87a0ba3db3
* export clip models * export to hf refactored export code * export mclip, general refactoring cleanup * updated conda deps * do transforms with pillow and numpy, add tokenization config to export, general refactoring * moved conda dockerfile, re-added poetry * minor fixes * updated link * updated tests * removed `requirements.txt` from workflow * fixed mimalloc path * removed torchvision * cleaner np typing * review suggestions * update default model name * update test
35 lines
1.1 KiB
Python
35 lines
1.1 KiB
Python
import numpy as np
|
|
from PIL import Image
|
|
|
|
from app.schemas import ndarray_f32
|
|
|
|
_PIL_RESAMPLING_METHODS = {resampling.name.lower(): resampling for resampling in Image.Resampling}
|
|
|
|
|
|
def resize(img: Image.Image, size: int) -> Image.Image:
|
|
if img.width < img.height:
|
|
return img.resize((size, int((img.height / img.width) * size)), resample=Image.BICUBIC)
|
|
else:
|
|
return img.resize((int((img.width / img.height) * size), size), resample=Image.BICUBIC)
|
|
|
|
|
|
# https://stackoverflow.com/a/60883103
|
|
def crop(img: Image.Image, size: int) -> Image.Image:
|
|
left = int((img.size[0] / 2) - (size / 2))
|
|
upper = int((img.size[1] / 2) - (size / 2))
|
|
right = left + size
|
|
lower = upper + size
|
|
|
|
return img.crop((left, upper, right, lower))
|
|
|
|
|
|
def to_numpy(img: Image.Image) -> ndarray_f32:
|
|
return np.asarray(img.convert("RGB")).astype(np.float32) / 255.0
|
|
|
|
|
|
def normalize(img: ndarray_f32, mean: float | ndarray_f32, std: float | ndarray_f32) -> ndarray_f32:
|
|
return (img - mean) / std
|
|
|
|
|
|
def get_pil_resampling(resample: str) -> Image.Resampling:
|
|
return _PIL_RESAMPLING_METHODS[resample.lower()]
|