immich/machine-learning/app/schemas.py

47 lines
984 B
Python
Raw Normal View History

from enum import StrEnum
from typing import Any, Protocol, TypeAlias, TypedDict, TypeGuard
import numpy as np
from pydantic import BaseModel
ndarray_f32: TypeAlias = np.ndarray[int, np.dtype[np.float32]]
ndarray_i64: TypeAlias = np.ndarray[int, np.dtype[np.int64]]
ndarray_i32: TypeAlias = np.ndarray[int, np.dtype[np.int32]]
class TextResponse(BaseModel):
__root__: str
class MessageResponse(BaseModel):
message: str
class BoundingBox(TypedDict):
x1: int
y1: int
x2: int
y2: int
class ModelType(StrEnum):
IMAGE_CLASSIFICATION = "image-classification"
CLIP = "clip"
FACIAL_RECOGNITION = "facial-recognition"
class HasProfiling(Protocol):
profiling: dict[str, float]
class Face(TypedDict):
boundingBox: BoundingBox
embedding: ndarray_f32
imageWidth: int
imageHeight: int
score: float
def has_profiling(obj: Any) -> TypeGuard[HasProfiling]:
return hasattr(obj, "profiling") and type(obj.profiling) == dict