performance.py 3.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116
  1. """
  2. Test the performance of the search in terms of compression and speed.
  3. """
  4. import os
  5. from datetime import datetime
  6. import numpy as np
  7. from spacy.lang.en import English
  8. from starlette.testclient import TestClient
  9. import create_app
  10. from fsqueue import ZstdJsonSerializer
  11. from index import TinyIndexer, index_titles_and_urls, Document, TinyIndex
  12. from paths import TEST_INDEX_PATH, DATA_DIR, TEST_TERMS_PATH
  13. NUM_DOCUMENTS = 30000
  14. NUM_PAGES_FOR_STATS = 10
  15. TEST_PAGE_SIZE = 512
  16. TEST_NUM_PAGES = 1024
  17. TEST_DATA_PATH = os.path.join(DATA_DIR, 'test-urls.zstd')
  18. RECALL_AT_K = 3
  19. def get_test_pages():
  20. serializer = ZstdJsonSerializer()
  21. with open(TEST_DATA_PATH, 'rb') as data_file:
  22. data = serializer.deserialize(data_file.read())
  23. return [(row['title'], row['url']) for row in data if row['title'] is not None]
  24. def query_test():
  25. titles_and_urls = get_test_pages()
  26. print(f"Got {len(titles_and_urls)} titles and URLs")
  27. tiny_index = TinyIndex(TEST_INDEX_PATH, TEST_NUM_PAGES, TEST_PAGE_SIZE)
  28. app = create_app.create(tiny_index)
  29. client = TestClient(app)
  30. start = datetime.now()
  31. hits = 0
  32. count = 0
  33. for title, url in titles_and_urls:
  34. result = client.get('/complete', params={'q': title})
  35. assert result.status_code == 200
  36. data = result.json()
  37. hit = False
  38. if data:
  39. for result in data[1][:RECALL_AT_K]:
  40. if url in result:
  41. hit = True
  42. break
  43. if hit:
  44. hits += 1
  45. else:
  46. print("Miss", data, title, url, sep='\n')
  47. count += 1
  48. end = datetime.now()
  49. print(f"Hits: {hits} out of {count}")
  50. print(f"Recall at {RECALL_AT_K}: {hits/count}")
  51. print("Query time:", (end - start).total_seconds() / NUM_DOCUMENTS)
  52. def page_stats(indexer: TinyIndexer):
  53. pages_and_sizes = []
  54. for i in range(TEST_NUM_PAGES):
  55. page = indexer.get_page(i)
  56. if page is not None:
  57. pages_and_sizes.append((len(page), page))
  58. big_page_sizes, big_pages = zip(*sorted(pages_and_sizes, reverse=True)[:NUM_PAGES_FOR_STATS])
  59. return np.mean(big_page_sizes), np.std(big_page_sizes), big_pages
  60. def performance_test():
  61. nlp = English()
  62. try:
  63. os.remove(TEST_INDEX_PATH)
  64. except FileNotFoundError:
  65. print("No test index found, creating")
  66. with TinyIndexer(Document, TEST_INDEX_PATH, TEST_NUM_PAGES, TEST_PAGE_SIZE) as indexer:
  67. titles_and_urls = get_test_pages()
  68. start_time = datetime.now()
  69. index_titles_and_urls(indexer, nlp, titles_and_urls, TEST_TERMS_PATH)
  70. stop_time = datetime.now()
  71. index_time = (stop_time - start_time).total_seconds()
  72. index_size = os.path.getsize(TEST_INDEX_PATH)
  73. page_size_mean, page_size_std, big_pages = page_stats(indexer)
  74. print("Indexed pages:", NUM_DOCUMENTS)
  75. print("Index time:", index_time)
  76. print("Index size:", index_size)
  77. print("Mean docs per page:", page_size_mean)
  78. print("Std err of docs per page:", page_size_std)
  79. print("Big pages")
  80. print_pages(big_pages)
  81. # print("Num tokens", indexer.get_num_tokens())
  82. query_test()
  83. def print_pages(pages):
  84. for page in pages:
  85. print("Page", page)
  86. for title, url in page:
  87. print(title, url)
  88. print()
  89. if __name__ == '__main__':
  90. performance_test()