fix(ml): load models in separate threads (#4034)
* load models in thread * set clip mode logs to debug level * updated tests * made fixtures slightly less ugly * moved responses to json file * formatting
This commit is contained in:
parent
f1db257628
commit
258b98c262
9 changed files with 1683 additions and 114 deletions
|
@ -1,4 +1,5 @@
|
|||
from typing import Iterator, TypeAlias
|
||||
import json
|
||||
from typing import Any, Iterator, TypeAlias
|
||||
from unittest import mock
|
||||
|
||||
import numpy as np
|
||||
|
@ -31,3 +32,8 @@ def mock_get_model() -> Iterator[mock.Mock]:
|
|||
def deployed_app() -> TestClient:
|
||||
init_state()
|
||||
return TestClient(app)
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def responses() -> dict[str, Any]:
|
||||
return json.load(open("responses.json", "r"))
|
||||
|
|
|
@ -1,10 +1,13 @@
|
|||
import asyncio
|
||||
import threading
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from typing import Any
|
||||
from zipfile import BadZipFile
|
||||
|
||||
import orjson
|
||||
from fastapi import FastAPI, Form, HTTPException, UploadFile
|
||||
from fastapi.responses import ORJSONResponse
|
||||
from onnxruntime.capi.onnxruntime_pybind11_state import InvalidProtobuf, NoSuchFile # type: ignore
|
||||
from starlette.formparsers import MultiPartParser
|
||||
|
||||
from app.models.base import InferenceModel
|
||||
|
@ -31,6 +34,7 @@ def init_state() -> None:
|
|||
)
|
||||
# asyncio is a huge bottleneck for performance, so we use a thread pool to run blocking code
|
||||
app.state.thread_pool = ThreadPoolExecutor(settings.request_threads) if settings.request_threads > 0 else None
|
||||
app.state.locks = {model_type: threading.Lock() for model_type in ModelType}
|
||||
log.info(f"Initialized request thread pool with {settings.request_threads} threads.")
|
||||
|
||||
|
||||
|
@ -63,14 +67,49 @@ async def predict(
|
|||
inputs = text
|
||||
else:
|
||||
raise HTTPException(400, "Either image or text must be provided")
|
||||
try:
|
||||
kwargs = orjson.loads(options)
|
||||
except orjson.JSONDecodeError:
|
||||
raise HTTPException(400, f"Invalid options JSON: {options}")
|
||||
|
||||
model: InferenceModel = await app.state.model_cache.get(model_name, model_type, **orjson.loads(options))
|
||||
model = await load(await app.state.model_cache.get(model_name, model_type, **kwargs))
|
||||
model.configure(**kwargs)
|
||||
outputs = await run(model, inputs)
|
||||
return ORJSONResponse(outputs)
|
||||
|
||||
|
||||
async def run(model: InferenceModel, inputs: Any) -> Any:
|
||||
if app.state.thread_pool is not None:
|
||||
return await asyncio.get_running_loop().run_in_executor(app.state.thread_pool, model.predict, inputs)
|
||||
else:
|
||||
if app.state.thread_pool is None:
|
||||
return model.predict(inputs)
|
||||
|
||||
return await asyncio.get_running_loop().run_in_executor(app.state.thread_pool, model.predict, inputs)
|
||||
|
||||
|
||||
async def load(model: InferenceModel) -> InferenceModel:
|
||||
if model.loaded:
|
||||
return model
|
||||
|
||||
def _load() -> None:
|
||||
with app.state.locks[model.model_type]:
|
||||
model.load()
|
||||
|
||||
loop = asyncio.get_running_loop()
|
||||
try:
|
||||
if app.state.thread_pool is None:
|
||||
model.load()
|
||||
else:
|
||||
await loop.run_in_executor(app.state.thread_pool, _load)
|
||||
return model
|
||||
except (OSError, InvalidProtobuf, BadZipFile, NoSuchFile):
|
||||
log.warn(
|
||||
(
|
||||
f"Failed to load {model.model_type.replace('_', ' ')} model '{model.model_name}'."
|
||||
"Clearing cache and retrying."
|
||||
)
|
||||
)
|
||||
model.clear_cache()
|
||||
if app.state.thread_pool is None:
|
||||
model.load()
|
||||
else:
|
||||
await loop.run_in_executor(app.state.thread_pool, _load)
|
||||
return model
|
||||
|
|
|
@ -5,10 +5,8 @@ from abc import ABC, abstractmethod
|
|||
from pathlib import Path
|
||||
from shutil import rmtree
|
||||
from typing import Any
|
||||
from zipfile import BadZipFile
|
||||
|
||||
import onnxruntime as ort
|
||||
from onnxruntime.capi.onnxruntime_pybind11_state import InvalidProtobuf, NoSuchFile # type: ignore
|
||||
|
||||
from ..config import get_cache_dir, log, settings
|
||||
from ..schemas import ModelType
|
||||
|
@ -21,16 +19,13 @@ class InferenceModel(ABC):
|
|||
self,
|
||||
model_name: str,
|
||||
cache_dir: Path | str | None = None,
|
||||
eager: bool = True,
|
||||
inter_op_num_threads: int = settings.model_inter_op_threads,
|
||||
intra_op_num_threads: int = settings.model_intra_op_threads,
|
||||
**model_kwargs: Any,
|
||||
) -> None:
|
||||
self.model_name = model_name
|
||||
self._loaded = False
|
||||
self.loaded = False
|
||||
self._cache_dir = Path(cache_dir) if cache_dir is not None else get_cache_dir(model_name, self.model_type)
|
||||
loader = self.load if eager else self.download
|
||||
|
||||
self.providers = model_kwargs.pop("providers", ["CPUExecutionProvider"])
|
||||
# don't pre-allocate more memory than needed
|
||||
self.provider_options = model_kwargs.pop(
|
||||
|
@ -55,34 +50,23 @@ class InferenceModel(ABC):
|
|||
self.sess_options.intra_op_num_threads = intra_op_num_threads
|
||||
self.sess_options.enable_cpu_mem_arena = False
|
||||
|
||||
try:
|
||||
loader(**model_kwargs)
|
||||
except (OSError, InvalidProtobuf, BadZipFile, NoSuchFile):
|
||||
log.warn(
|
||||
(
|
||||
f"Failed to load {self.model_type.replace('_', ' ')} model '{self.model_name}'."
|
||||
"Clearing cache and retrying."
|
||||
)
|
||||
)
|
||||
self.clear_cache()
|
||||
loader(**model_kwargs)
|
||||
|
||||
def download(self, **model_kwargs: Any) -> None:
|
||||
def download(self) -> None:
|
||||
if not self.cached:
|
||||
log.info(
|
||||
(f"Downloading {self.model_type.replace('_', ' ')} model '{self.model_name}'." "This may take a while.")
|
||||
(f"Downloading {self.model_type.replace('-', ' ')} model '{self.model_name}'." "This may take a while.")
|
||||
)
|
||||
self._download(**model_kwargs)
|
||||
self._download()
|
||||
|
||||
def load(self, **model_kwargs: Any) -> None:
|
||||
self.download(**model_kwargs)
|
||||
self._load(**model_kwargs)
|
||||
self._loaded = True
|
||||
def load(self) -> None:
|
||||
if self.loaded:
|
||||
return
|
||||
self.download()
|
||||
log.info(f"Loading {self.model_type.replace('-', ' ')} model '{self.model_name}'")
|
||||
self._load()
|
||||
self.loaded = True
|
||||
|
||||
def predict(self, inputs: Any, **model_kwargs: Any) -> Any:
|
||||
if not self._loaded:
|
||||
log.info(f"Loading {self.model_type.replace('_', ' ')} model '{self.model_name}'")
|
||||
self.load()
|
||||
self.load()
|
||||
if model_kwargs:
|
||||
self.configure(**model_kwargs)
|
||||
return self._predict(inputs)
|
||||
|
@ -95,11 +79,11 @@ class InferenceModel(ABC):
|
|||
pass
|
||||
|
||||
@abstractmethod
|
||||
def _download(self, **model_kwargs: Any) -> None:
|
||||
def _download(self) -> None:
|
||||
...
|
||||
|
||||
@abstractmethod
|
||||
def _load(self, **model_kwargs: Any) -> None:
|
||||
def _load(self) -> None:
|
||||
...
|
||||
|
||||
@property
|
||||
|
|
|
@ -17,7 +17,7 @@ class ModelCache:
|
|||
revalidate: bool = False,
|
||||
timeout: int | None = None,
|
||||
profiling: bool = False,
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
ttl: Unloads model after this duration. Disabled if None. Defaults to None.
|
||||
|
|
|
@ -42,7 +42,7 @@ class CLIPEncoder(InferenceModel):
|
|||
jina_model_name = self._get_jina_model_name(model_name)
|
||||
super().__init__(jina_model_name, cache_dir, **model_kwargs)
|
||||
|
||||
def _download(self, **model_kwargs: Any) -> None:
|
||||
def _download(self) -> None:
|
||||
models: tuple[tuple[str, str], tuple[str, str]] = _MODELS[self.model_name]
|
||||
text_onnx_path = self.cache_dir / "textual.onnx"
|
||||
vision_onnx_path = self.cache_dir / "visual.onnx"
|
||||
|
@ -53,8 +53,9 @@ class CLIPEncoder(InferenceModel):
|
|||
if not vision_onnx_path.is_file():
|
||||
self._download_model(*models[1])
|
||||
|
||||
def _load(self, **model_kwargs: Any) -> None:
|
||||
def _load(self) -> None:
|
||||
if self.mode == "text" or self.mode is None:
|
||||
log.debug(f"Loading clip text model '{self.model_name}'")
|
||||
self.text_model = ort.InferenceSession(
|
||||
self.cache_dir / "textual.onnx",
|
||||
sess_options=self.sess_options,
|
||||
|
@ -65,6 +66,7 @@ class CLIPEncoder(InferenceModel):
|
|||
self.tokenizer = Tokenizer(self.model_name)
|
||||
|
||||
if self.mode == "vision" or self.mode is None:
|
||||
log.debug(f"Loading clip vision model '{self.model_name}'")
|
||||
self.vision_model = ort.InferenceSession(
|
||||
self.cache_dir / "visual.onnx",
|
||||
sess_options=self.sess_options,
|
||||
|
|
|
@ -26,7 +26,7 @@ class FaceRecognizer(InferenceModel):
|
|||
self.min_score = model_kwargs.pop("minScore", min_score)
|
||||
super().__init__(model_name, cache_dir, **model_kwargs)
|
||||
|
||||
def _download(self, **model_kwargs: Any) -> None:
|
||||
def _download(self) -> None:
|
||||
zip_file = self.cache_dir / f"{self.model_name}.zip"
|
||||
download_file(f"{BASE_REPO_URL}/{self.model_name}.zip", zip_file)
|
||||
with zipfile.ZipFile(zip_file, "r") as zip:
|
||||
|
@ -36,7 +36,7 @@ class FaceRecognizer(InferenceModel):
|
|||
zip.extractall(self.cache_dir, members=[det_file, rec_file])
|
||||
zip_file.unlink()
|
||||
|
||||
def _load(self, **model_kwargs: Any) -> None:
|
||||
def _load(self) -> None:
|
||||
try:
|
||||
det_file = next(self.cache_dir.glob("det_*.onnx"))
|
||||
rec_file = next(self.cache_dir.glob("w600k_*.onnx"))
|
||||
|
|
|
@ -26,7 +26,7 @@ class ImageClassifier(InferenceModel):
|
|||
self.min_score = model_kwargs.pop("minScore", min_score)
|
||||
super().__init__(model_name, cache_dir, **model_kwargs)
|
||||
|
||||
def _download(self, **model_kwargs: Any) -> None:
|
||||
def _download(self) -> None:
|
||||
snapshot_download(
|
||||
cache_dir=self.cache_dir,
|
||||
repo_id=self.model_name,
|
||||
|
@ -35,10 +35,10 @@ class ImageClassifier(InferenceModel):
|
|||
local_dir_use_symlinks=True,
|
||||
)
|
||||
|
||||
def _load(self, **model_kwargs: Any) -> None:
|
||||
def _load(self) -> None:
|
||||
processor = AutoImageProcessor.from_pretrained(self.cache_dir, cache_dir=self.cache_dir)
|
||||
model_path = self.cache_dir / "model.onnx"
|
||||
model_kwargs |= {
|
||||
model_kwargs = {
|
||||
"cache_dir": self.cache_dir,
|
||||
"provider": self.providers[0],
|
||||
"provider_options": self.provider_options[0],
|
||||
|
|
|
@ -1,11 +1,11 @@
|
|||
import json
|
||||
import pickle
|
||||
from io import BytesIO
|
||||
from typing import TypeAlias
|
||||
from typing import Any, TypeAlias
|
||||
from unittest import mock
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import onnxruntime as ort
|
||||
import pytest
|
||||
from fastapi.testclient import TestClient
|
||||
from PIL import Image
|
||||
|
@ -31,23 +31,6 @@ class TestImageClassifier:
|
|||
{"label": "probably a virus", "score": 0.01},
|
||||
]
|
||||
|
||||
def test_eager_init(self, mocker: MockerFixture) -> None:
|
||||
mocker.patch.object(ImageClassifier, "download")
|
||||
mock_load = mocker.patch.object(ImageClassifier, "load")
|
||||
classifier = ImageClassifier("test_model_name", cache_dir="test_cache", eager=True, test_arg="test_arg")
|
||||
|
||||
assert classifier.model_name == "test_model_name"
|
||||
mock_load.assert_called_once_with(test_arg="test_arg")
|
||||
|
||||
def test_lazy_init(self, mocker: MockerFixture) -> None:
|
||||
mock_download = mocker.patch.object(ImageClassifier, "download")
|
||||
mock_load = mocker.patch.object(ImageClassifier, "load")
|
||||
face_model = ImageClassifier("test_model_name", cache_dir="test_cache", eager=False, test_arg="test_arg")
|
||||
|
||||
assert face_model.model_name == "test_model_name"
|
||||
mock_download.assert_called_once_with(test_arg="test_arg")
|
||||
mock_load.assert_not_called()
|
||||
|
||||
def test_min_score(self, pil_image: Image.Image, mocker: MockerFixture) -> None:
|
||||
mocker.patch.object(ImageClassifier, "load")
|
||||
classifier = ImageClassifier("test_model_name", min_score=0.0)
|
||||
|
@ -74,23 +57,6 @@ class TestImageClassifier:
|
|||
class TestCLIP:
|
||||
embedding = np.random.rand(512).astype(np.float32)
|
||||
|
||||
def test_eager_init(self, mocker: MockerFixture) -> None:
|
||||
mocker.patch.object(CLIPEncoder, "download")
|
||||
mock_load = mocker.patch.object(CLIPEncoder, "load")
|
||||
clip_model = CLIPEncoder("ViT-B-32::openai", cache_dir="test_cache", eager=True, test_arg="test_arg")
|
||||
|
||||
assert clip_model.model_name == "ViT-B-32::openai"
|
||||
mock_load.assert_called_once_with(test_arg="test_arg")
|
||||
|
||||
def test_lazy_init(self, mocker: MockerFixture) -> None:
|
||||
mock_download = mocker.patch.object(CLIPEncoder, "download")
|
||||
mock_load = mocker.patch.object(CLIPEncoder, "load")
|
||||
clip_model = CLIPEncoder("ViT-B-32::openai", cache_dir="test_cache", eager=False, test_arg="test_arg")
|
||||
|
||||
assert clip_model.model_name == "ViT-B-32::openai"
|
||||
mock_download.assert_called_once_with(test_arg="test_arg")
|
||||
mock_load.assert_not_called()
|
||||
|
||||
def test_basic_image(self, pil_image: Image.Image, mocker: MockerFixture) -> None:
|
||||
mocker.patch.object(CLIPEncoder, "download")
|
||||
mocked = mocker.patch("app.models.clip.ort.InferenceSession", autospec=True)
|
||||
|
@ -119,23 +85,6 @@ class TestCLIP:
|
|||
|
||||
|
||||
class TestFaceRecognition:
|
||||
def test_eager_init(self, mocker: MockerFixture) -> None:
|
||||
mocker.patch.object(FaceRecognizer, "download")
|
||||
mock_load = mocker.patch.object(FaceRecognizer, "load")
|
||||
face_model = FaceRecognizer("test_model_name", cache_dir="test_cache", eager=True, test_arg="test_arg")
|
||||
|
||||
assert face_model.model_name == "test_model_name"
|
||||
mock_load.assert_called_once_with(test_arg="test_arg")
|
||||
|
||||
def test_lazy_init(self, mocker: MockerFixture) -> None:
|
||||
mock_download = mocker.patch.object(FaceRecognizer, "download")
|
||||
mock_load = mocker.patch.object(FaceRecognizer, "load")
|
||||
face_model = FaceRecognizer("test_model_name", cache_dir="test_cache", eager=False, test_arg="test_arg")
|
||||
|
||||
assert face_model.model_name == "test_model_name"
|
||||
mock_download.assert_called_once_with(test_arg="test_arg")
|
||||
mock_load.assert_not_called()
|
||||
|
||||
def test_set_min_score(self, mocker: MockerFixture) -> None:
|
||||
mocker.patch.object(FaceRecognizer, "load")
|
||||
face_recognizer = FaceRecognizer("test_model_name", cache_dir="test_cache", min_score=0.5)
|
||||
|
@ -220,45 +169,64 @@ class TestCache:
|
|||
reason="More time-consuming since it deploys the app and loads models.",
|
||||
)
|
||||
class TestEndpoints:
|
||||
def test_tagging_endpoint(self, pil_image: Image.Image, deployed_app: TestClient) -> None:
|
||||
def test_tagging_endpoint(
|
||||
self, pil_image: Image.Image, responses: dict[str, Any], deployed_app: TestClient
|
||||
) -> None:
|
||||
byte_image = BytesIO()
|
||||
pil_image.save(byte_image, format="jpeg")
|
||||
headers = {"Content-Type": "image/jpg"}
|
||||
response = deployed_app.post(
|
||||
"http://localhost:3003/image-classifier/tag-image",
|
||||
content=byte_image.getvalue(),
|
||||
headers=headers,
|
||||
"http://localhost:3003/predict",
|
||||
data={
|
||||
"modelName": "microsoft/resnet-50",
|
||||
"modelType": "image-classification",
|
||||
"options": json.dumps({"minScore": 0.0}),
|
||||
},
|
||||
files={"image": byte_image.getvalue()},
|
||||
)
|
||||
assert response.status_code == 200
|
||||
assert response.json() == responses["image-classification"]
|
||||
|
||||
def test_clip_image_endpoint(self, pil_image: Image.Image, deployed_app: TestClient) -> None:
|
||||
def test_clip_image_endpoint(
|
||||
self, pil_image: Image.Image, responses: dict[str, Any], deployed_app: TestClient
|
||||
) -> None:
|
||||
byte_image = BytesIO()
|
||||
pil_image.save(byte_image, format="jpeg")
|
||||
headers = {"Content-Type": "image/jpg"}
|
||||
response = deployed_app.post(
|
||||
"http://localhost:3003/sentence-transformer/encode-image",
|
||||
content=byte_image.getvalue(),
|
||||
headers=headers,
|
||||
"http://localhost:3003/predict",
|
||||
data={"modelName": "ViT-B-32::openai", "modelType": "clip", "options": json.dumps({"mode": "vision"})},
|
||||
files={"image": byte_image.getvalue()},
|
||||
)
|
||||
assert response.status_code == 200
|
||||
assert response.json() == responses["clip"]["image"]
|
||||
|
||||
def test_clip_text_endpoint(self, deployed_app: TestClient) -> None:
|
||||
def test_clip_text_endpoint(self, responses: dict[str, Any], deployed_app: TestClient) -> None:
|
||||
response = deployed_app.post(
|
||||
"http://localhost:3003/sentence-transformer/encode-text",
|
||||
json={"text": "test search query"},
|
||||
"http://localhost:3003/predict",
|
||||
data={
|
||||
"modelName": "ViT-B-32::openai",
|
||||
"modelType": "clip",
|
||||
"text": "test search query",
|
||||
"options": json.dumps({"mode": "text"}),
|
||||
},
|
||||
)
|
||||
assert response.status_code == 200
|
||||
assert response.json() == responses["clip"]["text"]
|
||||
|
||||
def test_face_endpoint(self, pil_image: Image.Image, deployed_app: TestClient) -> None:
|
||||
def test_face_endpoint(self, pil_image: Image.Image, responses: dict[str, Any], deployed_app: TestClient) -> None:
|
||||
byte_image = BytesIO()
|
||||
pil_image.save(byte_image, format="jpeg")
|
||||
headers = {"Content-Type": "image/jpg"}
|
||||
|
||||
response = deployed_app.post(
|
||||
"http://localhost:3003/facial-recognition/detect-faces",
|
||||
content=byte_image.getvalue(),
|
||||
headers=headers,
|
||||
"http://localhost:3003/predict",
|
||||
data={
|
||||
"modelName": "buffalo_l",
|
||||
"modelType": "facial-recognition",
|
||||
"options": json.dumps({"minScore": 0.034}),
|
||||
},
|
||||
files={"image": byte_image.getvalue()},
|
||||
)
|
||||
assert response.status_code == 200
|
||||
assert response.json() == responses["facial-recognition"]
|
||||
|
||||
|
||||
def test_sess_options() -> None:
|
||||
|
|
1570
machine-learning/responses.json
Normal file
1570
machine-learning/responses.json
Normal file
File diff suppressed because it is too large
Load diff
Loading…
Reference in a new issue