Pārlūkot izejas kodu

Create a get_features function and make it work like the heuristic approach

Daoud Clarke 2 gadi atpakaļ
vecāks
revīzija
c60b73a403
2 mainītis faili ar 29 papildinājumiem un 18 dzēšanām
  1. 4 16
      mwmbl/tinysearchengine/ltr.py
  2. 25 2
      mwmbl/tinysearchengine/rank.py

+ 4 - 16
mwmbl/tinysearchengine/ltr.py

@@ -4,7 +4,7 @@ Learning to rank predictor
 from pandas import DataFrame, Series
 from sklearn.base import BaseEstimator, RegressorMixin, TransformerMixin
 
-from mwmbl.tinysearchengine.rank import get_match_features, get_domain_score, score_match
+from mwmbl.tinysearchengine.rank import get_features
 
 
 class ThresholdPredictor(BaseEstimator, RegressorMixin):
@@ -24,21 +24,9 @@ class ThresholdPredictor(BaseEstimator, RegressorMixin):
         return predictions
 
 
-def get_match_features_as_series(item: Series):
+def get_features_as_series(item: Series):
     terms = item['query'].lower().split()
-    features = {}
-    for part in ['title', 'extract', 'url']:
-        last_match_char, match_length, total_possible_match_length = get_match_features(terms, item[part], True, False)
-        features[f'last_match_char_{part}'] = last_match_char
-        features[f'match_length_{part}'] = match_length
-        features[f'total_possible_match_length_{part}'] = total_possible_match_length
-        # features[f'score_{part}'] = score_match(last_match_char, match_length, total_possible_match_length)
-
-    features['num_terms'] = len(terms)
-    features['num_chars'] = len(' '.join(terms))
-    features['domain_score'] = get_domain_score(item['url'])
-    features['url_length'] = len(item['url'])
-    features['item_score'] = item['score']
+    features = get_features(terms, item['title'], item['url'], item['extract'], item['score'], True)
     return Series(features)
 
 
@@ -47,7 +35,7 @@ class FeatureExtractor(BaseEstimator, TransformerMixin):
         return self
 
     def transform(self, X: DataFrame, y=None):
-        features = X.apply(get_match_features_as_series, axis=1)
+        features = X.apply(get_features_as_series, axis=1)
         print("Features", features.columns)
         return features
 

+ 25 - 2
mwmbl/tinysearchengine/rank.py

@@ -31,7 +31,7 @@ def _get_query_regex(terms, is_complete, is_url):
     return pattern
 
 
-def _score_result(terms, result: Document, is_complete: bool):
+def _score_result(terms: list[str], result: Document, is_complete: bool):
     domain_score = get_domain_score(result.url)
 
     parsed_url = urlparse(result.url)
@@ -62,6 +62,30 @@ def score_match(last_match_char, match_length, total_possible_match_length):
     return MATCH_EXPONENT ** (match_length - total_possible_match_length) / last_match_char
 
 
+def get_features(terms, title, url, extract, score, is_complete):
+    features = {}
+    parsed_url = urlparse(url)
+    domain = parsed_url.netloc
+    path = parsed_url.path
+    for part, name, is_url in [(title, 'title', False),
+                               (extract, 'extract', False),
+                               (domain, 'domain', True),
+                               (domain, 'domain_tokenized', False),
+                               (path, 'path', True)]:
+        last_match_char, match_length, total_possible_match_length = get_match_features(terms, part, is_complete, is_url)
+        features[f'last_match_char_{name}'] = last_match_char
+        features[f'match_length_{name}'] = match_length
+        features[f'total_possible_match_length_{name}'] = total_possible_match_length
+        # features[f'score_{part}'] = score_match(last_match_char, match_length, total_possible_match_length)
+    features['num_terms'] = len(terms)
+    features['num_chars'] = len(' '.join(terms))
+    features['domain_score'] = get_domain_score(url)
+    features['path_length'] = len(path)
+    features['domain_length'] = len(domain)
+    features['item_score'] = score
+    return features
+
+
 def get_domain_score(url):
     domain = urlparse(url).netloc
     domain_score = DOMAINS.get(domain, 0.0)
@@ -165,4 +189,3 @@ class Ranker:
 class HeuristicRanker(Ranker):
     def order_results(self, terms, pages, is_complete):
         return order_results(terms, pages, is_complete)
-