Require matching at least half the terms
This commit is contained in:
parent
eda7870788
commit
00705703f3
2 changed files with 14 additions and 9 deletions
|
@ -18,7 +18,7 @@ def run():
|
|||
with TinyIndex(Document, INDEX_PATH) as tiny_index:
|
||||
completer = Completer()
|
||||
ranker = HeuristicRanker(tiny_index, completer)
|
||||
items = ranker.search('google')
|
||||
items = ranker.search('jasper fforde')
|
||||
print()
|
||||
if items:
|
||||
for i, item in enumerate(islice(items, 10)):
|
||||
|
|
|
@ -12,6 +12,7 @@ from mwmbl.tinysearchengine.indexer import TinyIndex, Document
|
|||
logger = getLogger(__name__)
|
||||
|
||||
|
||||
MATCH_SCORE_THRESHOLD = 0.0
|
||||
SCORE_THRESHOLD = 0.0
|
||||
LENGTH_PENALTY = 0.04
|
||||
MATCH_EXPONENT = 2
|
||||
|
@ -37,15 +38,20 @@ def _score_result(terms: list[str], result: Document, is_complete: bool):
|
|||
features = get_features(terms, result.title, result.url, result.extract, result.score, is_complete)
|
||||
|
||||
length_penalty = math.e ** (-LENGTH_PENALTY * len(result.url))
|
||||
score = (
|
||||
4 * features['match_score_title']
|
||||
+ features['match_score_extract'] +
|
||||
2 * features['match_score_domain'] +
|
||||
2 * features['match_score_domain_tokenized']
|
||||
+ features['match_score_path']) * length_penalty * (features['domain_score'] + DOMAIN_SCORE_SMOOTHING) / 10
|
||||
match_score = (4 * features['match_score_title'] + features['match_score_extract'] + 2 * features[
|
||||
'match_score_domain'] + 2 * features['match_score_domain_tokenized'] + features['match_score_path'])
|
||||
|
||||
max_match_terms = max(features[f'match_terms_{name}']
|
||||
for name in ['title', 'extract', 'domain', 'domain_tokenized', 'path'])
|
||||
if max_match_terms <= len(terms) / 2:
|
||||
return 0.0
|
||||
|
||||
if match_score > MATCH_SCORE_THRESHOLD:
|
||||
return match_score * length_penalty * (features['domain_score'] + DOMAIN_SCORE_SMOOTHING) / 10
|
||||
|
||||
# best_match_score = max(features[f'match_score_{name}'] for name in ['title', 'extract', 'domain', 'domain_tokenized'])
|
||||
# score = best_match_score * length_penalty * (features['domain_score'] + DOMAIN_SCORE_SMOOTHING)
|
||||
return score
|
||||
return 0.0
|
||||
|
||||
|
||||
def score_match(last_match_char, match_length, total_possible_match_length):
|
||||
|
@ -109,7 +115,6 @@ def order_results(terms: list[str], results: list[Document], is_complete: bool)
|
|||
if len(results) == 0:
|
||||
return []
|
||||
|
||||
max_score = max(result.score for result in results)
|
||||
results_and_scores = [(_score_result(terms, result, is_complete), result) for result in results]
|
||||
ordered_results = sorted(results_and_scores, key=itemgetter(0), reverse=True)
|
||||
filtered_results = [result for score, result in ordered_results if score > SCORE_THRESHOLD]
|
||||
|
|
Loading…
Add table
Reference in a new issue