step.
// 2. If isLittleEndian is false, reverse the order of the elements of rawBytes.
if (!is_little_endian) {
VERIFY(raw_value.size() % 2 == 0);
for (size_t i = 0; i < raw_value.size() / 2; ++i)
swap(raw_value[i], raw_value[raw_value.size() - 1 - i]);
}
using UnderlyingBufferDataType = Conditional<IsSame<ClampedU8, T>, u8, T>;
// 3. If type is Float16, then
if constexpr (IsSame<UnderlyingBufferDataType, f16>) {
// a. Let value be the byte elements of rawBytes concatenated and interpreted as a little-endian bit string encoding of an IEEE 754-2019 binary16 value.
f16 value;
raw_value.copy_to({ &value, sizeof(f16) });
// b. If value is an IEEE 754-2019 binary16 NaN value, return the NaN Number value.
if (isnan(static_cast<double>(value)))
return js_nan();
// c. Return the Number value that corresponds to value.
return Value(value);
}
// 4. If type is Float32, then
if constexpr (IsSame<UnderlyingBufferDataType, float>) {
// a. Let value be the byte elements of rawBytes concatenated and interpreted as a little-endian bit string encoding of an IEEE 754-2019 binary32 value.
float value;
raw_value.copy_to({ &value, sizeof(float) });
// b. If value is an IEEE 754-2019 binary32 NaN value, return the NaN Number value.
if (isnan(value))
return js_nan();
// c. Return the Number value that corresponds to value.
return Value(value);
}
// 5. If type is Float64, then
if constexpr (IsSame<UnderlyingBufferDataType, double>) {
// a. Let value be the byte elements of rawBytes concatenated and interpreted as a little-endian bit string encoding of an IEEE 754-2019 binary64 value.
double value;
raw_value.copy_to({ &value, sizeof(double) });
// b. If value is an IEEE 754-2019 binary64 NaN value, return the NaN Number value.
if (isnan(value))
return js_nan();
// c. Return the Number value that corresponds to value.
return Value(value);
}
// NOTE: Not in spec, sanity check for steps below.
if constexpr (!IsIntegral<UnderlyingBufferDataType>)
VERIFY_NOT_REACHED();
// 6. If IsUnsignedElementType(type) is true, then
// a. Let intValue be the byte elements of rawBytes concatenated and interpreted as a bit string encoding of an unsigned little-endian binary number.
// 7. Else,
// a. Let intValue be the byte elements of rawBytes concatenated and interpreted as a bit string encoding of a binary little-endian two's complement number of bit length elementSize × 8.
//
// NOTE: The signed/unsigned logic above is implemented in step 7 by the IsSigned<> check, and in step 8 by JS::Value constructor overloads.
UnderlyingBufferDataType int_value = 0;
raw_value.copy_to({ &int_value, sizeof(UnderlyingBufferDataType) });
// 8. If IsBigIntElementType(type) is true, return the BigInt value that corresponds to intValue.
if constexpr (sizeof(UnderlyingBufferDataType) == 8) {
if constexpr (IsSigned<UnderlyingBufferDataType>) {
static_assert(IsSame<UnderlyingBufferDataType, i64>);
return BigInt::create(vm, Crypto::SignedBigInteger { int_value });
} else {
static_assert(IsOneOf<UnderlyingBufferDataType, u64, double>);
return BigInt::create(vm, Crypto::SignedBigInteger { Crypto::UnsignedBigInteger { int_value } });
}
}
// 9. Otherwise, return the Number value that corresponds to intValue.
else {
return Value(int_value);
}
}
// 25.1.3.16 GetValueFromBuffer ( arrayBuffer, byteIndex, type, isTypedArray, order [ , isLittleEndian ] ), https://tc39.es/ecma262/#sec-getvaluefrombuffer
template<typename T>
Value ArrayBuffer::get_value(size_t byte_index, [[maybe_unused]] bool is_typed_array, Order, bool is_little_endian)
{
auto& vm = this->vm();
// 1. Assert: IsDetachedBuffer(arrayBuffer) is false.
VERIFY(!is_detached());
// 2. Assert: There are sufficient bytes in arrayBuffer starting at byteIndex to represent a value of type.
VERIFY(m_data_block.buffer().bytes().slice(byte_index).size() >= sizeof(T));
// 3. Let block be arrayBuffer.[[ArrayBufferData]].
auto& block = m_data_block.buffer();
// 4. Let elementSize be the Element Size value specified in Table 70 for Element Type type.
auto element_size = sizeof(T);
AK::Array<u8, sizeof(T)> raw_value {};
// FIXME: 5. If IsSharedArrayBuffer(arrayBuffer) is true, then
if (false) {
// FIXME: a. Let execution be the [[CandidateExecution]] field of the surrounding agent's Agent Record.
// FIXME: b. Let eventsRecord be the Agent Events Record of execution.[[EventsRecords]] whose [[AgentSignifier]] is AgentSignifier().
// FIXME: c. If isTypedArray is true and IsNoTearConfiguration(type, order) is true, let noTear be true; otherwise let noTear be false.
// FIXME: d. Let rawValue be a List of length elementSize whose elements are nondeterministically chosen byte values.
// FIXME: e. NOTE: In implementations, rawValue is the result of a non-atomic or atomic read instruction on the underlying hardware. The nondeterminism is a semantic prescription of the memory model to describe observable behaviour of hardware with weak consistency.
// FIXME: f. Let readEvent be ReadSharedMemory { [[Order]]: order, [[NoTear]]: noTear, [[Block]]: block, [[ByteIndex]]: byteIndex, [[ElementSize]]: elementSize }.
// FIXME: g. Append readEvent to eventsRecord.[[EventList]].
// FIXME: h. Append Chosen Value Record { [[Event]]: readEvent, [[ChosenValue]]: rawValue } to execution.[[ChosenValues]].
}
// 6. Else,
else {
// a. Let rawValue be a List whose elements are bytes from block at indices in the interval from byteIndex (inclusive) to byteIndex + elementSize (exclusive).
block.bytes().slice(byte_index, element_size).copy_to(raw_value);
}
// 7. Assert: The number of elements in rawValue is elementSize.
VERIFY(raw_value.size() == element_size);
// 8. If isLittleEndian is not present, set isLittleEndian to the value of the [[LittleEndian]] field of the surrounding agent's Agent Record.
// NOTE: Done by default parameter at declaration of this function.
// 9. Return RawBytesToNumeric(type, rawValue, isLittleEndian).
return raw_bytes_to_numeric<T>(vm, raw_value, is_little_endian);
}
// 25.1.3.17 NumericToRawBytes ( type, value, isLittleEndian ), https://tc39.es/ecma262/#sec-numerictorawbytes
// 6 NumericToRawBytes ( type, value, isLittleEndian ), https://tc39.es/proposal-float16array/#sec-numerictorawbytes
template<typename T>
static void numeric_to_raw_bytes(VM& vm, Value value, bool is_little_endian, Bytes raw_bytes)
{
VERIFY(value.is_number() || value.is_bigint());
using UnderlyingBufferDataType = Conditional<IsSame<ClampedU8, T>, u8, T>;
VERIFY(raw_bytes.size() == sizeof(UnderlyingBufferDataType));
auto flip_if_needed = [&]() {
if (is_little_endian)
return;
VERIFY(sizeof(UnderlyingBufferDataType) % 2 == 0);
for (size_t i = 0; i < sizeof(UnderlyingBufferDataType) / 2; ++i)
swap(raw_bytes[i], raw_bytes[sizeof(UnderlyingBufferDataType) - 1 - i]);
};
if constexpr (IsSame<UnderlyingBufferDataType, f16>) {
auto raw_value = static_cast<f16>(MUST(value.to_double(vm)));
ReadonlyBytes { &raw_value, sizeof(f16) }.copy_to(raw_bytes);
flip_if_needed();
return;
}
if constexpr (IsSame<UnderlyingBufferDataType, float>) {
float raw_value = MUST(value.to_double(vm));
ReadonlyBytes { &raw_value, sizeof(float) }.copy_to(raw_bytes);
flip_if_needed();
return;
}
if constexpr (IsSame<UnderlyingBufferDataType, double>) {
double raw_value = MUST(value.to_double(vm));
ReadonlyBytes { &raw_value, sizeof(double) }.copy_to(raw_bytes);
flip_if_needed();
return;
}
if constexpr (!IsIntegral<UnderlyingBufferDataType>)
VERIFY_NOT_REACHED();
if constexpr (sizeof(UnderlyingBufferDataType) == 8) {
UnderlyingBufferDataType int_value;
if constexpr (IsSigned<UnderlyingBufferDataType>)
int_value = MUST(value.to_bigint_int64(vm));
else
int_value = MUST(value.to_bigint_uint64(vm));
ReadonlyBytes { &int_value, sizeof(UnderlyingBufferDataType) }.copy_to(raw_bytes);
flip_if_needed();
return;
} else {
UnderlyingBufferDataType int_value;
if constexpr (IsSigned<UnderlyingBufferDataType>) {
if constexpr (sizeof(UnderlyingBufferDataType) == 4)
int_value = MUST(value.to_i32(vm));
else if constexpr (sizeof(UnderlyingBufferDataType) == 2)
int_value = MUST(value.to_i16(vm));
else
int_value = MUST(value.to_i8(vm));
} else {
if constexpr (sizeof(UnderlyingBufferDataType) == 4)
int_value = MUST(value.to_u32(vm));
else if constexpr (sizeof(UnderlyingBufferDataType) == 2)
int_value = MUST(value.to_u16(vm));
else if constexpr (!IsSame<T, ClampedU8>)
int_value = MUST(value.to_u8(vm));
else
int_value = MUST(value.to_u8_clamp(vm));
}
ReadonlyBytes { &int_value, sizeof(UnderlyingBufferDataType) }.copy_to(raw_bytes);
if constexpr (sizeof(UnderlyingBufferDataType) % 2 == 0)
flip_if_needed();
return;
}
}
// 25.1.3.18 SetValueInBuffer ( arrayBuffer, byteIndex, type, value, isTypedArray, order [ , isLittleEndian ] ), https://tc39.es/ecma262/#sec-setvalueinbuffer
template<typename T>
void ArrayBuffer::set_value(size_t byte_index, Value value, [[maybe_unused]] bool is_typed_array, Order, bool is_little_endian)
{
auto& vm = this->vm();
// 1. Assert: IsDetachedBuffer(arrayBuffer) is false.
VERIFY(!is_detached());
// 2. Assert: There are sufficient bytes in arrayBuffer starting at byteIndex to represent a value of type.
VERIFY(m_data_block.buffer().bytes().slice(byte_index).size() >= sizeof(T));
// 3. Assert: value is a BigInt if IsBigIntElementType(type) is true; otherwise, value is a Number.
if constexpr (IsIntegral<T> && sizeof(T) == 8)
VERIFY(value.is_bigint());
else
VERIFY(value.is_number());
// 4. Let block be arrayBuffer.[[ArrayBufferData]].
auto& block = m_data_block.buffer();
// FIXME: 5. Let elementSize be the Element Size value specified in Table 70 for Element Type type.
// 6. If isLittleEndian is not present, set isLittleEndian to the value of the [[LittleEndian]] field of the surrounding agent's Agent Record.
// NOTE: Done by default parameter at declaration of this function.
// 7. Let rawBytes be NumericToRawBytes(type, value, isLittleEndian).
AK::Array<u8, sizeof(T)> raw_bytes;
numeric_to_raw_bytes<T>(vm, value, is_little_endian, raw_bytes);
// FIXME 8. If IsSharedArrayBuffer(arrayBuffer) is true, then
if (false) {
// FIXME: a. Let execution be the [[CandidateExecution]] field of the surrounding agent's Agent Record.
// FIXME: b. Let eventsRecord be the Agent Events Record of execution.[[EventsRecords]] whose [[AgentSignifier]] is AgentSignifier().
// FIXME: c. If isTypedArray is true and IsNoTearConfiguration(type, order) is true, let noTear be true; otherwise let noTear be false.
// FIXME: d. Append WriteSharedMemory { [[Order]]: order, [[NoTear]]: noTear, [[Block]]: block, [[ByteIndex]]: byteIndex, [[ElementSize]]: elementSize, [[Payload]]: rawBytes } to eventsRecord.[[EventList]].
}
// 9. Else,
else {
// a. Store the individual bytes of rawBytes into block, starting at block[byteIndex].
raw_bytes.span().copy_to(block.span().slice(byte_index));
}
// 10. Return unused.
}
// 25.1.3.19 GetModifySetValueInBuffer ( arrayBuffer, byteIndex, type, value, op [ , isLittleEndian ] ), https://tc39.es/ecma262/#sec-getmodifysetvalueinbuffer
template<typename T>
Value ArrayBuffer::get_modify_set_value(size_t byte_index, Value value, ReadWriteModifyFunction operation, bool is_little_endian)
{
auto& vm = this->vm();
auto raw_bytes = MUST(ByteBuffer::create_uninitialized(sizeof(T)));
numeric_to_raw_bytes<T>(vm, value, is_little_endian, raw_bytes);
// FIXME: Check for shared buffer
auto raw_bytes_read = MUST(ByteBuffer::create_uninitialized(sizeof(T)));
m_data_block.buffer().bytes().slice(byte_index, sizeof(T)).copy_to(raw_bytes_read);
auto raw_bytes_modified = operation(raw_bytes_read, raw_bytes);
raw_bytes_modified.span().copy_to(m_data_block.buffer().span().slice(byte_index));
return raw_bytes_to_numeric<T>(vm, raw_bytes_read, is_little_endian);
}
2020-12-02 20:49:31 +00:00
}