123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238 |
- package ebpf
- import (
- "errors"
- "fmt"
- "sync"
- "github.com/cilium/ebpf/asm"
- "github.com/cilium/ebpf/btf"
- )
- // splitSymbols splits insns into subsections delimited by Symbol Instructions.
- // insns cannot be empty and must start with a Symbol Instruction.
- //
- // The resulting map is indexed by Symbol name.
- func splitSymbols(insns asm.Instructions) (map[string]asm.Instructions, error) {
- if len(insns) == 0 {
- return nil, errors.New("insns is empty")
- }
- if insns[0].Symbol() == "" {
- return nil, errors.New("insns must start with a Symbol")
- }
- var name string
- progs := make(map[string]asm.Instructions)
- for _, ins := range insns {
- if sym := ins.Symbol(); sym != "" {
- if progs[sym] != nil {
- return nil, fmt.Errorf("insns contains duplicate Symbol %s", sym)
- }
- name = sym
- }
- progs[name] = append(progs[name], ins)
- }
- return progs, nil
- }
- // The linker is responsible for resolving bpf-to-bpf calls between programs
- // within an ELF. Each BPF program must be a self-contained binary blob,
- // so when an instruction in one ELF program section wants to jump to
- // a function in another, the linker needs to pull in the bytecode
- // (and BTF info) of the target function and concatenate the instruction
- // streams.
- //
- // Later on in the pipeline, all call sites are fixed up with relative jumps
- // within this newly-created instruction stream to then finally hand off to
- // the kernel with BPF_PROG_LOAD.
- //
- // Each function is denoted by an ELF symbol and the compiler takes care of
- // register setup before each jump instruction.
- // hasFunctionReferences returns true if insns contains one or more bpf2bpf
- // function references.
- func hasFunctionReferences(insns asm.Instructions) bool {
- for _, i := range insns {
- if i.IsFunctionReference() {
- return true
- }
- }
- return false
- }
- // applyRelocations collects and applies any CO-RE relocations in insns.
- //
- // Passing a nil target will relocate against the running kernel. insns are
- // modified in place.
- func applyRelocations(insns asm.Instructions, local, target *btf.Spec) error {
- var relos []*btf.CORERelocation
- var reloInsns []*asm.Instruction
- iter := insns.Iterate()
- for iter.Next() {
- if relo := btf.CORERelocationMetadata(iter.Ins); relo != nil {
- relos = append(relos, relo)
- reloInsns = append(reloInsns, iter.Ins)
- }
- }
- if len(relos) == 0 {
- return nil
- }
- target, err := maybeLoadKernelBTF(target)
- if err != nil {
- return err
- }
- fixups, err := btf.CORERelocate(local, target, relos)
- if err != nil {
- return err
- }
- for i, fixup := range fixups {
- if err := fixup.Apply(reloInsns[i]); err != nil {
- return fmt.Errorf("apply fixup %s: %w", &fixup, err)
- }
- }
- return nil
- }
- // flattenPrograms resolves bpf-to-bpf calls for a set of programs.
- //
- // Links all programs in names by modifying their ProgramSpec in progs.
- func flattenPrograms(progs map[string]*ProgramSpec, names []string) {
- // Pre-calculate all function references.
- refs := make(map[*ProgramSpec][]string)
- for _, prog := range progs {
- refs[prog] = prog.Instructions.FunctionReferences()
- }
- // Create a flattened instruction stream, but don't modify progs yet to
- // avoid linking multiple times.
- flattened := make([]asm.Instructions, 0, len(names))
- for _, name := range names {
- flattened = append(flattened, flattenInstructions(name, progs, refs))
- }
- // Finally, assign the flattened instructions.
- for i, name := range names {
- progs[name].Instructions = flattened[i]
- }
- }
- // flattenInstructions resolves bpf-to-bpf calls for a single program.
- //
- // Flattens the instructions of prog by concatenating the instructions of all
- // direct and indirect dependencies.
- //
- // progs contains all referenceable programs, while refs contain the direct
- // dependencies of each program.
- func flattenInstructions(name string, progs map[string]*ProgramSpec, refs map[*ProgramSpec][]string) asm.Instructions {
- prog := progs[name]
- insns := make(asm.Instructions, len(prog.Instructions))
- copy(insns, prog.Instructions)
- // Add all direct references of prog to the list of to be linked programs.
- pending := make([]string, len(refs[prog]))
- copy(pending, refs[prog])
- // All references for which we've appended instructions.
- linked := make(map[string]bool)
- // Iterate all pending references. We can't use a range since pending is
- // modified in the body below.
- for len(pending) > 0 {
- var ref string
- ref, pending = pending[0], pending[1:]
- if linked[ref] {
- // We've already linked this ref, don't append instructions again.
- continue
- }
- progRef := progs[ref]
- if progRef == nil {
- // We don't have instructions that go with this reference. This
- // happens when calling extern functions.
- continue
- }
- insns = append(insns, progRef.Instructions...)
- linked[ref] = true
- // Make sure we link indirect references.
- pending = append(pending, refs[progRef]...)
- }
- return insns
- }
- // fixupAndValidate is called by the ELF reader right before marshaling the
- // instruction stream. It performs last-minute adjustments to the program and
- // runs some sanity checks before sending it off to the kernel.
- func fixupAndValidate(insns asm.Instructions) error {
- iter := insns.Iterate()
- for iter.Next() {
- ins := iter.Ins
- // Map load was tagged with a Reference, but does not contain a Map pointer.
- if ins.IsLoadFromMap() && ins.Reference() != "" && ins.Map() == nil {
- return fmt.Errorf("instruction %d: map %s: %w", iter.Index, ins.Reference(), asm.ErrUnsatisfiedMapReference)
- }
- fixupProbeReadKernel(ins)
- }
- return nil
- }
- // fixupProbeReadKernel replaces calls to bpf_probe_read_{kernel,user}(_str)
- // with bpf_probe_read(_str) on kernels that don't support it yet.
- func fixupProbeReadKernel(ins *asm.Instruction) {
- if !ins.IsBuiltinCall() {
- return
- }
- // Kernel supports bpf_probe_read_kernel, nothing to do.
- if haveProbeReadKernel() == nil {
- return
- }
- switch asm.BuiltinFunc(ins.Constant) {
- case asm.FnProbeReadKernel, asm.FnProbeReadUser:
- ins.Constant = int64(asm.FnProbeRead)
- case asm.FnProbeReadKernelStr, asm.FnProbeReadUserStr:
- ins.Constant = int64(asm.FnProbeReadStr)
- }
- }
- var kernelBTF struct {
- sync.Mutex
- spec *btf.Spec
- }
- // maybeLoadKernelBTF loads the current kernel's BTF if spec is nil, otherwise
- // it returns spec unchanged.
- //
- // The kernel BTF is cached for the lifetime of the process.
- func maybeLoadKernelBTF(spec *btf.Spec) (*btf.Spec, error) {
- if spec != nil {
- return spec, nil
- }
- kernelBTF.Lock()
- defer kernelBTF.Unlock()
- if kernelBTF.spec != nil {
- return kernelBTF.spec, nil
- }
- var err error
- kernelBTF.spec, err = btf.LoadKernelSpec()
- return kernelBTF.spec, err
- }
|