immich/machine-learning/app/models/clip.py

132 lines
5.2 KiB
Python

import os
import zipfile
from io import BytesIO
from typing import Any, Literal
import onnxruntime as ort
import torch
from clip_server.model.clip import BICUBIC, _convert_image_to_rgb
from clip_server.model.clip_onnx import _MODELS, _S3_BUCKET_V2, CLIPOnnxModel, download_model
from clip_server.model.pretrained_models import _VISUAL_MODEL_IMAGE_SIZE
from clip_server.model.tokenization import Tokenizer
from PIL import Image
from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
from ..config import log
from ..schemas import ModelType
from .base import InferenceModel
class CLIPEncoder(InferenceModel):
_model_type = ModelType.CLIP
def __init__(
self,
model_name: str,
cache_dir: str | None = None,
mode: Literal["text", "vision"] | None = None,
**model_kwargs: Any,
) -> None:
if mode is not None and mode not in ("text", "vision"):
raise ValueError(f"Mode must be 'text', 'vision', or omitted; got '{mode}'")
if model_name not in _MODELS:
raise ValueError(f"Unknown model name {model_name}.")
self.mode = mode
super().__init__(model_name, cache_dir, **model_kwargs)
def _download(self) -> None:
models: tuple[tuple[str, str], tuple[str, str]] = _MODELS[self.model_name]
text_onnx_path = self.cache_dir / "textual.onnx"
vision_onnx_path = self.cache_dir / "visual.onnx"
if not text_onnx_path.is_file():
self._download_model(*models[0])
if not vision_onnx_path.is_file():
self._download_model(*models[1])
def _load(self) -> None:
if self.mode == "text" or self.mode is None:
log.debug(f"Loading clip text model '{self.model_name}'")
self.text_model = ort.InferenceSession(
self.cache_dir / "textual.onnx",
sess_options=self.sess_options,
providers=self.providers,
provider_options=self.provider_options,
)
self.text_outputs = [output.name for output in self.text_model.get_outputs()]
self.tokenizer = Tokenizer(self.model_name)
if self.mode == "vision" or self.mode is None:
log.debug(f"Loading clip vision model '{self.model_name}'")
self.vision_model = ort.InferenceSession(
self.cache_dir / "visual.onnx",
sess_options=self.sess_options,
providers=self.providers,
provider_options=self.provider_options,
)
self.vision_outputs = [output.name for output in self.vision_model.get_outputs()]
image_size = _VISUAL_MODEL_IMAGE_SIZE[CLIPOnnxModel.get_model_name(self.model_name)]
self.transform = _transform_pil_image(image_size)
def _predict(self, image_or_text: Image.Image | str) -> list[float]:
if isinstance(image_or_text, bytes):
image_or_text = Image.open(BytesIO(image_or_text))
match image_or_text:
case Image.Image():
if self.mode == "text":
raise TypeError("Cannot encode image as text-only model")
pixel_values = self.transform(image_or_text)
assert isinstance(pixel_values, torch.Tensor)
pixel_values = torch.unsqueeze(pixel_values, 0).numpy()
outputs = self.vision_model.run(self.vision_outputs, {"pixel_values": pixel_values})
case str():
if self.mode == "vision":
raise TypeError("Cannot encode text as vision-only model")
text_inputs: dict[str, torch.Tensor] = self.tokenizer(image_or_text)
inputs = {
"input_ids": text_inputs["input_ids"].int().numpy(),
"attention_mask": text_inputs["attention_mask"].int().numpy(),
}
outputs = self.text_model.run(self.text_outputs, inputs)
case _:
raise TypeError(f"Expected Image or str, but got: {type(image_or_text)}")
return outputs[0][0].tolist()
def _download_model(self, model_name: str, model_md5: str) -> bool:
# downloading logic is adapted from clip-server's CLIPOnnxModel class
download_model(
url=_S3_BUCKET_V2 + model_name,
target_folder=self.cache_dir.as_posix(),
md5sum=model_md5,
with_resume=True,
)
file = self.cache_dir / model_name.split("/")[1]
if file.suffix == ".zip":
with zipfile.ZipFile(file, "r") as zip_ref:
zip_ref.extractall(self.cache_dir)
os.remove(file)
return True
@property
def cached(self) -> bool:
return (self.cache_dir / "textual.onnx").is_file() and (self.cache_dir / "visual.onnx").is_file()
# same as `_transform_blob` without `_blob2image`
def _transform_pil_image(n_px: int) -> Compose:
return Compose(
[
Resize(n_px, interpolation=BICUBIC),
CenterCrop(n_px),
_convert_image_to_rgb,
ToTensor(),
Normalize(
(0.48145466, 0.4578275, 0.40821073),
(0.26862954, 0.26130258, 0.27577711),
),
]
)