ladybird/Libraries/LibGfx/Rect.h

1075 lines
34 KiB
C
Raw Permalink Normal View History

/*
* Copyright (c) 2018-2021, Andreas Kling <andreas@ladybird.org>
* Copyright (c) 2021-2022, Sam Atkins <atkinssj@serenityos.org>
* Copyright (c) 2022-2023, Jelle Raaijmakers <jelle@ladybird.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
2018-10-10 14:49:36 +00:00
#pragma once
2020-10-09 13:44:52 +00:00
#include <AK/Format.h>
#include <AK/Vector.h>
#include <LibGfx/AffineTransform.h>
#include <LibGfx/Line.h>
2020-02-06 11:04:00 +00:00
#include <LibGfx/Orientation.h>
#include <LibGfx/Point.h>
#include <LibGfx/Size.h>
#include <LibGfx/TextAlignment.h>
#include <math.h>
namespace Gfx {
template<typename T>
class Rect {
2018-10-10 14:49:36 +00:00
public:
Rect() = default;
Rect(T x, T y, T width, T height)
: m_location(x, y)
, m_size(width, height)
{
}
template<typename U>
Rect(U x, U y, U width, U height)
: m_location(x, y)
, m_size(width, height)
{
}
Rect(Point<T> const& location, Size<T> const& size)
: m_location(location)
, m_size(size)
{
}
template<typename U>
Rect(Point<U> const& location, Size<U> const& size)
: m_location(location)
, m_size(size)
2018-10-10 14:49:36 +00:00
{
}
template<typename U>
explicit Rect(Rect<U> const& other)
: m_location(other.location())
, m_size(other.size())
{
}
[[nodiscard]] ALWAYS_INLINE T x() const { return location().x(); }
[[nodiscard]] ALWAYS_INLINE T y() const { return location().y(); }
[[nodiscard]] ALWAYS_INLINE T width() const { return m_size.width(); }
[[nodiscard]] ALWAYS_INLINE T height() const { return m_size.height(); }
ALWAYS_INLINE void set_x(T x) { m_location.set_x(x); }
ALWAYS_INLINE void set_y(T y) { m_location.set_y(y); }
ALWAYS_INLINE void set_width(T width) { m_size.set_width(width); }
ALWAYS_INLINE void set_height(T height) { m_size.set_height(height); }
[[nodiscard]] ALWAYS_INLINE Point<T> const& location() const { return m_location; }
[[nodiscard]] ALWAYS_INLINE Size<T> const& size() const { return m_size; }
2018-10-10 14:49:36 +00:00
[[nodiscard]] ALWAYS_INLINE bool is_empty() const { return width() <= 0 || height() <= 0; }
ALWAYS_INLINE void translate_by(T dx, T dy) { m_location.translate_by(dx, dy); }
ALWAYS_INLINE void translate_by(T dboth) { m_location.translate_by(dboth); }
ALWAYS_INLINE void translate_by(Point<T> const& delta) { m_location.translate_by(delta); }
ALWAYS_INLINE void scale_by(T dx, T dy)
{
m_location.scale_by(dx, dy);
m_size.scale_by(dx, dy);
}
ALWAYS_INLINE void scale_by(T dboth) { scale_by(dboth, dboth); }
ALWAYS_INLINE void scale_by(Point<T> const& delta) { scale_by(delta.x(), delta.y()); }
void transform_by(AffineTransform const& transform) { *this = transform.map(*this); }
[[nodiscard]] Point<T> center() const
2018-10-10 23:48:09 +00:00
{
return { x() + width() / 2, y() + height() / 2 };
}
ALWAYS_INLINE void set_location(Point<T> const& location)
{
m_location = location;
}
ALWAYS_INLINE void set_size(Size<T> const& size)
{
m_size = size;
}
void set_size(T width, T height)
{
m_size.set_width(width);
m_size.set_height(height);
}
void inflate(T w, T h)
2018-10-11 14:52:40 +00:00
{
set_x(x() - w / 2);
set_width(width() + w);
set_y(y() - h / 2);
set_height(height() + h);
2018-10-11 14:52:40 +00:00
}
void inflate(T top, T right, T bottom, T left)
{
set_x(x() - left);
set_width(width() + left + right);
set_y(y() - top);
set_height(height() + top + bottom);
}
void inflate(Size<T> const& size)
{
set_x(x() - size.width() / 2);
set_width(width() + size.width());
set_y(y() - size.height() / 2);
set_height(height() + size.height());
}
void shrink(T w, T h)
{
set_x(x() + w / 2);
set_width(width() - w);
set_y(y() + h / 2);
set_height(height() - h);
}
void shrink(T top, T right, T bottom, T left)
{
set_x(x() + left);
set_width(width() - (left + right));
set_y(y() + top);
set_height(height() - (top + bottom));
}
void shrink(Size<T> const& size)
{
set_x(x() + size.width() / 2);
set_width(width() - size.width());
set_y(y() + size.height() / 2);
set_height(height() - size.height());
}
[[nodiscard]] Rect<T> translated(T dx, T dy) const
{
Rect<T> rect = *this;
rect.translate_by(dx, dy);
return rect;
}
[[nodiscard]] Rect<T> translated(T dboth) const
{
Rect<T> rect = *this;
rect.translate_by(dboth);
return rect;
}
[[nodiscard]] Rect<T> translated(Point<T> const& delta) const
{
Rect<T> rect = *this;
rect.translate_by(delta);
return rect;
}
[[nodiscard]] Rect<T> scaled(T dboth) const
{
Rect<T> rect = *this;
rect.scale_by(dboth);
return rect;
}
[[nodiscard]] Rect<T> scaled(T sx, T sy) const
{
Rect<T> rect = *this;
rect.scale_by(sx, sy);
return rect;
}
[[nodiscard]] Rect<T> scaled(Point<T> const& s) const
{
Rect<T> rect = *this;
rect.scale_by(s);
return rect;
}
[[nodiscard]] Rect<T> transformed(AffineTransform const& transform) const
{
Rect<T> rect = *this;
rect.transform_by(transform);
return rect;
}
[[nodiscard]] Rect<T> shrunken(T w, T h) const
{
Rect<T> rect = *this;
rect.shrink(w, h);
return rect;
}
[[nodiscard]] Rect<T> shrunken(T top, T right, T bottom, T left) const
{
Rect<T> rect = *this;
rect.shrink(top, right, bottom, left);
return rect;
}
[[nodiscard]] Rect<T> shrunken(Size<T> const& size) const
{
Rect<T> rect = *this;
rect.shrink(size);
return rect;
}
[[nodiscard]] Rect<T> inflated(T w, T h) const
{
Rect<T> rect = *this;
rect.inflate(w, h);
return rect;
}
[[nodiscard]] Rect<T> inflated(T top, T right, T bottom, T left) const
{
Rect<T> rect = *this;
rect.inflate(top, right, bottom, left);
return rect;
}
[[nodiscard]] Rect<T> inflated(Size<T> const& size) const
{
Rect<T> rect = *this;
rect.inflate(size);
return rect;
}
Rect<T> take_from_right(T w)
{
if (w > width())
w = width();
Rect<T> rect = *this;
set_width(width() - w);
rect.set_x(x() + width());
rect.set_width(w);
return rect;
}
Rect<T> take_from_left(T w)
{
if (w > width())
w = width();
Rect<T> rect = *this;
set_x(x() + w);
set_width(width() - w);
rect.set_width(w);
return rect;
}
Rect<T> take_from_top(T h)
{
if (h > height())
h = height();
Rect<T> rect = *this;
set_y(y() + h);
set_height(height() - h);
rect.set_height(h);
return rect;
}
Rect<T> take_from_bottom(T h)
{
if (h > height())
h = height();
Rect<T> rect = *this;
set_height(height() - h);
rect.set_y(y() + height());
rect.set_height(h);
return rect;
}
[[nodiscard]] bool contains_vertically(T y) const
{
return y >= top() && y < bottom();
}
[[nodiscard]] bool contains_horizontally(T x) const
{
return x >= left() && x < right();
}
[[nodiscard]] bool contains(T x, T y) const
2018-10-10 14:49:36 +00:00
{
return contains_horizontally(x) && contains_vertically(y);
2018-10-10 14:49:36 +00:00
}
[[nodiscard]] ALWAYS_INLINE bool contains(Point<T> const& point) const
{
return contains(point.x(), point.y());
}
2018-10-10 14:49:36 +00:00
[[nodiscard]] bool contains(Rect<T> const& other) const
{
return left() <= other.left()
&& right() >= other.right()
&& top() <= other.top()
&& bottom() >= other.bottom();
}
template<typename Container>
[[nodiscard]] bool contains(Container const& others) const
{
bool have_any = false;
for (auto const& other : others) {
if (!contains(other))
return false;
have_any = true;
}
return have_any;
}
[[nodiscard]] ALWAYS_INLINE T primary_offset_for_orientation(Orientation orientation) const { return m_location.primary_offset_for_orientation(orientation); }
ALWAYS_INLINE void set_primary_offset_for_orientation(Orientation orientation, T value) { m_location.set_primary_offset_for_orientation(orientation, value); }
[[nodiscard]] ALWAYS_INLINE T secondary_offset_for_orientation(Orientation orientation) const { return m_location.secondary_offset_for_orientation(orientation); }
ALWAYS_INLINE void set_secondary_offset_for_orientation(Orientation orientation, T value) { m_location.set_secondary_offset_for_orientation(orientation, value); }
[[nodiscard]] ALWAYS_INLINE T primary_size_for_orientation(Orientation orientation) const { return m_size.primary_size_for_orientation(orientation); }
[[nodiscard]] ALWAYS_INLINE T secondary_size_for_orientation(Orientation orientation) const { return m_size.secondary_size_for_orientation(orientation); }
ALWAYS_INLINE void set_primary_size_for_orientation(Orientation orientation, T value) { m_size.set_primary_size_for_orientation(orientation, value); }
ALWAYS_INLINE void set_secondary_size_for_orientation(Orientation orientation, T value) { m_size.set_secondary_size_for_orientation(orientation, value); }
[[nodiscard]] T first_edge_for_orientation(Orientation orientation) const
{
if (orientation == Orientation::Vertical)
return top();
return left();
}
[[nodiscard]] T last_edge_for_orientation(Orientation orientation) const
{
if (orientation == Orientation::Vertical)
return bottom();
return right();
}
[[nodiscard]] ALWAYS_INLINE T left() const { return x(); }
[[nodiscard]] ALWAYS_INLINE T right() const { return x() + width(); }
[[nodiscard]] ALWAYS_INLINE T top() const { return y(); }
[[nodiscard]] ALWAYS_INLINE T bottom() const { return y() + height(); }
ALWAYS_INLINE void set_left(T left) { set_x(left); }
ALWAYS_INLINE void set_top(T top) { set_y(top); }
ALWAYS_INLINE void set_right(T right) { set_width(right - x()); }
ALWAYS_INLINE void set_bottom(T bottom) { set_height(bottom - y()); }
void set_right_without_resize(T new_right)
{
auto delta = new_right - right();
translate_by(delta, 0);
}
void set_bottom_without_resize(T new_bottom)
{
auto delta = new_bottom - bottom();
translate_by(0, delta);
}
[[nodiscard]] bool intersects_vertically(Rect<T> const& other) const
{
return top() < other.bottom() && other.top() < bottom();
}
[[nodiscard]] bool intersects_horizontally(Rect<T> const& other) const
{
return left() < other.right() && other.left() < right();
}
[[nodiscard]] bool intersects(Rect<T> const& other) const
{
return left() < other.right()
&& other.left() < right()
&& top() < other.bottom()
&& other.top() < bottom();
}
template<typename Container>
[[nodiscard]] bool intersects(Container const& others) const
{
for (auto const& other : others) {
if (intersects(other))
return true;
}
return false;
}
template<typename Container, typename Function>
IterationDecision for_each_intersected(Container const& others, Function f) const
{
if (is_empty())
return IterationDecision::Continue;
for (auto const& other : others) {
auto intersected_rect = intersected(other);
if (!intersected_rect.is_empty()) {
IterationDecision decision = f(intersected_rect);
if (decision != IterationDecision::Continue)
return decision;
}
}
return IterationDecision::Continue;
}
[[nodiscard]] Vector<Rect<T>, 4> shatter(Rect<T> const& hammer) const
{
Vector<Rect<T>, 4> pieces;
if (!intersects(hammer)) {
pieces.unchecked_append(*this);
return pieces;
}
Rect<T> top_shard {
x(),
y(),
width(),
hammer.y() - y(),
};
Rect<T> bottom_shard {
x(),
hammer.bottom(),
width(),
bottom() - hammer.bottom(),
};
Rect<T> left_shard {
x(),
max(hammer.y(), y()),
hammer.x() - x(),
min(hammer.bottom(), bottom()) - max(hammer.y(), y()),
};
Rect<T> right_shard {
hammer.right(),
max(hammer.y(), y()),
right() - hammer.right(),
min(hammer.bottom(), bottom()) - max(hammer.y(), y()),
};
if (!top_shard.is_empty())
pieces.unchecked_append(top_shard);
if (!bottom_shard.is_empty())
pieces.unchecked_append(bottom_shard);
if (!left_shard.is_empty())
pieces.unchecked_append(left_shard);
if (!right_shard.is_empty())
pieces.unchecked_append(right_shard);
return pieces;
}
template<class U>
[[nodiscard]] bool operator==(Rect<U> const& other) const
2018-10-11 23:03:22 +00:00
{
return location() == other.location() && size() == other.size();
}
[[nodiscard]] Rect<T> operator*(T factor) const { return { m_location * factor, m_size * factor }; }
Rect<T>& operator*=(T factor)
{
m_location *= factor;
m_size *= factor;
return *this;
}
void intersect(Rect<T> const& other)
{
T l = max(left(), other.left());
T r = min(right(), other.right());
T t = max(top(), other.top());
T b = min(bottom(), other.bottom());
if (l > r || t > b) {
m_location = {};
m_size = {};
return;
}
set_x(l);
set_y(t);
set_right(r);
set_bottom(b);
}
[[nodiscard]] static Rect<T> centered_on(Point<T> const& center, Size<T> const& size)
{
return { { center.x() - size.width() / 2, center.y() - size.height() / 2 }, size };
}
[[nodiscard]] static Rect<T> from_two_points(Point<T> const& a, Point<T> const& b)
{
return { min(a.x(), b.x()), min(a.y(), b.y()), AK::abs(a.x() - b.x()), AK::abs(a.y() - b.y()) };
}
[[nodiscard]] static Rect<T> intersection(Rect<T> const& a, Rect<T> const& b)
{
Rect<T> r = a;
r.intersect(b);
return r;
2018-10-11 23:03:22 +00:00
}
[[nodiscard]] ALWAYS_INLINE Rect<T> intersected(Rect<T> const& other) const
{
return intersection(*this, other);
}
[[nodiscard]] Vector<Point<T>, 2> intersected(Line<T> const& line) const
{
if (is_empty())
return {};
Vector<Point<T>, 2> points;
if (auto point = line.intersected({ top_left(), top_right() }); point.has_value())
points.append({ point.value().x(), y() });
if (auto point = line.intersected({ bottom_left(), bottom_right() }); point.has_value()) {
points.append({ point.value().x(), bottom() - 1 });
if (points.size() == 2)
return points;
}
if (height() > 2) {
if (auto point = line.intersected({ { x(), y() + 1 }, { x(), bottom() - 2 } }); point.has_value()) {
points.append({ x(), point.value().y() });
if (points.size() == 2)
return points;
}
if (auto point = line.intersected({ { right() - 1, y() + 1 }, { right() - 1, bottom() - 2 } }); point.has_value())
points.append({ right() - 1, point.value().y() });
}
return points;
}
template<typename U = T>
[[nodiscard]] Gfx::Rect<U> interpolated_to(Gfx::Rect<T> const& to, float factor) const
{
VERIFY(factor >= 0.f);
VERIFY(factor <= 1.f);
if (factor == 0.f)
return *this;
if (factor == 1.f)
return to;
if (this == &to)
return *this;
auto interpolated_left = round_to<U>(mix<float>(x(), to.x(), factor));
auto interpolated_top = round_to<U>(mix<float>(y(), to.y(), factor));
auto interpolated_right = round_to<U>(mix<float>(right(), to.right(), factor));
auto interpolated_bottom = round_to<U>(mix<float>(bottom(), to.bottom(), factor));
return { interpolated_left, interpolated_top, interpolated_right - interpolated_left, interpolated_bottom - interpolated_top };
}
[[nodiscard]] float center_point_distance_to(Rect<T> const& other) const
{
return Line { center(), other.center() }.length();
}
[[nodiscard]] Vector<Point<T>, 2> closest_outside_center_points(Rect<T> const& other) const
{
if (intersects(other))
return {};
Line centers_line { center(), other.center() };
auto points_this = intersected(centers_line);
VERIFY(points_this.size() == 1);
auto points_other = other.intersected(centers_line);
VERIFY(points_other.size() == 1);
return { points_this[0], points_other[0] };
}
[[nodiscard]] float outside_center_point_distance_to(Rect<T> const& other) const
{
auto points = closest_outside_center_points(other);
if (points.is_empty())
return 0.f;
return Line { points[0], points[0] }.length();
}
[[nodiscard]] Rect<T> constrained_to(Rect<T> const& constrain_rect) const
{
if (constrain_rect.contains(*this))
return *this;
T move_x = 0, move_y = 0;
if (right() > constrain_rect.right())
move_x = constrain_rect.right() - right();
if (bottom() > constrain_rect.bottom())
move_y = constrain_rect.bottom() - bottom();
if (x() < constrain_rect.x())
move_x = constrain_rect.x() - x();
if (y() < constrain_rect.y())
move_y = constrain_rect.y() - y();
auto rect = *this;
if (move_x != 0 || move_y != 0)
rect.translate_by(move_x, move_y);
return rect;
}
[[nodiscard]] Rect<T> aligned_within(Size<T> const& rect_size, Point<T> const& align_at, TextAlignment alignment = TextAlignment::Center) const
{
if (rect_size.is_empty())
return {};
if (!size().contains(rect_size))
return {};
if (!contains(align_at))
return {};
Rect<T> rect;
switch (alignment) {
case TextAlignment::TopCenter:
rect = { { align_at.x() - rect_size.width() / 2, align_at.y() }, rect_size };
break;
case TextAlignment::TopLeft:
rect = { align_at, rect_size };
break;
case TextAlignment::TopRight:
rect = { { align_at.x() - rect_size.width(), align_at.y() }, rect_size };
break;
case TextAlignment::CenterLeft:
rect = { { align_at.x(), align_at.y() - rect_size.height() / 2 }, rect_size };
break;
case TextAlignment::Center:
rect = { { align_at.x() - rect_size.width() / 2, align_at.y() - rect_size.height() / 2 }, rect_size };
break;
case TextAlignment::CenterRight:
rect = { { align_at.x() - rect_size.width() / 2, align_at.y() }, rect_size };
break;
case TextAlignment::BottomCenter:
rect = { { align_at.x() - rect_size.width() / 2, align_at.y() - rect_size.width() }, rect_size };
break;
case TextAlignment::BottomLeft:
rect = { { align_at.x(), align_at.y() - rect_size.width() }, rect_size };
break;
case TextAlignment::BottomRight:
rect = { { align_at.x() - rect_size.width(), align_at.y() - rect_size.width() }, rect_size };
break;
}
return rect.constrained_to(*this);
}
[[nodiscard]] Point<T> closest_to(Point<T> const& point) const
{
if (is_empty())
return {};
Optional<Point<T>> closest_point;
float closest_distance = 0.0;
auto check_distance = [&](Line<T> const& line) {
auto point_on_line = line.closest_to(point);
auto distance = Line { point_on_line, point }.length();
if (!closest_point.has_value() || distance < closest_distance) {
closest_point = point_on_line;
closest_distance = distance;
}
};
check_distance({ top_left(), top_right().moved_left(1) });
check_distance({ bottom_left().moved_up(1), bottom_right().translated(-1) });
if (height() > 2) {
check_distance({ { x(), y() + 1 }, { x(), bottom() - 2 } });
check_distance({ { right() - 1, y() + 1 }, { right() - 1, bottom() - 2 } });
}
VERIFY(closest_point.has_value());
VERIFY(side(closest_point.value()) != Side::None);
return closest_point.value();
}
class RelativeLocation {
friend class Rect<T>;
RelativeLocation(Rect<T> const& base_rect, Rect<T> const& other_rect)
{
if (base_rect.is_empty() || other_rect.is_empty())
return;
auto parts = base_rect.shatter(other_rect);
for (auto& part : parts) {
if (part.x() < other_rect.x()) {
if (part.y() < other_rect.y())
m_top_left = true;
if ((part.y() >= other_rect.y() && part.y() < other_rect.bottom() - 1) || (part.y() < other_rect.bottom() && part.bottom() - 1 > other_rect.y()))
m_left = true;
if (part.y() >= other_rect.bottom() - 1 || part.bottom() - 1 > other_rect.y())
m_bottom_left = true;
}
if (part.x() >= other_rect.x() || part.right() - 1 > other_rect.x()) {
if (part.y() < other_rect.y())
m_top = true;
if (part.y() >= other_rect.bottom() - 1 || part.bottom() > other_rect.bottom())
m_bottom = true;
}
if (part.x() >= other_rect.right() - 1 || part.right() > other_rect.right()) {
if (part.y() < other_rect.y())
m_top_right = true;
if ((part.y() >= other_rect.y() && part.y() < other_rect.bottom() - 1) || (part.y() < other_rect.bottom() && part.bottom() - 1 > other_rect.y()))
m_right = true;
if (part.y() >= other_rect.bottom() - 1 || part.bottom() - 1 > other_rect.y())
m_bottom_right = true;
}
}
}
public:
RelativeLocation() = default;
bool top_left() const { return m_top_left; }
bool top() const { return m_top; }
bool top_right() const { return m_top_right; }
bool left() const { return m_left; }
bool right() const { return m_right; }
bool bottom_left() const { return m_bottom_left; }
bool bottom() const { return m_bottom; }
bool bottom_right() const { return m_bottom_right; }
bool anywhere_above() const { return m_top_left || m_top || m_top_right; }
bool anywhere_below() const { return m_bottom_left || m_bottom || m_bottom_right; }
bool anywhere_left() const { return m_top_left || m_left || m_bottom_left; }
bool anywhere_right() const { return m_top_right || m_right || m_bottom_right; }
private:
bool m_top_left : 1 { false };
bool m_top : 1 { false };
bool m_top_right : 1 { false };
bool m_left : 1 { false };
bool m_right : 1 { false };
bool m_bottom_left : 1 { false };
bool m_bottom : 1 { false };
bool m_bottom_right : 1 { false };
};
[[nodiscard]] RelativeLocation relative_location_to(Rect<T> const& other) const
{
return RelativeLocation(*this, other);
}
enum class Side {
None = 0,
Left,
Top,
Right,
Bottom
};
[[nodiscard]] Side side(Point<T> const& point) const
{
if (is_empty())
return Side::None;
if (point.y() == y() || point.y() == bottom() - 1)
return (point.x() >= x() && point.x() < right()) ? (point.y() == y() ? Side::Top : Side::Bottom) : Side::None;
if (point.x() == x() || point.x() == right() - 1)
return (point.y() > y() && point.y() < bottom()) ? (point.x() == x() ? Side::Left : Side::Right) : Side::None;
return Side::None;
}
[[nodiscard]] Rect<T> rect_on_side(Side side, Rect<T> const& other) const
{
switch (side) {
case Side::None:
break;
case Side::Left:
// Return the area in other that is to the left of this rect
if (other.x() < x()) {
if (other.right() > x())
return { other.location(), { x() - other.x(), other.height() } };
else
return other;
}
break;
case Side::Top:
// Return the area in other that is above this rect
if (other.y() < y()) {
if (other.bottom() > y())
return { other.location(), { other.width(), y() - other.y() } };
else
return other;
}
break;
case Side::Right:
// Return the area in other that is to the right of this rect
if (other.right() > x()) {
if (other.x() < right())
return { { right(), other.y() }, { other.width() - (right() - 1 - other.x()), other.height() } };
else
return other;
}
break;
case Side::Bottom:
// Return the area in other that is below this rect
if (other.bottom() > y()) {
if (other.y() < bottom())
return { { other.x(), bottom() }, { other.width(), other.height() - (bottom() - 1 - other.y()) } };
else
return other;
}
break;
}
return {};
}
template<typename Container>
static bool disperse(Container& rects)
{
auto has_intersecting = [&]() {
for (auto& rect : rects) {
for (auto& other_rect : rects) {
if (&rect == &other_rect)
continue;
if (rect.intersects(other_rect))
return true;
}
}
return false;
};
if (!has_intersecting())
return false;
auto calc_delta = [&](Rect<T> const& rect) -> Point<T> {
auto rect_center = rect.center();
Point<T> center_sum;
for (auto& other_rect : rects) {
if (&other_rect == &rect)
continue;
if (rect.intersects(other_rect))
center_sum += rect_center - other_rect.center();
}
double m = sqrt((double)center_sum.x() * (double)center_sum.x() + (double)center_sum.y() * (double)center_sum.y());
if (m != 0.0)
return { (double)center_sum.x() / m + 0.5, (double)center_sum.y() / m + 0.5 };
return {};
};
Vector<Point<T>, 8> deltas;
do {
bool changes = false;
deltas.clear_with_capacity();
for (auto& rect : rects) {
auto delta = calc_delta(rect);
if (!delta.is_zero())
changes = true;
deltas.append(delta);
}
// TODO: If we have no changes we would loop infinitely!
// Figure out some way to resolve this. Maybe randomly moving an intersecting rect?
VERIFY(changes);
size_t i = 0;
for (auto& rect : rects)
rect.translate_by(deltas[i++]);
} while (has_intersecting());
return true;
}
[[nodiscard]] bool is_adjacent(Rect<T> const& other) const
{
if (is_empty() || other.is_empty())
return false;
if (intersects(other))
return false;
if (other.right() == x() || other.x() == right())
return max(top(), other.top()) < min(bottom(), other.bottom());
if (other.bottom() == y() || other.y() == bottom())
return max(left(), other.left()) < min(right(), other.right());
return false;
}
[[nodiscard]] static Rect<T> centered_at(Point<T> const& point, Size<T> const& size)
{
return { { point.x() - size.width() / 2, point.y() - size.height() / 2 }, size };
}
void unite_horizontally(Rect<T> const& other)
{
auto new_left = min(left(), other.left());
auto new_right = max(right(), other.right());
set_left(new_left);
set_right(new_right);
}
void unite_vertically(Rect<T> const& other)
{
auto new_top = min(top(), other.top());
auto new_bottom = max(bottom(), other.bottom());
set_top(new_top);
set_bottom(new_bottom);
}
[[nodiscard]] Rect<T> united(Rect<T> const& other) const
{
if (is_empty())
return other;
if (other.is_empty())
return *this;
Rect<T> rect;
rect.set_left(min(left(), other.left()));
rect.set_top(min(top(), other.top()));
rect.set_right(max(right(), other.right()));
rect.set_bottom(max(bottom(), other.bottom()));
return rect;
}
[[nodiscard]] Point<T> top_left() const { return { left(), top() }; }
[[nodiscard]] Point<T> top_right() const { return { right(), top() }; }
[[nodiscard]] Point<T> bottom_left() const { return { left(), bottom() }; }
[[nodiscard]] Point<T> bottom_right() const { return { right(), bottom() }; }
void align_within(Rect<T> const& other, TextAlignment alignment)
{
switch (alignment) {
case TextAlignment::Center:
center_within(other);
return;
case TextAlignment::TopCenter:
center_horizontally_within(other);
set_y(other.y());
return;
case TextAlignment::TopLeft:
set_location(other.location());
return;
case TextAlignment::TopRight:
set_x(other.right() - width());
set_y(other.y());
return;
case TextAlignment::CenterLeft:
set_x(other.x());
center_vertically_within(other);
return;
case TextAlignment::CenterRight:
set_x(other.right() - width());
center_vertically_within(other);
return;
case TextAlignment::BottomCenter:
center_horizontally_within(other);
set_y(other.bottom() - height());
return;
case TextAlignment::BottomLeft:
set_x(other.x());
set_y(other.bottom() - height());
return;
case TextAlignment::BottomRight:
set_x(other.right() - width());
set_y(other.bottom() - height());
return;
}
}
void center_within(Rect<T> const& other)
2019-03-07 22:01:36 +00:00
{
center_horizontally_within(other);
center_vertically_within(other);
}
[[nodiscard]] Rect centered_within(Rect const& other) const
{
Rect rect { *this };
rect.center_horizontally_within(other);
rect.center_vertically_within(other);
return rect;
}
void center_horizontally_within(Rect<T> const& other)
{
set_x(other.center().x() - width() / 2);
2019-03-07 22:01:36 +00:00
}
void center_vertically_within(Rect<T> const& other)
2019-03-07 22:01:36 +00:00
{
set_y(other.center().y() - height() / 2);
}
template<typename U>
requires(!IsSame<T, U>)
2022-10-16 22:06:11 +00:00
[[nodiscard]] ALWAYS_INLINE Rect<U> to_type() const
{
return Rect<U>(*this);
}
// For extern specialization, like CSSPixels
template<typename U>
[[nodiscard]] Rect<U> to_rounded() const = delete;
template<FloatingPoint U>
[[nodiscard]] ALWAYS_INLINE Rect<U> to_rounded() const
{
// FIXME: We may get away with `rint[lf]?()` here.
// This would even give us some more control of these internals,
// while the break-tie algorithm does not really matter
if constexpr (IsSame<T, float>) {
return {
static_cast<U>(roundf(x())),
static_cast<U>(roundf(y())),
static_cast<U>(roundf(width())),
static_cast<U>(roundf(height())),
};
}
if constexpr (IsSame<T, double>) {
return {
static_cast<U>(round(x())),
static_cast<U>(round(y())),
static_cast<U>(round(width())),
static_cast<U>(round(height())),
};
}
return {
static_cast<U>(roundl(x())),
static_cast<U>(roundl(y())),
static_cast<U>(roundl(width())),
static_cast<U>(roundl(height())),
};
}
template<Integral I>
ALWAYS_INLINE Rect<I> to_rounded() const
{
return {
round_to<I>(x()),
round_to<I>(y()),
round_to<I>(width()),
round_to<I>(height()),
};
}
[[nodiscard]] ByteString to_byte_string() const;
2018-10-10 14:49:36 +00:00
private:
Point<T> m_location;
Size<T> m_size;
2018-10-10 14:49:36 +00:00
};
using IntRect = Rect<int>;
using FloatRect = Rect<float>;
using DoubleRect = Rect<double>;
[[nodiscard]] ALWAYS_INLINE IntRect enclosing_int_rect(FloatRect const& float_rect)
{
int x1 = floorf(float_rect.x());
int y1 = floorf(float_rect.y());
int x2 = ceilf(float_rect.right());
int y2 = ceilf(float_rect.bottom());
return Gfx::IntRect::from_two_points({ x1, y1 }, { x2, y2 });
}
}
2020-10-09 13:44:52 +00:00
namespace AK {
template<typename T>
struct Formatter<Gfx::Rect<T>> : Formatter<FormatString> {
ErrorOr<void> format(FormatBuilder& builder, Gfx::Rect<T> const& value)
2020-10-09 13:44:52 +00:00
{
return Formatter<FormatString>::format(builder, "[{},{} {}x{}]"sv, value.x(), value.y(), value.width(), value.height());
2020-10-09 13:44:52 +00:00
}
};
}
namespace IPC {
template<>
ErrorOr<void> encode(Encoder&, Gfx::IntRect const&);
template<>
ErrorOr<Gfx::IntRect> decode(Decoder&);
}