Cleanup
This commit is contained in:
parent
a1d6ef43b4
commit
9ff4989d81
3 changed files with 6 additions and 48 deletions
|
@ -134,7 +134,7 @@ const clipImageEmbedding_ = async (jpegFilePath: string) => {
|
|||
const results = await imageSession.run(feeds);
|
||||
log.debug(
|
||||
() =>
|
||||
`CLIP image embedding took ${Date.now() - t1} ms (prep: ${t2 - t1} ms, inference: ${Date.now() - t2} ms)`,
|
||||
`onnx/clip image embedding took ${Date.now() - t1} ms (prep: ${t2 - t1} ms, inference: ${Date.now() - t2} ms)`,
|
||||
);
|
||||
const imageEmbedding = results["output"].data; // Float32Array
|
||||
return normalizeEmbedding(imageEmbedding);
|
||||
|
@ -241,7 +241,7 @@ export const clipTextEmbedding = async (text: string) => {
|
|||
const results = await imageSession.run(feeds);
|
||||
log.debug(
|
||||
() =>
|
||||
`CLIP text embedding took ${Date.now() - t1} ms (prep: ${t2 - t1} ms, inference: ${Date.now() - t2} ms)`,
|
||||
`onnx/clip text embedding took ${Date.now() - t1} ms (prep: ${t2 - t1} ms, inference: ${Date.now() - t2} ms)`,
|
||||
);
|
||||
const textEmbedding = results["output"].data;
|
||||
return normalizeEmbedding(textEmbedding);
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
* @file Various face recognition related tasks.
|
||||
*
|
||||
* - Face detection with the YOLO model.
|
||||
* - Face embedding with the mobilefacenet model.
|
||||
* - Face embedding with the MobileFaceNet model.
|
||||
*
|
||||
* The runtime used is ONNX.
|
||||
*/
|
||||
|
@ -99,51 +99,10 @@ export const detectFaces = async (input: Float32Array) => {
|
|||
input: new ort.Tensor("float32", input, [1, 3, 640, 640]),
|
||||
};
|
||||
const results = await session.run(feeds);
|
||||
log.debug(() => `onnx/yolo inference took ${Date.now() - t} ms`);
|
||||
log.debug(() => `onnx/yolo face detection took ${Date.now() - t} ms`);
|
||||
return results["output"].data;
|
||||
};
|
||||
|
||||
export const faceEmbedding = async (input: Float32Array) => {
|
||||
throw new Error("test");
|
||||
};
|
||||
|
||||
/*
|
||||
|
||||
private async initOnnx() {
|
||||
}
|
||||
|
||||
private async getOnnxInferenceSession() {
|
||||
if (!this.onnxInferenceSession) {
|
||||
await this.initOnnx();
|
||||
}
|
||||
return this.onnxInferenceSession;
|
||||
}
|
||||
*/
|
||||
|
||||
// export const clipImageEmbedding = async (jpegImageData: Uint8Array) => {
|
||||
// const tempFilePath = await generateTempFilePath("");
|
||||
// const imageStream = new Response(jpegImageData.buffer).body;
|
||||
// await writeStream(tempFilePath, imageStream);
|
||||
// try {
|
||||
// return await clipImageEmbedding_(tempFilePath);
|
||||
// } finally {
|
||||
// await deleteTempFile(tempFilePath);
|
||||
// }
|
||||
// };
|
||||
|
||||
// const clipImageEmbedding_ = async (jpegFilePath: string) => {
|
||||
// const imageSession = await onnxImageSession();
|
||||
// const t1 = Date.now();
|
||||
// const rgbData = await getRGBData(jpegFilePath);
|
||||
// const feeds = {
|
||||
// input: new ort.Tensor("float32", rgbData, [1, 3, 224, 224]),
|
||||
// };
|
||||
// const t2 = Date.now();
|
||||
// const results = await imageSession.run(feeds);
|
||||
// log.debug(
|
||||
// () =>
|
||||
// `CLIP image embedding took ${Date.now() - t1} ms (prep: ${t2 - t1} ms, inference: ${Date.now() - t2} ms)`,
|
||||
// );
|
||||
// const imageEmbedding = results["output"].data; // Float32Array
|
||||
// return normalizeEmbedding(imageEmbedding);
|
||||
// };
|
||||
|
|
|
@ -55,7 +55,7 @@ class FaceService {
|
|||
await syncContext.faceDetectionService.detectFaces(imageBitmap);
|
||||
console.timeEnd(timerId);
|
||||
console.log("faceDetections: ", faceDetections?.length);
|
||||
// log.info('3 TF Memory stats: ',JSON.stringify(tf.memory()));
|
||||
|
||||
// TODO: reenable faces filtering based on width
|
||||
const detectedFaces = faceDetections?.map((detection) => {
|
||||
return {
|
||||
|
@ -150,7 +150,7 @@ class FaceService {
|
|||
|
||||
imageBitmap.close();
|
||||
log.info("[MLService] alignedFaces: ", newMlFile.faces?.length);
|
||||
// log.info('4 TF Memory stats: ',JSON.stringify(tf.memory()));
|
||||
|
||||
return faceImages;
|
||||
}
|
||||
|
||||
|
@ -187,7 +187,6 @@ class FaceService {
|
|||
newMlFile.faces.forEach((f, i) => (f.embedding = embeddings[i]));
|
||||
|
||||
log.info("[MLService] facesWithEmbeddings: ", newMlFile.faces.length);
|
||||
// log.info('5 TF Memory stats: ',JSON.stringify(tf.memory()));
|
||||
}
|
||||
|
||||
async syncFileFaceMakeRelativeDetections(
|
||||
|
|
Loading…
Reference in a new issue