@@ -38,13 +38,12 @@ STOPWORDS = set("0,1,2,3,4,5,6,7,8,9,a,A,about,above,across,after,again,against,
def tokenize(input_text):
cleaned_text = input_text.encode('utf8', 'replace').decode('utf8')
tokens = cleaned_text.lower().split()
- # tokens = nlp.tokenizer(cleaned_text)
if input_text.endswith('…'):
# Discard the last two tokens since there will likely be a word cut in two
tokens = tokens[:-2]
- content_tokens = [token for token in tokens if not token in STOPWORDS]
- # lowered = {nlp.vocab[token.orth].text.lower() for token in content_tokens}
- return content_tokens
+ # content_tokens = [token for token in tokens if not token in STOPWORDS]
+ # return content_tokens
+ return tokens
def prepare_url_for_tokenizing(url: str):