syscall_linux.go 66 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297
  1. // Copyright 2009 The Go Authors. All rights reserved.
  2. // Use of this source code is governed by a BSD-style
  3. // license that can be found in the LICENSE file.
  4. // Linux system calls.
  5. // This file is compiled as ordinary Go code,
  6. // but it is also input to mksyscall,
  7. // which parses the //sys lines and generates system call stubs.
  8. // Note that sometimes we use a lowercase //sys name and
  9. // wrap it in our own nicer implementation.
  10. package unix
  11. import (
  12. "encoding/binary"
  13. "runtime"
  14. "syscall"
  15. "unsafe"
  16. )
  17. /*
  18. * Wrapped
  19. */
  20. func Access(path string, mode uint32) (err error) {
  21. return Faccessat(AT_FDCWD, path, mode, 0)
  22. }
  23. func Chmod(path string, mode uint32) (err error) {
  24. return Fchmodat(AT_FDCWD, path, mode, 0)
  25. }
  26. func Chown(path string, uid int, gid int) (err error) {
  27. return Fchownat(AT_FDCWD, path, uid, gid, 0)
  28. }
  29. func Creat(path string, mode uint32) (fd int, err error) {
  30. return Open(path, O_CREAT|O_WRONLY|O_TRUNC, mode)
  31. }
  32. //sys FanotifyInit(flags uint, event_f_flags uint) (fd int, err error)
  33. //sys fanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname *byte) (err error)
  34. func FanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname string) (err error) {
  35. if pathname == "" {
  36. return fanotifyMark(fd, flags, mask, dirFd, nil)
  37. }
  38. p, err := BytePtrFromString(pathname)
  39. if err != nil {
  40. return err
  41. }
  42. return fanotifyMark(fd, flags, mask, dirFd, p)
  43. }
  44. //sys fchmodat(dirfd int, path string, mode uint32) (err error)
  45. func Fchmodat(dirfd int, path string, mode uint32, flags int) (err error) {
  46. // Linux fchmodat doesn't support the flags parameter. Mimick glibc's behavior
  47. // and check the flags. Otherwise the mode would be applied to the symlink
  48. // destination which is not what the user expects.
  49. if flags&^AT_SYMLINK_NOFOLLOW != 0 {
  50. return EINVAL
  51. } else if flags&AT_SYMLINK_NOFOLLOW != 0 {
  52. return EOPNOTSUPP
  53. }
  54. return fchmodat(dirfd, path, mode)
  55. }
  56. //sys ioctl(fd int, req uint, arg uintptr) (err error)
  57. // ioctl itself should not be exposed directly, but additional get/set
  58. // functions for specific types are permissible.
  59. // IoctlRetInt performs an ioctl operation specified by req on a device
  60. // associated with opened file descriptor fd, and returns a non-negative
  61. // integer that is returned by the ioctl syscall.
  62. func IoctlRetInt(fd int, req uint) (int, error) {
  63. ret, _, err := Syscall(SYS_IOCTL, uintptr(fd), uintptr(req), 0)
  64. if err != 0 {
  65. return 0, err
  66. }
  67. return int(ret), nil
  68. }
  69. func IoctlSetRTCTime(fd int, value *RTCTime) error {
  70. err := ioctl(fd, RTC_SET_TIME, uintptr(unsafe.Pointer(value)))
  71. runtime.KeepAlive(value)
  72. return err
  73. }
  74. func IoctlSetRTCWkAlrm(fd int, value *RTCWkAlrm) error {
  75. err := ioctl(fd, RTC_WKALM_SET, uintptr(unsafe.Pointer(value)))
  76. runtime.KeepAlive(value)
  77. return err
  78. }
  79. func IoctlGetUint32(fd int, req uint) (uint32, error) {
  80. var value uint32
  81. err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
  82. return value, err
  83. }
  84. func IoctlGetRTCTime(fd int) (*RTCTime, error) {
  85. var value RTCTime
  86. err := ioctl(fd, RTC_RD_TIME, uintptr(unsafe.Pointer(&value)))
  87. return &value, err
  88. }
  89. func IoctlGetRTCWkAlrm(fd int) (*RTCWkAlrm, error) {
  90. var value RTCWkAlrm
  91. err := ioctl(fd, RTC_WKALM_RD, uintptr(unsafe.Pointer(&value)))
  92. return &value, err
  93. }
  94. //sys Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error)
  95. func Link(oldpath string, newpath string) (err error) {
  96. return Linkat(AT_FDCWD, oldpath, AT_FDCWD, newpath, 0)
  97. }
  98. func Mkdir(path string, mode uint32) (err error) {
  99. return Mkdirat(AT_FDCWD, path, mode)
  100. }
  101. func Mknod(path string, mode uint32, dev int) (err error) {
  102. return Mknodat(AT_FDCWD, path, mode, dev)
  103. }
  104. func Open(path string, mode int, perm uint32) (fd int, err error) {
  105. return openat(AT_FDCWD, path, mode|O_LARGEFILE, perm)
  106. }
  107. //sys openat(dirfd int, path string, flags int, mode uint32) (fd int, err error)
  108. func Openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) {
  109. return openat(dirfd, path, flags|O_LARGEFILE, mode)
  110. }
  111. //sys ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error)
  112. func Ppoll(fds []PollFd, timeout *Timespec, sigmask *Sigset_t) (n int, err error) {
  113. if len(fds) == 0 {
  114. return ppoll(nil, 0, timeout, sigmask)
  115. }
  116. return ppoll(&fds[0], len(fds), timeout, sigmask)
  117. }
  118. //sys Readlinkat(dirfd int, path string, buf []byte) (n int, err error)
  119. func Readlink(path string, buf []byte) (n int, err error) {
  120. return Readlinkat(AT_FDCWD, path, buf)
  121. }
  122. func Rename(oldpath string, newpath string) (err error) {
  123. return Renameat(AT_FDCWD, oldpath, AT_FDCWD, newpath)
  124. }
  125. func Rmdir(path string) error {
  126. return Unlinkat(AT_FDCWD, path, AT_REMOVEDIR)
  127. }
  128. //sys Symlinkat(oldpath string, newdirfd int, newpath string) (err error)
  129. func Symlink(oldpath string, newpath string) (err error) {
  130. return Symlinkat(oldpath, AT_FDCWD, newpath)
  131. }
  132. func Unlink(path string) error {
  133. return Unlinkat(AT_FDCWD, path, 0)
  134. }
  135. //sys Unlinkat(dirfd int, path string, flags int) (err error)
  136. func Utimes(path string, tv []Timeval) error {
  137. if tv == nil {
  138. err := utimensat(AT_FDCWD, path, nil, 0)
  139. if err != ENOSYS {
  140. return err
  141. }
  142. return utimes(path, nil)
  143. }
  144. if len(tv) != 2 {
  145. return EINVAL
  146. }
  147. var ts [2]Timespec
  148. ts[0] = NsecToTimespec(TimevalToNsec(tv[0]))
  149. ts[1] = NsecToTimespec(TimevalToNsec(tv[1]))
  150. err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
  151. if err != ENOSYS {
  152. return err
  153. }
  154. return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
  155. }
  156. //sys utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error)
  157. func UtimesNano(path string, ts []Timespec) error {
  158. if ts == nil {
  159. err := utimensat(AT_FDCWD, path, nil, 0)
  160. if err != ENOSYS {
  161. return err
  162. }
  163. return utimes(path, nil)
  164. }
  165. if len(ts) != 2 {
  166. return EINVAL
  167. }
  168. err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
  169. if err != ENOSYS {
  170. return err
  171. }
  172. // If the utimensat syscall isn't available (utimensat was added to Linux
  173. // in 2.6.22, Released, 8 July 2007) then fall back to utimes
  174. var tv [2]Timeval
  175. for i := 0; i < 2; i++ {
  176. tv[i] = NsecToTimeval(TimespecToNsec(ts[i]))
  177. }
  178. return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
  179. }
  180. func UtimesNanoAt(dirfd int, path string, ts []Timespec, flags int) error {
  181. if ts == nil {
  182. return utimensat(dirfd, path, nil, flags)
  183. }
  184. if len(ts) != 2 {
  185. return EINVAL
  186. }
  187. return utimensat(dirfd, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), flags)
  188. }
  189. func Futimesat(dirfd int, path string, tv []Timeval) error {
  190. if tv == nil {
  191. return futimesat(dirfd, path, nil)
  192. }
  193. if len(tv) != 2 {
  194. return EINVAL
  195. }
  196. return futimesat(dirfd, path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
  197. }
  198. func Futimes(fd int, tv []Timeval) (err error) {
  199. // Believe it or not, this is the best we can do on Linux
  200. // (and is what glibc does).
  201. return Utimes("/proc/self/fd/"+itoa(fd), tv)
  202. }
  203. const ImplementsGetwd = true
  204. //sys Getcwd(buf []byte) (n int, err error)
  205. func Getwd() (wd string, err error) {
  206. var buf [PathMax]byte
  207. n, err := Getcwd(buf[0:])
  208. if err != nil {
  209. return "", err
  210. }
  211. // Getcwd returns the number of bytes written to buf, including the NUL.
  212. if n < 1 || n > len(buf) || buf[n-1] != 0 {
  213. return "", EINVAL
  214. }
  215. return string(buf[0 : n-1]), nil
  216. }
  217. func Getgroups() (gids []int, err error) {
  218. n, err := getgroups(0, nil)
  219. if err != nil {
  220. return nil, err
  221. }
  222. if n == 0 {
  223. return nil, nil
  224. }
  225. // Sanity check group count. Max is 1<<16 on Linux.
  226. if n < 0 || n > 1<<20 {
  227. return nil, EINVAL
  228. }
  229. a := make([]_Gid_t, n)
  230. n, err = getgroups(n, &a[0])
  231. if err != nil {
  232. return nil, err
  233. }
  234. gids = make([]int, n)
  235. for i, v := range a[0:n] {
  236. gids[i] = int(v)
  237. }
  238. return
  239. }
  240. func Setgroups(gids []int) (err error) {
  241. if len(gids) == 0 {
  242. return setgroups(0, nil)
  243. }
  244. a := make([]_Gid_t, len(gids))
  245. for i, v := range gids {
  246. a[i] = _Gid_t(v)
  247. }
  248. return setgroups(len(a), &a[0])
  249. }
  250. type WaitStatus uint32
  251. // Wait status is 7 bits at bottom, either 0 (exited),
  252. // 0x7F (stopped), or a signal number that caused an exit.
  253. // The 0x80 bit is whether there was a core dump.
  254. // An extra number (exit code, signal causing a stop)
  255. // is in the high bits. At least that's the idea.
  256. // There are various irregularities. For example, the
  257. // "continued" status is 0xFFFF, distinguishing itself
  258. // from stopped via the core dump bit.
  259. const (
  260. mask = 0x7F
  261. core = 0x80
  262. exited = 0x00
  263. stopped = 0x7F
  264. shift = 8
  265. )
  266. func (w WaitStatus) Exited() bool { return w&mask == exited }
  267. func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited }
  268. func (w WaitStatus) Stopped() bool { return w&0xFF == stopped }
  269. func (w WaitStatus) Continued() bool { return w == 0xFFFF }
  270. func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0 }
  271. func (w WaitStatus) ExitStatus() int {
  272. if !w.Exited() {
  273. return -1
  274. }
  275. return int(w>>shift) & 0xFF
  276. }
  277. func (w WaitStatus) Signal() syscall.Signal {
  278. if !w.Signaled() {
  279. return -1
  280. }
  281. return syscall.Signal(w & mask)
  282. }
  283. func (w WaitStatus) StopSignal() syscall.Signal {
  284. if !w.Stopped() {
  285. return -1
  286. }
  287. return syscall.Signal(w>>shift) & 0xFF
  288. }
  289. func (w WaitStatus) TrapCause() int {
  290. if w.StopSignal() != SIGTRAP {
  291. return -1
  292. }
  293. return int(w>>shift) >> 8
  294. }
  295. //sys wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error)
  296. func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, err error) {
  297. var status _C_int
  298. wpid, err = wait4(pid, &status, options, rusage)
  299. if wstatus != nil {
  300. *wstatus = WaitStatus(status)
  301. }
  302. return
  303. }
  304. func Mkfifo(path string, mode uint32) error {
  305. return Mknod(path, mode|S_IFIFO, 0)
  306. }
  307. func Mkfifoat(dirfd int, path string, mode uint32) error {
  308. return Mknodat(dirfd, path, mode|S_IFIFO, 0)
  309. }
  310. func (sa *SockaddrInet4) sockaddr() (unsafe.Pointer, _Socklen, error) {
  311. if sa.Port < 0 || sa.Port > 0xFFFF {
  312. return nil, 0, EINVAL
  313. }
  314. sa.raw.Family = AF_INET
  315. p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
  316. p[0] = byte(sa.Port >> 8)
  317. p[1] = byte(sa.Port)
  318. for i := 0; i < len(sa.Addr); i++ {
  319. sa.raw.Addr[i] = sa.Addr[i]
  320. }
  321. return unsafe.Pointer(&sa.raw), SizeofSockaddrInet4, nil
  322. }
  323. func (sa *SockaddrInet6) sockaddr() (unsafe.Pointer, _Socklen, error) {
  324. if sa.Port < 0 || sa.Port > 0xFFFF {
  325. return nil, 0, EINVAL
  326. }
  327. sa.raw.Family = AF_INET6
  328. p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
  329. p[0] = byte(sa.Port >> 8)
  330. p[1] = byte(sa.Port)
  331. sa.raw.Scope_id = sa.ZoneId
  332. for i := 0; i < len(sa.Addr); i++ {
  333. sa.raw.Addr[i] = sa.Addr[i]
  334. }
  335. return unsafe.Pointer(&sa.raw), SizeofSockaddrInet6, nil
  336. }
  337. func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) {
  338. name := sa.Name
  339. n := len(name)
  340. if n >= len(sa.raw.Path) {
  341. return nil, 0, EINVAL
  342. }
  343. sa.raw.Family = AF_UNIX
  344. for i := 0; i < n; i++ {
  345. sa.raw.Path[i] = int8(name[i])
  346. }
  347. // length is family (uint16), name, NUL.
  348. sl := _Socklen(2)
  349. if n > 0 {
  350. sl += _Socklen(n) + 1
  351. }
  352. if sa.raw.Path[0] == '@' {
  353. sa.raw.Path[0] = 0
  354. // Don't count trailing NUL for abstract address.
  355. sl--
  356. }
  357. return unsafe.Pointer(&sa.raw), sl, nil
  358. }
  359. // SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets.
  360. type SockaddrLinklayer struct {
  361. Protocol uint16
  362. Ifindex int
  363. Hatype uint16
  364. Pkttype uint8
  365. Halen uint8
  366. Addr [8]byte
  367. raw RawSockaddrLinklayer
  368. }
  369. func (sa *SockaddrLinklayer) sockaddr() (unsafe.Pointer, _Socklen, error) {
  370. if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
  371. return nil, 0, EINVAL
  372. }
  373. sa.raw.Family = AF_PACKET
  374. sa.raw.Protocol = sa.Protocol
  375. sa.raw.Ifindex = int32(sa.Ifindex)
  376. sa.raw.Hatype = sa.Hatype
  377. sa.raw.Pkttype = sa.Pkttype
  378. sa.raw.Halen = sa.Halen
  379. for i := 0; i < len(sa.Addr); i++ {
  380. sa.raw.Addr[i] = sa.Addr[i]
  381. }
  382. return unsafe.Pointer(&sa.raw), SizeofSockaddrLinklayer, nil
  383. }
  384. // SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets.
  385. type SockaddrNetlink struct {
  386. Family uint16
  387. Pad uint16
  388. Pid uint32
  389. Groups uint32
  390. raw RawSockaddrNetlink
  391. }
  392. func (sa *SockaddrNetlink) sockaddr() (unsafe.Pointer, _Socklen, error) {
  393. sa.raw.Family = AF_NETLINK
  394. sa.raw.Pad = sa.Pad
  395. sa.raw.Pid = sa.Pid
  396. sa.raw.Groups = sa.Groups
  397. return unsafe.Pointer(&sa.raw), SizeofSockaddrNetlink, nil
  398. }
  399. // SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets
  400. // using the HCI protocol.
  401. type SockaddrHCI struct {
  402. Dev uint16
  403. Channel uint16
  404. raw RawSockaddrHCI
  405. }
  406. func (sa *SockaddrHCI) sockaddr() (unsafe.Pointer, _Socklen, error) {
  407. sa.raw.Family = AF_BLUETOOTH
  408. sa.raw.Dev = sa.Dev
  409. sa.raw.Channel = sa.Channel
  410. return unsafe.Pointer(&sa.raw), SizeofSockaddrHCI, nil
  411. }
  412. // SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets
  413. // using the L2CAP protocol.
  414. type SockaddrL2 struct {
  415. PSM uint16
  416. CID uint16
  417. Addr [6]uint8
  418. AddrType uint8
  419. raw RawSockaddrL2
  420. }
  421. func (sa *SockaddrL2) sockaddr() (unsafe.Pointer, _Socklen, error) {
  422. sa.raw.Family = AF_BLUETOOTH
  423. psm := (*[2]byte)(unsafe.Pointer(&sa.raw.Psm))
  424. psm[0] = byte(sa.PSM)
  425. psm[1] = byte(sa.PSM >> 8)
  426. for i := 0; i < len(sa.Addr); i++ {
  427. sa.raw.Bdaddr[i] = sa.Addr[len(sa.Addr)-1-i]
  428. }
  429. cid := (*[2]byte)(unsafe.Pointer(&sa.raw.Cid))
  430. cid[0] = byte(sa.CID)
  431. cid[1] = byte(sa.CID >> 8)
  432. sa.raw.Bdaddr_type = sa.AddrType
  433. return unsafe.Pointer(&sa.raw), SizeofSockaddrL2, nil
  434. }
  435. // SockaddrRFCOMM implements the Sockaddr interface for AF_BLUETOOTH type sockets
  436. // using the RFCOMM protocol.
  437. //
  438. // Server example:
  439. //
  440. // fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
  441. // _ = unix.Bind(fd, &unix.SockaddrRFCOMM{
  442. // Channel: 1,
  443. // Addr: [6]uint8{0, 0, 0, 0, 0, 0}, // BDADDR_ANY or 00:00:00:00:00:00
  444. // })
  445. // _ = Listen(fd, 1)
  446. // nfd, sa, _ := Accept(fd)
  447. // fmt.Printf("conn addr=%v fd=%d", sa.(*unix.SockaddrRFCOMM).Addr, nfd)
  448. // Read(nfd, buf)
  449. //
  450. // Client example:
  451. //
  452. // fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
  453. // _ = Connect(fd, &SockaddrRFCOMM{
  454. // Channel: 1,
  455. // Addr: [6]byte{0x11, 0x22, 0x33, 0xaa, 0xbb, 0xcc}, // CC:BB:AA:33:22:11
  456. // })
  457. // Write(fd, []byte(`hello`))
  458. type SockaddrRFCOMM struct {
  459. // Addr represents a bluetooth address, byte ordering is little-endian.
  460. Addr [6]uint8
  461. // Channel is a designated bluetooth channel, only 1-30 are available for use.
  462. // Since Linux 2.6.7 and further zero value is the first available channel.
  463. Channel uint8
  464. raw RawSockaddrRFCOMM
  465. }
  466. func (sa *SockaddrRFCOMM) sockaddr() (unsafe.Pointer, _Socklen, error) {
  467. sa.raw.Family = AF_BLUETOOTH
  468. sa.raw.Channel = sa.Channel
  469. sa.raw.Bdaddr = sa.Addr
  470. return unsafe.Pointer(&sa.raw), SizeofSockaddrRFCOMM, nil
  471. }
  472. // SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets.
  473. // The RxID and TxID fields are used for transport protocol addressing in
  474. // (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with
  475. // zero values for CAN_RAW and CAN_BCM sockets as they have no meaning.
  476. //
  477. // The SockaddrCAN struct must be bound to the socket file descriptor
  478. // using Bind before the CAN socket can be used.
  479. //
  480. // // Read one raw CAN frame
  481. // fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW)
  482. // addr := &SockaddrCAN{Ifindex: index}
  483. // Bind(fd, addr)
  484. // frame := make([]byte, 16)
  485. // Read(fd, frame)
  486. //
  487. // The full SocketCAN documentation can be found in the linux kernel
  488. // archives at: https://www.kernel.org/doc/Documentation/networking/can.txt
  489. type SockaddrCAN struct {
  490. Ifindex int
  491. RxID uint32
  492. TxID uint32
  493. raw RawSockaddrCAN
  494. }
  495. func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) {
  496. if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
  497. return nil, 0, EINVAL
  498. }
  499. sa.raw.Family = AF_CAN
  500. sa.raw.Ifindex = int32(sa.Ifindex)
  501. rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
  502. for i := 0; i < 4; i++ {
  503. sa.raw.Addr[i] = rx[i]
  504. }
  505. tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
  506. for i := 0; i < 4; i++ {
  507. sa.raw.Addr[i+4] = tx[i]
  508. }
  509. return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
  510. }
  511. // SockaddrALG implements the Sockaddr interface for AF_ALG type sockets.
  512. // SockaddrALG enables userspace access to the Linux kernel's cryptography
  513. // subsystem. The Type and Name fields specify which type of hash or cipher
  514. // should be used with a given socket.
  515. //
  516. // To create a file descriptor that provides access to a hash or cipher, both
  517. // Bind and Accept must be used. Once the setup process is complete, input
  518. // data can be written to the socket, processed by the kernel, and then read
  519. // back as hash output or ciphertext.
  520. //
  521. // Here is an example of using an AF_ALG socket with SHA1 hashing.
  522. // The initial socket setup process is as follows:
  523. //
  524. // // Open a socket to perform SHA1 hashing.
  525. // fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0)
  526. // addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"}
  527. // unix.Bind(fd, addr)
  528. // // Note: unix.Accept does not work at this time; must invoke accept()
  529. // // manually using unix.Syscall.
  530. // hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0)
  531. //
  532. // Once a file descriptor has been returned from Accept, it may be used to
  533. // perform SHA1 hashing. The descriptor is not safe for concurrent use, but
  534. // may be re-used repeatedly with subsequent Write and Read operations.
  535. //
  536. // When hashing a small byte slice or string, a single Write and Read may
  537. // be used:
  538. //
  539. // // Assume hashfd is already configured using the setup process.
  540. // hash := os.NewFile(hashfd, "sha1")
  541. // // Hash an input string and read the results. Each Write discards
  542. // // previous hash state. Read always reads the current state.
  543. // b := make([]byte, 20)
  544. // for i := 0; i < 2; i++ {
  545. // io.WriteString(hash, "Hello, world.")
  546. // hash.Read(b)
  547. // fmt.Println(hex.EncodeToString(b))
  548. // }
  549. // // Output:
  550. // // 2ae01472317d1935a84797ec1983ae243fc6aa28
  551. // // 2ae01472317d1935a84797ec1983ae243fc6aa28
  552. //
  553. // For hashing larger byte slices, or byte streams such as those read from
  554. // a file or socket, use Sendto with MSG_MORE to instruct the kernel to update
  555. // the hash digest instead of creating a new one for a given chunk and finalizing it.
  556. //
  557. // // Assume hashfd and addr are already configured using the setup process.
  558. // hash := os.NewFile(hashfd, "sha1")
  559. // // Hash the contents of a file.
  560. // f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz")
  561. // b := make([]byte, 4096)
  562. // for {
  563. // n, err := f.Read(b)
  564. // if err == io.EOF {
  565. // break
  566. // }
  567. // unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr)
  568. // }
  569. // hash.Read(b)
  570. // fmt.Println(hex.EncodeToString(b))
  571. // // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5
  572. //
  573. // For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html.
  574. type SockaddrALG struct {
  575. Type string
  576. Name string
  577. Feature uint32
  578. Mask uint32
  579. raw RawSockaddrALG
  580. }
  581. func (sa *SockaddrALG) sockaddr() (unsafe.Pointer, _Socklen, error) {
  582. // Leave room for NUL byte terminator.
  583. if len(sa.Type) > 13 {
  584. return nil, 0, EINVAL
  585. }
  586. if len(sa.Name) > 63 {
  587. return nil, 0, EINVAL
  588. }
  589. sa.raw.Family = AF_ALG
  590. sa.raw.Feat = sa.Feature
  591. sa.raw.Mask = sa.Mask
  592. typ, err := ByteSliceFromString(sa.Type)
  593. if err != nil {
  594. return nil, 0, err
  595. }
  596. name, err := ByteSliceFromString(sa.Name)
  597. if err != nil {
  598. return nil, 0, err
  599. }
  600. copy(sa.raw.Type[:], typ)
  601. copy(sa.raw.Name[:], name)
  602. return unsafe.Pointer(&sa.raw), SizeofSockaddrALG, nil
  603. }
  604. // SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets.
  605. // SockaddrVM provides access to Linux VM sockets: a mechanism that enables
  606. // bidirectional communication between a hypervisor and its guest virtual
  607. // machines.
  608. type SockaddrVM struct {
  609. // CID and Port specify a context ID and port address for a VM socket.
  610. // Guests have a unique CID, and hosts may have a well-known CID of:
  611. // - VMADDR_CID_HYPERVISOR: refers to the hypervisor process.
  612. // - VMADDR_CID_HOST: refers to other processes on the host.
  613. CID uint32
  614. Port uint32
  615. raw RawSockaddrVM
  616. }
  617. func (sa *SockaddrVM) sockaddr() (unsafe.Pointer, _Socklen, error) {
  618. sa.raw.Family = AF_VSOCK
  619. sa.raw.Port = sa.Port
  620. sa.raw.Cid = sa.CID
  621. return unsafe.Pointer(&sa.raw), SizeofSockaddrVM, nil
  622. }
  623. type SockaddrXDP struct {
  624. Flags uint16
  625. Ifindex uint32
  626. QueueID uint32
  627. SharedUmemFD uint32
  628. raw RawSockaddrXDP
  629. }
  630. func (sa *SockaddrXDP) sockaddr() (unsafe.Pointer, _Socklen, error) {
  631. sa.raw.Family = AF_XDP
  632. sa.raw.Flags = sa.Flags
  633. sa.raw.Ifindex = sa.Ifindex
  634. sa.raw.Queue_id = sa.QueueID
  635. sa.raw.Shared_umem_fd = sa.SharedUmemFD
  636. return unsafe.Pointer(&sa.raw), SizeofSockaddrXDP, nil
  637. }
  638. // This constant mirrors the #define of PX_PROTO_OE in
  639. // linux/if_pppox.h. We're defining this by hand here instead of
  640. // autogenerating through mkerrors.sh because including
  641. // linux/if_pppox.h causes some declaration conflicts with other
  642. // includes (linux/if_pppox.h includes linux/in.h, which conflicts
  643. // with netinet/in.h). Given that we only need a single zero constant
  644. // out of that file, it's cleaner to just define it by hand here.
  645. const px_proto_oe = 0
  646. type SockaddrPPPoE struct {
  647. SID uint16
  648. Remote []byte
  649. Dev string
  650. raw RawSockaddrPPPoX
  651. }
  652. func (sa *SockaddrPPPoE) sockaddr() (unsafe.Pointer, _Socklen, error) {
  653. if len(sa.Remote) != 6 {
  654. return nil, 0, EINVAL
  655. }
  656. if len(sa.Dev) > IFNAMSIZ-1 {
  657. return nil, 0, EINVAL
  658. }
  659. *(*uint16)(unsafe.Pointer(&sa.raw[0])) = AF_PPPOX
  660. // This next field is in host-endian byte order. We can't use the
  661. // same unsafe pointer cast as above, because this value is not
  662. // 32-bit aligned and some architectures don't allow unaligned
  663. // access.
  664. //
  665. // However, the value of px_proto_oe is 0, so we can use
  666. // encoding/binary helpers to write the bytes without worrying
  667. // about the ordering.
  668. binary.BigEndian.PutUint32(sa.raw[2:6], px_proto_oe)
  669. // This field is deliberately big-endian, unlike the previous
  670. // one. The kernel expects SID to be in network byte order.
  671. binary.BigEndian.PutUint16(sa.raw[6:8], sa.SID)
  672. copy(sa.raw[8:14], sa.Remote)
  673. for i := 14; i < 14+IFNAMSIZ; i++ {
  674. sa.raw[i] = 0
  675. }
  676. copy(sa.raw[14:], sa.Dev)
  677. return unsafe.Pointer(&sa.raw), SizeofSockaddrPPPoX, nil
  678. }
  679. // SockaddrTIPC implements the Sockaddr interface for AF_TIPC type sockets.
  680. // For more information on TIPC, see: http://tipc.sourceforge.net/.
  681. type SockaddrTIPC struct {
  682. // Scope is the publication scopes when binding service/service range.
  683. // Should be set to TIPC_CLUSTER_SCOPE or TIPC_NODE_SCOPE.
  684. Scope int
  685. // Addr is the type of address used to manipulate a socket. Addr must be
  686. // one of:
  687. // - *TIPCSocketAddr: "id" variant in the C addr union
  688. // - *TIPCServiceRange: "nameseq" variant in the C addr union
  689. // - *TIPCServiceName: "name" variant in the C addr union
  690. //
  691. // If nil, EINVAL will be returned when the structure is used.
  692. Addr TIPCAddr
  693. raw RawSockaddrTIPC
  694. }
  695. // TIPCAddr is implemented by types that can be used as an address for
  696. // SockaddrTIPC. It is only implemented by *TIPCSocketAddr, *TIPCServiceRange,
  697. // and *TIPCServiceName.
  698. type TIPCAddr interface {
  699. tipcAddrtype() uint8
  700. tipcAddr() [12]byte
  701. }
  702. func (sa *TIPCSocketAddr) tipcAddr() [12]byte {
  703. var out [12]byte
  704. copy(out[:], (*(*[unsafe.Sizeof(TIPCSocketAddr{})]byte)(unsafe.Pointer(sa)))[:])
  705. return out
  706. }
  707. func (sa *TIPCSocketAddr) tipcAddrtype() uint8 { return TIPC_SOCKET_ADDR }
  708. func (sa *TIPCServiceRange) tipcAddr() [12]byte {
  709. var out [12]byte
  710. copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceRange{})]byte)(unsafe.Pointer(sa)))[:])
  711. return out
  712. }
  713. func (sa *TIPCServiceRange) tipcAddrtype() uint8 { return TIPC_SERVICE_RANGE }
  714. func (sa *TIPCServiceName) tipcAddr() [12]byte {
  715. var out [12]byte
  716. copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceName{})]byte)(unsafe.Pointer(sa)))[:])
  717. return out
  718. }
  719. func (sa *TIPCServiceName) tipcAddrtype() uint8 { return TIPC_SERVICE_ADDR }
  720. func (sa *SockaddrTIPC) sockaddr() (unsafe.Pointer, _Socklen, error) {
  721. if sa.Addr == nil {
  722. return nil, 0, EINVAL
  723. }
  724. sa.raw.Family = AF_TIPC
  725. sa.raw.Scope = int8(sa.Scope)
  726. sa.raw.Addrtype = sa.Addr.tipcAddrtype()
  727. sa.raw.Addr = sa.Addr.tipcAddr()
  728. return unsafe.Pointer(&sa.raw), SizeofSockaddrTIPC, nil
  729. }
  730. // SockaddrL2TPIP implements the Sockaddr interface for IPPROTO_L2TP/AF_INET sockets.
  731. type SockaddrL2TPIP struct {
  732. Addr [4]byte
  733. ConnId uint32
  734. raw RawSockaddrL2TPIP
  735. }
  736. func (sa *SockaddrL2TPIP) sockaddr() (unsafe.Pointer, _Socklen, error) {
  737. sa.raw.Family = AF_INET
  738. sa.raw.Conn_id = sa.ConnId
  739. for i := 0; i < len(sa.Addr); i++ {
  740. sa.raw.Addr[i] = sa.Addr[i]
  741. }
  742. return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP, nil
  743. }
  744. // SockaddrL2TPIP6 implements the Sockaddr interface for IPPROTO_L2TP/AF_INET6 sockets.
  745. type SockaddrL2TPIP6 struct {
  746. Addr [16]byte
  747. ZoneId uint32
  748. ConnId uint32
  749. raw RawSockaddrL2TPIP6
  750. }
  751. func (sa *SockaddrL2TPIP6) sockaddr() (unsafe.Pointer, _Socklen, error) {
  752. sa.raw.Family = AF_INET6
  753. sa.raw.Conn_id = sa.ConnId
  754. sa.raw.Scope_id = sa.ZoneId
  755. for i := 0; i < len(sa.Addr); i++ {
  756. sa.raw.Addr[i] = sa.Addr[i]
  757. }
  758. return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP6, nil
  759. }
  760. // SockaddrIUCV implements the Sockaddr interface for AF_IUCV sockets.
  761. type SockaddrIUCV struct {
  762. UserID string
  763. Name string
  764. raw RawSockaddrIUCV
  765. }
  766. func (sa *SockaddrIUCV) sockaddr() (unsafe.Pointer, _Socklen, error) {
  767. sa.raw.Family = AF_IUCV
  768. // These are EBCDIC encoded by the kernel, but we still need to pad them
  769. // with blanks. Initializing with blanks allows the caller to feed in either
  770. // a padded or an unpadded string.
  771. for i := 0; i < 8; i++ {
  772. sa.raw.Nodeid[i] = ' '
  773. sa.raw.User_id[i] = ' '
  774. sa.raw.Name[i] = ' '
  775. }
  776. if len(sa.UserID) > 8 || len(sa.Name) > 8 {
  777. return nil, 0, EINVAL
  778. }
  779. for i, b := range []byte(sa.UserID[:]) {
  780. sa.raw.User_id[i] = int8(b)
  781. }
  782. for i, b := range []byte(sa.Name[:]) {
  783. sa.raw.Name[i] = int8(b)
  784. }
  785. return unsafe.Pointer(&sa.raw), SizeofSockaddrIUCV, nil
  786. }
  787. func anyToSockaddr(fd int, rsa *RawSockaddrAny) (Sockaddr, error) {
  788. switch rsa.Addr.Family {
  789. case AF_NETLINK:
  790. pp := (*RawSockaddrNetlink)(unsafe.Pointer(rsa))
  791. sa := new(SockaddrNetlink)
  792. sa.Family = pp.Family
  793. sa.Pad = pp.Pad
  794. sa.Pid = pp.Pid
  795. sa.Groups = pp.Groups
  796. return sa, nil
  797. case AF_PACKET:
  798. pp := (*RawSockaddrLinklayer)(unsafe.Pointer(rsa))
  799. sa := new(SockaddrLinklayer)
  800. sa.Protocol = pp.Protocol
  801. sa.Ifindex = int(pp.Ifindex)
  802. sa.Hatype = pp.Hatype
  803. sa.Pkttype = pp.Pkttype
  804. sa.Halen = pp.Halen
  805. for i := 0; i < len(sa.Addr); i++ {
  806. sa.Addr[i] = pp.Addr[i]
  807. }
  808. return sa, nil
  809. case AF_UNIX:
  810. pp := (*RawSockaddrUnix)(unsafe.Pointer(rsa))
  811. sa := new(SockaddrUnix)
  812. if pp.Path[0] == 0 {
  813. // "Abstract" Unix domain socket.
  814. // Rewrite leading NUL as @ for textual display.
  815. // (This is the standard convention.)
  816. // Not friendly to overwrite in place,
  817. // but the callers below don't care.
  818. pp.Path[0] = '@'
  819. }
  820. // Assume path ends at NUL.
  821. // This is not technically the Linux semantics for
  822. // abstract Unix domain sockets--they are supposed
  823. // to be uninterpreted fixed-size binary blobs--but
  824. // everyone uses this convention.
  825. n := 0
  826. for n < len(pp.Path) && pp.Path[n] != 0 {
  827. n++
  828. }
  829. bytes := (*[len(pp.Path)]byte)(unsafe.Pointer(&pp.Path[0]))[0:n]
  830. sa.Name = string(bytes)
  831. return sa, nil
  832. case AF_INET:
  833. proto, err := GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL)
  834. if err != nil {
  835. return nil, err
  836. }
  837. switch proto {
  838. case IPPROTO_L2TP:
  839. pp := (*RawSockaddrL2TPIP)(unsafe.Pointer(rsa))
  840. sa := new(SockaddrL2TPIP)
  841. sa.ConnId = pp.Conn_id
  842. for i := 0; i < len(sa.Addr); i++ {
  843. sa.Addr[i] = pp.Addr[i]
  844. }
  845. return sa, nil
  846. default:
  847. pp := (*RawSockaddrInet4)(unsafe.Pointer(rsa))
  848. sa := new(SockaddrInet4)
  849. p := (*[2]byte)(unsafe.Pointer(&pp.Port))
  850. sa.Port = int(p[0])<<8 + int(p[1])
  851. for i := 0; i < len(sa.Addr); i++ {
  852. sa.Addr[i] = pp.Addr[i]
  853. }
  854. return sa, nil
  855. }
  856. case AF_INET6:
  857. proto, err := GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL)
  858. if err != nil {
  859. return nil, err
  860. }
  861. switch proto {
  862. case IPPROTO_L2TP:
  863. pp := (*RawSockaddrL2TPIP6)(unsafe.Pointer(rsa))
  864. sa := new(SockaddrL2TPIP6)
  865. sa.ConnId = pp.Conn_id
  866. sa.ZoneId = pp.Scope_id
  867. for i := 0; i < len(sa.Addr); i++ {
  868. sa.Addr[i] = pp.Addr[i]
  869. }
  870. return sa, nil
  871. default:
  872. pp := (*RawSockaddrInet6)(unsafe.Pointer(rsa))
  873. sa := new(SockaddrInet6)
  874. p := (*[2]byte)(unsafe.Pointer(&pp.Port))
  875. sa.Port = int(p[0])<<8 + int(p[1])
  876. sa.ZoneId = pp.Scope_id
  877. for i := 0; i < len(sa.Addr); i++ {
  878. sa.Addr[i] = pp.Addr[i]
  879. }
  880. return sa, nil
  881. }
  882. case AF_VSOCK:
  883. pp := (*RawSockaddrVM)(unsafe.Pointer(rsa))
  884. sa := &SockaddrVM{
  885. CID: pp.Cid,
  886. Port: pp.Port,
  887. }
  888. return sa, nil
  889. case AF_BLUETOOTH:
  890. proto, err := GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL)
  891. if err != nil {
  892. return nil, err
  893. }
  894. // only BTPROTO_L2CAP and BTPROTO_RFCOMM can accept connections
  895. switch proto {
  896. case BTPROTO_L2CAP:
  897. pp := (*RawSockaddrL2)(unsafe.Pointer(rsa))
  898. sa := &SockaddrL2{
  899. PSM: pp.Psm,
  900. CID: pp.Cid,
  901. Addr: pp.Bdaddr,
  902. AddrType: pp.Bdaddr_type,
  903. }
  904. return sa, nil
  905. case BTPROTO_RFCOMM:
  906. pp := (*RawSockaddrRFCOMM)(unsafe.Pointer(rsa))
  907. sa := &SockaddrRFCOMM{
  908. Channel: pp.Channel,
  909. Addr: pp.Bdaddr,
  910. }
  911. return sa, nil
  912. }
  913. case AF_XDP:
  914. pp := (*RawSockaddrXDP)(unsafe.Pointer(rsa))
  915. sa := &SockaddrXDP{
  916. Flags: pp.Flags,
  917. Ifindex: pp.Ifindex,
  918. QueueID: pp.Queue_id,
  919. SharedUmemFD: pp.Shared_umem_fd,
  920. }
  921. return sa, nil
  922. case AF_PPPOX:
  923. pp := (*RawSockaddrPPPoX)(unsafe.Pointer(rsa))
  924. if binary.BigEndian.Uint32(pp[2:6]) != px_proto_oe {
  925. return nil, EINVAL
  926. }
  927. sa := &SockaddrPPPoE{
  928. SID: binary.BigEndian.Uint16(pp[6:8]),
  929. Remote: pp[8:14],
  930. }
  931. for i := 14; i < 14+IFNAMSIZ; i++ {
  932. if pp[i] == 0 {
  933. sa.Dev = string(pp[14:i])
  934. break
  935. }
  936. }
  937. return sa, nil
  938. case AF_TIPC:
  939. pp := (*RawSockaddrTIPC)(unsafe.Pointer(rsa))
  940. sa := &SockaddrTIPC{
  941. Scope: int(pp.Scope),
  942. }
  943. // Determine which union variant is present in pp.Addr by checking
  944. // pp.Addrtype.
  945. switch pp.Addrtype {
  946. case TIPC_SERVICE_RANGE:
  947. sa.Addr = (*TIPCServiceRange)(unsafe.Pointer(&pp.Addr))
  948. case TIPC_SERVICE_ADDR:
  949. sa.Addr = (*TIPCServiceName)(unsafe.Pointer(&pp.Addr))
  950. case TIPC_SOCKET_ADDR:
  951. sa.Addr = (*TIPCSocketAddr)(unsafe.Pointer(&pp.Addr))
  952. default:
  953. return nil, EINVAL
  954. }
  955. return sa, nil
  956. case AF_IUCV:
  957. pp := (*RawSockaddrIUCV)(unsafe.Pointer(rsa))
  958. var user [8]byte
  959. var name [8]byte
  960. for i := 0; i < 8; i++ {
  961. user[i] = byte(pp.User_id[i])
  962. name[i] = byte(pp.Name[i])
  963. }
  964. sa := &SockaddrIUCV{
  965. UserID: string(user[:]),
  966. Name: string(name[:]),
  967. }
  968. return sa, nil
  969. case AF_CAN:
  970. pp := (*RawSockaddrCAN)(unsafe.Pointer(rsa))
  971. sa := &SockaddrCAN{
  972. Ifindex: int(pp.Ifindex),
  973. }
  974. rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
  975. for i := 0; i < 4; i++ {
  976. rx[i] = pp.Addr[i]
  977. }
  978. tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
  979. for i := 0; i < 4; i++ {
  980. tx[i] = pp.Addr[i+4]
  981. }
  982. return sa, nil
  983. }
  984. return nil, EAFNOSUPPORT
  985. }
  986. func Accept(fd int) (nfd int, sa Sockaddr, err error) {
  987. var rsa RawSockaddrAny
  988. var len _Socklen = SizeofSockaddrAny
  989. nfd, err = accept(fd, &rsa, &len)
  990. if err != nil {
  991. return
  992. }
  993. sa, err = anyToSockaddr(fd, &rsa)
  994. if err != nil {
  995. Close(nfd)
  996. nfd = 0
  997. }
  998. return
  999. }
  1000. func Accept4(fd int, flags int) (nfd int, sa Sockaddr, err error) {
  1001. var rsa RawSockaddrAny
  1002. var len _Socklen = SizeofSockaddrAny
  1003. nfd, err = accept4(fd, &rsa, &len, flags)
  1004. if err != nil {
  1005. return
  1006. }
  1007. if len > SizeofSockaddrAny {
  1008. panic("RawSockaddrAny too small")
  1009. }
  1010. sa, err = anyToSockaddr(fd, &rsa)
  1011. if err != nil {
  1012. Close(nfd)
  1013. nfd = 0
  1014. }
  1015. return
  1016. }
  1017. func Getsockname(fd int) (sa Sockaddr, err error) {
  1018. var rsa RawSockaddrAny
  1019. var len _Socklen = SizeofSockaddrAny
  1020. if err = getsockname(fd, &rsa, &len); err != nil {
  1021. return
  1022. }
  1023. return anyToSockaddr(fd, &rsa)
  1024. }
  1025. func GetsockoptIPMreqn(fd, level, opt int) (*IPMreqn, error) {
  1026. var value IPMreqn
  1027. vallen := _Socklen(SizeofIPMreqn)
  1028. err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
  1029. return &value, err
  1030. }
  1031. func GetsockoptUcred(fd, level, opt int) (*Ucred, error) {
  1032. var value Ucred
  1033. vallen := _Socklen(SizeofUcred)
  1034. err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
  1035. return &value, err
  1036. }
  1037. func GetsockoptTCPInfo(fd, level, opt int) (*TCPInfo, error) {
  1038. var value TCPInfo
  1039. vallen := _Socklen(SizeofTCPInfo)
  1040. err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
  1041. return &value, err
  1042. }
  1043. // GetsockoptString returns the string value of the socket option opt for the
  1044. // socket associated with fd at the given socket level.
  1045. func GetsockoptString(fd, level, opt int) (string, error) {
  1046. buf := make([]byte, 256)
  1047. vallen := _Socklen(len(buf))
  1048. err := getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
  1049. if err != nil {
  1050. if err == ERANGE {
  1051. buf = make([]byte, vallen)
  1052. err = getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
  1053. }
  1054. if err != nil {
  1055. return "", err
  1056. }
  1057. }
  1058. return string(buf[:vallen-1]), nil
  1059. }
  1060. func GetsockoptTpacketStats(fd, level, opt int) (*TpacketStats, error) {
  1061. var value TpacketStats
  1062. vallen := _Socklen(SizeofTpacketStats)
  1063. err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
  1064. return &value, err
  1065. }
  1066. func GetsockoptTpacketStatsV3(fd, level, opt int) (*TpacketStatsV3, error) {
  1067. var value TpacketStatsV3
  1068. vallen := _Socklen(SizeofTpacketStatsV3)
  1069. err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
  1070. return &value, err
  1071. }
  1072. func SetsockoptIPMreqn(fd, level, opt int, mreq *IPMreqn) (err error) {
  1073. return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
  1074. }
  1075. func SetsockoptPacketMreq(fd, level, opt int, mreq *PacketMreq) error {
  1076. return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
  1077. }
  1078. // SetsockoptSockFprog attaches a classic BPF or an extended BPF program to a
  1079. // socket to filter incoming packets. See 'man 7 socket' for usage information.
  1080. func SetsockoptSockFprog(fd, level, opt int, fprog *SockFprog) error {
  1081. return setsockopt(fd, level, opt, unsafe.Pointer(fprog), unsafe.Sizeof(*fprog))
  1082. }
  1083. func SetsockoptCanRawFilter(fd, level, opt int, filter []CanFilter) error {
  1084. var p unsafe.Pointer
  1085. if len(filter) > 0 {
  1086. p = unsafe.Pointer(&filter[0])
  1087. }
  1088. return setsockopt(fd, level, opt, p, uintptr(len(filter)*SizeofCanFilter))
  1089. }
  1090. func SetsockoptTpacketReq(fd, level, opt int, tp *TpacketReq) error {
  1091. return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
  1092. }
  1093. func SetsockoptTpacketReq3(fd, level, opt int, tp *TpacketReq3) error {
  1094. return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
  1095. }
  1096. // Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html)
  1097. // KeyctlInt calls keyctl commands in which each argument is an int.
  1098. // These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK,
  1099. // KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT,
  1100. // KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT,
  1101. // KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT.
  1102. //sys KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL
  1103. // KeyctlBuffer calls keyctl commands in which the third and fourth
  1104. // arguments are a buffer and its length, respectively.
  1105. // These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE.
  1106. //sys KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL
  1107. // KeyctlString calls keyctl commands which return a string.
  1108. // These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY.
  1109. func KeyctlString(cmd int, id int) (string, error) {
  1110. // We must loop as the string data may change in between the syscalls.
  1111. // We could allocate a large buffer here to reduce the chance that the
  1112. // syscall needs to be called twice; however, this is unnecessary as
  1113. // the performance loss is negligible.
  1114. var buffer []byte
  1115. for {
  1116. // Try to fill the buffer with data
  1117. length, err := KeyctlBuffer(cmd, id, buffer, 0)
  1118. if err != nil {
  1119. return "", err
  1120. }
  1121. // Check if the data was written
  1122. if length <= len(buffer) {
  1123. // Exclude the null terminator
  1124. return string(buffer[:length-1]), nil
  1125. }
  1126. // Make a bigger buffer if needed
  1127. buffer = make([]byte, length)
  1128. }
  1129. }
  1130. // Keyctl commands with special signatures.
  1131. // KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command.
  1132. // See the full documentation at:
  1133. // http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html
  1134. func KeyctlGetKeyringID(id int, create bool) (ringid int, err error) {
  1135. createInt := 0
  1136. if create {
  1137. createInt = 1
  1138. }
  1139. return KeyctlInt(KEYCTL_GET_KEYRING_ID, id, createInt, 0, 0)
  1140. }
  1141. // KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the
  1142. // key handle permission mask as described in the "keyctl setperm" section of
  1143. // http://man7.org/linux/man-pages/man1/keyctl.1.html.
  1144. // See the full documentation at:
  1145. // http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html
  1146. func KeyctlSetperm(id int, perm uint32) error {
  1147. _, err := KeyctlInt(KEYCTL_SETPERM, id, int(perm), 0, 0)
  1148. return err
  1149. }
  1150. //sys keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL
  1151. // KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command.
  1152. // See the full documentation at:
  1153. // http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html
  1154. func KeyctlJoinSessionKeyring(name string) (ringid int, err error) {
  1155. return keyctlJoin(KEYCTL_JOIN_SESSION_KEYRING, name)
  1156. }
  1157. //sys keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL
  1158. // KeyctlSearch implements the KEYCTL_SEARCH command.
  1159. // See the full documentation at:
  1160. // http://man7.org/linux/man-pages/man3/keyctl_search.3.html
  1161. func KeyctlSearch(ringid int, keyType, description string, destRingid int) (id int, err error) {
  1162. return keyctlSearch(KEYCTL_SEARCH, ringid, keyType, description, destRingid)
  1163. }
  1164. //sys keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL
  1165. // KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This
  1166. // command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice
  1167. // of Iovec (each of which represents a buffer) instead of a single buffer.
  1168. // See the full documentation at:
  1169. // http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html
  1170. func KeyctlInstantiateIOV(id int, payload []Iovec, ringid int) error {
  1171. return keyctlIOV(KEYCTL_INSTANTIATE_IOV, id, payload, ringid)
  1172. }
  1173. //sys keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL
  1174. // KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command
  1175. // computes a Diffie-Hellman shared secret based on the provide params. The
  1176. // secret is written to the provided buffer and the returned size is the number
  1177. // of bytes written (returning an error if there is insufficient space in the
  1178. // buffer). If a nil buffer is passed in, this function returns the minimum
  1179. // buffer length needed to store the appropriate data. Note that this differs
  1180. // from KEYCTL_READ's behavior which always returns the requested payload size.
  1181. // See the full documentation at:
  1182. // http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html
  1183. func KeyctlDHCompute(params *KeyctlDHParams, buffer []byte) (size int, err error) {
  1184. return keyctlDH(KEYCTL_DH_COMPUTE, params, buffer)
  1185. }
  1186. // KeyctlRestrictKeyring implements the KEYCTL_RESTRICT_KEYRING command. This
  1187. // command limits the set of keys that can be linked to the keyring, regardless
  1188. // of keyring permissions. The command requires the "setattr" permission.
  1189. //
  1190. // When called with an empty keyType the command locks the keyring, preventing
  1191. // any further keys from being linked to the keyring.
  1192. //
  1193. // The "asymmetric" keyType defines restrictions requiring key payloads to be
  1194. // DER encoded X.509 certificates signed by keys in another keyring. Restrictions
  1195. // for "asymmetric" include "builtin_trusted", "builtin_and_secondary_trusted",
  1196. // "key_or_keyring:<key>", and "key_or_keyring:<key>:chain".
  1197. //
  1198. // As of Linux 4.12, only the "asymmetric" keyType defines type-specific
  1199. // restrictions.
  1200. //
  1201. // See the full documentation at:
  1202. // http://man7.org/linux/man-pages/man3/keyctl_restrict_keyring.3.html
  1203. // http://man7.org/linux/man-pages/man2/keyctl.2.html
  1204. func KeyctlRestrictKeyring(ringid int, keyType string, restriction string) error {
  1205. if keyType == "" {
  1206. return keyctlRestrictKeyring(KEYCTL_RESTRICT_KEYRING, ringid)
  1207. }
  1208. return keyctlRestrictKeyringByType(KEYCTL_RESTRICT_KEYRING, ringid, keyType, restriction)
  1209. }
  1210. //sys keyctlRestrictKeyringByType(cmd int, arg2 int, keyType string, restriction string) (err error) = SYS_KEYCTL
  1211. //sys keyctlRestrictKeyring(cmd int, arg2 int) (err error) = SYS_KEYCTL
  1212. func Recvmsg(fd int, p, oob []byte, flags int) (n, oobn int, recvflags int, from Sockaddr, err error) {
  1213. var msg Msghdr
  1214. var rsa RawSockaddrAny
  1215. msg.Name = (*byte)(unsafe.Pointer(&rsa))
  1216. msg.Namelen = uint32(SizeofSockaddrAny)
  1217. var iov Iovec
  1218. if len(p) > 0 {
  1219. iov.Base = &p[0]
  1220. iov.SetLen(len(p))
  1221. }
  1222. var dummy byte
  1223. if len(oob) > 0 {
  1224. if len(p) == 0 {
  1225. var sockType int
  1226. sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
  1227. if err != nil {
  1228. return
  1229. }
  1230. // receive at least one normal byte
  1231. if sockType != SOCK_DGRAM {
  1232. iov.Base = &dummy
  1233. iov.SetLen(1)
  1234. }
  1235. }
  1236. msg.Control = &oob[0]
  1237. msg.SetControllen(len(oob))
  1238. }
  1239. msg.Iov = &iov
  1240. msg.Iovlen = 1
  1241. if n, err = recvmsg(fd, &msg, flags); err != nil {
  1242. return
  1243. }
  1244. oobn = int(msg.Controllen)
  1245. recvflags = int(msg.Flags)
  1246. // source address is only specified if the socket is unconnected
  1247. if rsa.Addr.Family != AF_UNSPEC {
  1248. from, err = anyToSockaddr(fd, &rsa)
  1249. }
  1250. return
  1251. }
  1252. func Sendmsg(fd int, p, oob []byte, to Sockaddr, flags int) (err error) {
  1253. _, err = SendmsgN(fd, p, oob, to, flags)
  1254. return
  1255. }
  1256. func SendmsgN(fd int, p, oob []byte, to Sockaddr, flags int) (n int, err error) {
  1257. var ptr unsafe.Pointer
  1258. var salen _Socklen
  1259. if to != nil {
  1260. var err error
  1261. ptr, salen, err = to.sockaddr()
  1262. if err != nil {
  1263. return 0, err
  1264. }
  1265. }
  1266. var msg Msghdr
  1267. msg.Name = (*byte)(ptr)
  1268. msg.Namelen = uint32(salen)
  1269. var iov Iovec
  1270. if len(p) > 0 {
  1271. iov.Base = &p[0]
  1272. iov.SetLen(len(p))
  1273. }
  1274. var dummy byte
  1275. if len(oob) > 0 {
  1276. if len(p) == 0 {
  1277. var sockType int
  1278. sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
  1279. if err != nil {
  1280. return 0, err
  1281. }
  1282. // send at least one normal byte
  1283. if sockType != SOCK_DGRAM {
  1284. iov.Base = &dummy
  1285. iov.SetLen(1)
  1286. }
  1287. }
  1288. msg.Control = &oob[0]
  1289. msg.SetControllen(len(oob))
  1290. }
  1291. msg.Iov = &iov
  1292. msg.Iovlen = 1
  1293. if n, err = sendmsg(fd, &msg, flags); err != nil {
  1294. return 0, err
  1295. }
  1296. if len(oob) > 0 && len(p) == 0 {
  1297. n = 0
  1298. }
  1299. return n, nil
  1300. }
  1301. // BindToDevice binds the socket associated with fd to device.
  1302. func BindToDevice(fd int, device string) (err error) {
  1303. return SetsockoptString(fd, SOL_SOCKET, SO_BINDTODEVICE, device)
  1304. }
  1305. //sys ptrace(request int, pid int, addr uintptr, data uintptr) (err error)
  1306. func ptracePeek(req int, pid int, addr uintptr, out []byte) (count int, err error) {
  1307. // The peek requests are machine-size oriented, so we wrap it
  1308. // to retrieve arbitrary-length data.
  1309. // The ptrace syscall differs from glibc's ptrace.
  1310. // Peeks returns the word in *data, not as the return value.
  1311. var buf [SizeofPtr]byte
  1312. // Leading edge. PEEKTEXT/PEEKDATA don't require aligned
  1313. // access (PEEKUSER warns that it might), but if we don't
  1314. // align our reads, we might straddle an unmapped page
  1315. // boundary and not get the bytes leading up to the page
  1316. // boundary.
  1317. n := 0
  1318. if addr%SizeofPtr != 0 {
  1319. err = ptrace(req, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
  1320. if err != nil {
  1321. return 0, err
  1322. }
  1323. n += copy(out, buf[addr%SizeofPtr:])
  1324. out = out[n:]
  1325. }
  1326. // Remainder.
  1327. for len(out) > 0 {
  1328. // We use an internal buffer to guarantee alignment.
  1329. // It's not documented if this is necessary, but we're paranoid.
  1330. err = ptrace(req, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
  1331. if err != nil {
  1332. return n, err
  1333. }
  1334. copied := copy(out, buf[0:])
  1335. n += copied
  1336. out = out[copied:]
  1337. }
  1338. return n, nil
  1339. }
  1340. func PtracePeekText(pid int, addr uintptr, out []byte) (count int, err error) {
  1341. return ptracePeek(PTRACE_PEEKTEXT, pid, addr, out)
  1342. }
  1343. func PtracePeekData(pid int, addr uintptr, out []byte) (count int, err error) {
  1344. return ptracePeek(PTRACE_PEEKDATA, pid, addr, out)
  1345. }
  1346. func PtracePeekUser(pid int, addr uintptr, out []byte) (count int, err error) {
  1347. return ptracePeek(PTRACE_PEEKUSR, pid, addr, out)
  1348. }
  1349. func ptracePoke(pokeReq int, peekReq int, pid int, addr uintptr, data []byte) (count int, err error) {
  1350. // As for ptracePeek, we need to align our accesses to deal
  1351. // with the possibility of straddling an invalid page.
  1352. // Leading edge.
  1353. n := 0
  1354. if addr%SizeofPtr != 0 {
  1355. var buf [SizeofPtr]byte
  1356. err = ptrace(peekReq, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
  1357. if err != nil {
  1358. return 0, err
  1359. }
  1360. n += copy(buf[addr%SizeofPtr:], data)
  1361. word := *((*uintptr)(unsafe.Pointer(&buf[0])))
  1362. err = ptrace(pokeReq, pid, addr-addr%SizeofPtr, word)
  1363. if err != nil {
  1364. return 0, err
  1365. }
  1366. data = data[n:]
  1367. }
  1368. // Interior.
  1369. for len(data) > SizeofPtr {
  1370. word := *((*uintptr)(unsafe.Pointer(&data[0])))
  1371. err = ptrace(pokeReq, pid, addr+uintptr(n), word)
  1372. if err != nil {
  1373. return n, err
  1374. }
  1375. n += SizeofPtr
  1376. data = data[SizeofPtr:]
  1377. }
  1378. // Trailing edge.
  1379. if len(data) > 0 {
  1380. var buf [SizeofPtr]byte
  1381. err = ptrace(peekReq, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
  1382. if err != nil {
  1383. return n, err
  1384. }
  1385. copy(buf[0:], data)
  1386. word := *((*uintptr)(unsafe.Pointer(&buf[0])))
  1387. err = ptrace(pokeReq, pid, addr+uintptr(n), word)
  1388. if err != nil {
  1389. return n, err
  1390. }
  1391. n += len(data)
  1392. }
  1393. return n, nil
  1394. }
  1395. func PtracePokeText(pid int, addr uintptr, data []byte) (count int, err error) {
  1396. return ptracePoke(PTRACE_POKETEXT, PTRACE_PEEKTEXT, pid, addr, data)
  1397. }
  1398. func PtracePokeData(pid int, addr uintptr, data []byte) (count int, err error) {
  1399. return ptracePoke(PTRACE_POKEDATA, PTRACE_PEEKDATA, pid, addr, data)
  1400. }
  1401. func PtracePokeUser(pid int, addr uintptr, data []byte) (count int, err error) {
  1402. return ptracePoke(PTRACE_POKEUSR, PTRACE_PEEKUSR, pid, addr, data)
  1403. }
  1404. func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) {
  1405. return ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout)))
  1406. }
  1407. func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) {
  1408. return ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs)))
  1409. }
  1410. func PtraceSetOptions(pid int, options int) (err error) {
  1411. return ptrace(PTRACE_SETOPTIONS, pid, 0, uintptr(options))
  1412. }
  1413. func PtraceGetEventMsg(pid int) (msg uint, err error) {
  1414. var data _C_long
  1415. err = ptrace(PTRACE_GETEVENTMSG, pid, 0, uintptr(unsafe.Pointer(&data)))
  1416. msg = uint(data)
  1417. return
  1418. }
  1419. func PtraceCont(pid int, signal int) (err error) {
  1420. return ptrace(PTRACE_CONT, pid, 0, uintptr(signal))
  1421. }
  1422. func PtraceSyscall(pid int, signal int) (err error) {
  1423. return ptrace(PTRACE_SYSCALL, pid, 0, uintptr(signal))
  1424. }
  1425. func PtraceSingleStep(pid int) (err error) { return ptrace(PTRACE_SINGLESTEP, pid, 0, 0) }
  1426. func PtraceInterrupt(pid int) (err error) { return ptrace(PTRACE_INTERRUPT, pid, 0, 0) }
  1427. func PtraceAttach(pid int) (err error) { return ptrace(PTRACE_ATTACH, pid, 0, 0) }
  1428. func PtraceSeize(pid int) (err error) { return ptrace(PTRACE_SEIZE, pid, 0, 0) }
  1429. func PtraceDetach(pid int) (err error) { return ptrace(PTRACE_DETACH, pid, 0, 0) }
  1430. //sys reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error)
  1431. func Reboot(cmd int) (err error) {
  1432. return reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, "")
  1433. }
  1434. func direntIno(buf []byte) (uint64, bool) {
  1435. return readInt(buf, unsafe.Offsetof(Dirent{}.Ino), unsafe.Sizeof(Dirent{}.Ino))
  1436. }
  1437. func direntReclen(buf []byte) (uint64, bool) {
  1438. return readInt(buf, unsafe.Offsetof(Dirent{}.Reclen), unsafe.Sizeof(Dirent{}.Reclen))
  1439. }
  1440. func direntNamlen(buf []byte) (uint64, bool) {
  1441. reclen, ok := direntReclen(buf)
  1442. if !ok {
  1443. return 0, false
  1444. }
  1445. return reclen - uint64(unsafe.Offsetof(Dirent{}.Name)), true
  1446. }
  1447. //sys mount(source string, target string, fstype string, flags uintptr, data *byte) (err error)
  1448. func Mount(source string, target string, fstype string, flags uintptr, data string) (err error) {
  1449. // Certain file systems get rather angry and EINVAL if you give
  1450. // them an empty string of data, rather than NULL.
  1451. if data == "" {
  1452. return mount(source, target, fstype, flags, nil)
  1453. }
  1454. datap, err := BytePtrFromString(data)
  1455. if err != nil {
  1456. return err
  1457. }
  1458. return mount(source, target, fstype, flags, datap)
  1459. }
  1460. func Sendfile(outfd int, infd int, offset *int64, count int) (written int, err error) {
  1461. if raceenabled {
  1462. raceReleaseMerge(unsafe.Pointer(&ioSync))
  1463. }
  1464. return sendfile(outfd, infd, offset, count)
  1465. }
  1466. // Sendto
  1467. // Recvfrom
  1468. // Socketpair
  1469. /*
  1470. * Direct access
  1471. */
  1472. //sys Acct(path string) (err error)
  1473. //sys AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error)
  1474. //sys Adjtimex(buf *Timex) (state int, err error)
  1475. //sysnb Capget(hdr *CapUserHeader, data *CapUserData) (err error)
  1476. //sysnb Capset(hdr *CapUserHeader, data *CapUserData) (err error)
  1477. //sys Chdir(path string) (err error)
  1478. //sys Chroot(path string) (err error)
  1479. //sys ClockGetres(clockid int32, res *Timespec) (err error)
  1480. //sys ClockGettime(clockid int32, time *Timespec) (err error)
  1481. //sys ClockNanosleep(clockid int32, flags int, request *Timespec, remain *Timespec) (err error)
  1482. //sys Close(fd int) (err error)
  1483. //sys CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error)
  1484. //sys DeleteModule(name string, flags int) (err error)
  1485. //sys Dup(oldfd int) (fd int, err error)
  1486. func Dup2(oldfd, newfd int) error {
  1487. // Android O and newer blocks dup2; riscv and arm64 don't implement dup2.
  1488. if runtime.GOOS == "android" || runtime.GOARCH == "riscv64" || runtime.GOARCH == "arm64" {
  1489. return Dup3(oldfd, newfd, 0)
  1490. }
  1491. return dup2(oldfd, newfd)
  1492. }
  1493. //sys Dup3(oldfd int, newfd int, flags int) (err error)
  1494. //sysnb EpollCreate1(flag int) (fd int, err error)
  1495. //sysnb EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error)
  1496. //sys Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2
  1497. //sys Exit(code int) = SYS_EXIT_GROUP
  1498. //sys Fallocate(fd int, mode uint32, off int64, len int64) (err error)
  1499. //sys Fchdir(fd int) (err error)
  1500. //sys Fchmod(fd int, mode uint32) (err error)
  1501. //sys Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error)
  1502. //sys Fdatasync(fd int) (err error)
  1503. //sys Fgetxattr(fd int, attr string, dest []byte) (sz int, err error)
  1504. //sys FinitModule(fd int, params string, flags int) (err error)
  1505. //sys Flistxattr(fd int, dest []byte) (sz int, err error)
  1506. //sys Flock(fd int, how int) (err error)
  1507. //sys Fremovexattr(fd int, attr string) (err error)
  1508. //sys Fsetxattr(fd int, attr string, dest []byte, flags int) (err error)
  1509. //sys Fsync(fd int) (err error)
  1510. //sys Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64
  1511. //sysnb Getpgid(pid int) (pgid int, err error)
  1512. func Getpgrp() (pid int) {
  1513. pid, _ = Getpgid(0)
  1514. return
  1515. }
  1516. //sysnb Getpid() (pid int)
  1517. //sysnb Getppid() (ppid int)
  1518. //sys Getpriority(which int, who int) (prio int, err error)
  1519. //sys Getrandom(buf []byte, flags int) (n int, err error)
  1520. //sysnb Getrusage(who int, rusage *Rusage) (err error)
  1521. //sysnb Getsid(pid int) (sid int, err error)
  1522. //sysnb Gettid() (tid int)
  1523. //sys Getxattr(path string, attr string, dest []byte) (sz int, err error)
  1524. //sys InitModule(moduleImage []byte, params string) (err error)
  1525. //sys InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error)
  1526. //sysnb InotifyInit1(flags int) (fd int, err error)
  1527. //sysnb InotifyRmWatch(fd int, watchdesc uint32) (success int, err error)
  1528. //sysnb Kill(pid int, sig syscall.Signal) (err error)
  1529. //sys Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG
  1530. //sys Lgetxattr(path string, attr string, dest []byte) (sz int, err error)
  1531. //sys Listxattr(path string, dest []byte) (sz int, err error)
  1532. //sys Llistxattr(path string, dest []byte) (sz int, err error)
  1533. //sys Lremovexattr(path string, attr string) (err error)
  1534. //sys Lsetxattr(path string, attr string, data []byte, flags int) (err error)
  1535. //sys MemfdCreate(name string, flags int) (fd int, err error)
  1536. //sys Mkdirat(dirfd int, path string, mode uint32) (err error)
  1537. //sys Mknodat(dirfd int, path string, mode uint32, dev int) (err error)
  1538. //sys Nanosleep(time *Timespec, leftover *Timespec) (err error)
  1539. //sys PerfEventOpen(attr *PerfEventAttr, pid int, cpu int, groupFd int, flags int) (fd int, err error)
  1540. //sys PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT
  1541. //sysnb prlimit(pid int, resource int, newlimit *Rlimit, old *Rlimit) (err error) = SYS_PRLIMIT64
  1542. //sys Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error)
  1543. //sys Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) = SYS_PSELECT6
  1544. //sys read(fd int, p []byte) (n int, err error)
  1545. //sys Removexattr(path string, attr string) (err error)
  1546. //sys Renameat2(olddirfd int, oldpath string, newdirfd int, newpath string, flags uint) (err error)
  1547. //sys RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error)
  1548. //sys Setdomainname(p []byte) (err error)
  1549. //sys Sethostname(p []byte) (err error)
  1550. //sysnb Setpgid(pid int, pgid int) (err error)
  1551. //sysnb Setsid() (pid int, err error)
  1552. //sysnb Settimeofday(tv *Timeval) (err error)
  1553. //sys Setns(fd int, nstype int) (err error)
  1554. // PrctlRetInt performs a prctl operation specified by option and further
  1555. // optional arguments arg2 through arg5 depending on option. It returns a
  1556. // non-negative integer that is returned by the prctl syscall.
  1557. func PrctlRetInt(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (int, error) {
  1558. ret, _, err := Syscall6(SYS_PRCTL, uintptr(option), uintptr(arg2), uintptr(arg3), uintptr(arg4), uintptr(arg5), 0)
  1559. if err != 0 {
  1560. return 0, err
  1561. }
  1562. return int(ret), nil
  1563. }
  1564. // issue 1435.
  1565. // On linux Setuid and Setgid only affects the current thread, not the process.
  1566. // This does not match what most callers expect so we must return an error
  1567. // here rather than letting the caller think that the call succeeded.
  1568. func Setuid(uid int) (err error) {
  1569. return EOPNOTSUPP
  1570. }
  1571. func Setgid(uid int) (err error) {
  1572. return EOPNOTSUPP
  1573. }
  1574. // SetfsgidRetGid sets fsgid for current thread and returns previous fsgid set.
  1575. // setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability.
  1576. // If the call fails due to other reasons, current fsgid will be returned.
  1577. func SetfsgidRetGid(gid int) (int, error) {
  1578. return setfsgid(gid)
  1579. }
  1580. // SetfsuidRetUid sets fsuid for current thread and returns previous fsuid set.
  1581. // setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability
  1582. // If the call fails due to other reasons, current fsuid will be returned.
  1583. func SetfsuidRetUid(uid int) (int, error) {
  1584. return setfsuid(uid)
  1585. }
  1586. func Setfsgid(gid int) error {
  1587. _, err := setfsgid(gid)
  1588. return err
  1589. }
  1590. func Setfsuid(uid int) error {
  1591. _, err := setfsuid(uid)
  1592. return err
  1593. }
  1594. func Signalfd(fd int, sigmask *Sigset_t, flags int) (newfd int, err error) {
  1595. return signalfd(fd, sigmask, _C__NSIG/8, flags)
  1596. }
  1597. //sys Setpriority(which int, who int, prio int) (err error)
  1598. //sys Setxattr(path string, attr string, data []byte, flags int) (err error)
  1599. //sys signalfd(fd int, sigmask *Sigset_t, maskSize uintptr, flags int) (newfd int, err error) = SYS_SIGNALFD4
  1600. //sys Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error)
  1601. //sys Sync()
  1602. //sys Syncfs(fd int) (err error)
  1603. //sysnb Sysinfo(info *Sysinfo_t) (err error)
  1604. //sys Tee(rfd int, wfd int, len int, flags int) (n int64, err error)
  1605. //sysnb TimerfdCreate(clockid int, flags int) (fd int, err error)
  1606. //sysnb TimerfdGettime(fd int, currValue *ItimerSpec) (err error)
  1607. //sysnb TimerfdSettime(fd int, flags int, newValue *ItimerSpec, oldValue *ItimerSpec) (err error)
  1608. //sysnb Tgkill(tgid int, tid int, sig syscall.Signal) (err error)
  1609. //sysnb Times(tms *Tms) (ticks uintptr, err error)
  1610. //sysnb Umask(mask int) (oldmask int)
  1611. //sysnb Uname(buf *Utsname) (err error)
  1612. //sys Unmount(target string, flags int) (err error) = SYS_UMOUNT2
  1613. //sys Unshare(flags int) (err error)
  1614. //sys write(fd int, p []byte) (n int, err error)
  1615. //sys exitThread(code int) (err error) = SYS_EXIT
  1616. //sys readlen(fd int, p *byte, np int) (n int, err error) = SYS_READ
  1617. //sys writelen(fd int, p *byte, np int) (n int, err error) = SYS_WRITE
  1618. //sys readv(fd int, iovs []Iovec) (n int, err error) = SYS_READV
  1619. //sys writev(fd int, iovs []Iovec) (n int, err error) = SYS_WRITEV
  1620. //sys preadv(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PREADV
  1621. //sys pwritev(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PWRITEV
  1622. //sys preadv2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PREADV2
  1623. //sys pwritev2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PWRITEV2
  1624. func bytes2iovec(bs [][]byte) []Iovec {
  1625. iovecs := make([]Iovec, len(bs))
  1626. for i, b := range bs {
  1627. iovecs[i].SetLen(len(b))
  1628. if len(b) > 0 {
  1629. iovecs[i].Base = &b[0]
  1630. } else {
  1631. iovecs[i].Base = (*byte)(unsafe.Pointer(&_zero))
  1632. }
  1633. }
  1634. return iovecs
  1635. }
  1636. // offs2lohi splits offs into its lower and upper unsigned long. On 64-bit
  1637. // systems, hi will always be 0. On 32-bit systems, offs will be split in half.
  1638. // preadv/pwritev chose this calling convention so they don't need to add a
  1639. // padding-register for alignment on ARM.
  1640. func offs2lohi(offs int64) (lo, hi uintptr) {
  1641. return uintptr(offs), uintptr(uint64(offs) >> SizeofLong)
  1642. }
  1643. func Readv(fd int, iovs [][]byte) (n int, err error) {
  1644. iovecs := bytes2iovec(iovs)
  1645. n, err = readv(fd, iovecs)
  1646. readvRacedetect(iovecs, n, err)
  1647. return n, err
  1648. }
  1649. func Preadv(fd int, iovs [][]byte, offset int64) (n int, err error) {
  1650. iovecs := bytes2iovec(iovs)
  1651. lo, hi := offs2lohi(offset)
  1652. n, err = preadv(fd, iovecs, lo, hi)
  1653. readvRacedetect(iovecs, n, err)
  1654. return n, err
  1655. }
  1656. func Preadv2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) {
  1657. iovecs := bytes2iovec(iovs)
  1658. lo, hi := offs2lohi(offset)
  1659. n, err = preadv2(fd, iovecs, lo, hi, flags)
  1660. readvRacedetect(iovecs, n, err)
  1661. return n, err
  1662. }
  1663. func readvRacedetect(iovecs []Iovec, n int, err error) {
  1664. if !raceenabled {
  1665. return
  1666. }
  1667. for i := 0; n > 0 && i < len(iovecs); i++ {
  1668. m := int(iovecs[i].Len)
  1669. if m > n {
  1670. m = n
  1671. }
  1672. n -= m
  1673. if m > 0 {
  1674. raceWriteRange(unsafe.Pointer(iovecs[i].Base), m)
  1675. }
  1676. }
  1677. if err == nil {
  1678. raceAcquire(unsafe.Pointer(&ioSync))
  1679. }
  1680. }
  1681. func Writev(fd int, iovs [][]byte) (n int, err error) {
  1682. iovecs := bytes2iovec(iovs)
  1683. if raceenabled {
  1684. raceReleaseMerge(unsafe.Pointer(&ioSync))
  1685. }
  1686. n, err = writev(fd, iovecs)
  1687. writevRacedetect(iovecs, n)
  1688. return n, err
  1689. }
  1690. func Pwritev(fd int, iovs [][]byte, offset int64) (n int, err error) {
  1691. iovecs := bytes2iovec(iovs)
  1692. if raceenabled {
  1693. raceReleaseMerge(unsafe.Pointer(&ioSync))
  1694. }
  1695. lo, hi := offs2lohi(offset)
  1696. n, err = pwritev(fd, iovecs, lo, hi)
  1697. writevRacedetect(iovecs, n)
  1698. return n, err
  1699. }
  1700. func Pwritev2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) {
  1701. iovecs := bytes2iovec(iovs)
  1702. if raceenabled {
  1703. raceReleaseMerge(unsafe.Pointer(&ioSync))
  1704. }
  1705. lo, hi := offs2lohi(offset)
  1706. n, err = pwritev2(fd, iovecs, lo, hi, flags)
  1707. writevRacedetect(iovecs, n)
  1708. return n, err
  1709. }
  1710. func writevRacedetect(iovecs []Iovec, n int) {
  1711. if !raceenabled {
  1712. return
  1713. }
  1714. for i := 0; n > 0 && i < len(iovecs); i++ {
  1715. m := int(iovecs[i].Len)
  1716. if m > n {
  1717. m = n
  1718. }
  1719. n -= m
  1720. if m > 0 {
  1721. raceReadRange(unsafe.Pointer(iovecs[i].Base), m)
  1722. }
  1723. }
  1724. }
  1725. // mmap varies by architecture; see syscall_linux_*.go.
  1726. //sys munmap(addr uintptr, length uintptr) (err error)
  1727. var mapper = &mmapper{
  1728. active: make(map[*byte][]byte),
  1729. mmap: mmap,
  1730. munmap: munmap,
  1731. }
  1732. func Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) {
  1733. return mapper.Mmap(fd, offset, length, prot, flags)
  1734. }
  1735. func Munmap(b []byte) (err error) {
  1736. return mapper.Munmap(b)
  1737. }
  1738. //sys Madvise(b []byte, advice int) (err error)
  1739. //sys Mprotect(b []byte, prot int) (err error)
  1740. //sys Mlock(b []byte) (err error)
  1741. //sys Mlockall(flags int) (err error)
  1742. //sys Msync(b []byte, flags int) (err error)
  1743. //sys Munlock(b []byte) (err error)
  1744. //sys Munlockall() (err error)
  1745. // Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd,
  1746. // using the specified flags.
  1747. func Vmsplice(fd int, iovs []Iovec, flags int) (int, error) {
  1748. var p unsafe.Pointer
  1749. if len(iovs) > 0 {
  1750. p = unsafe.Pointer(&iovs[0])
  1751. }
  1752. n, _, errno := Syscall6(SYS_VMSPLICE, uintptr(fd), uintptr(p), uintptr(len(iovs)), uintptr(flags), 0, 0)
  1753. if errno != 0 {
  1754. return 0, syscall.Errno(errno)
  1755. }
  1756. return int(n), nil
  1757. }
  1758. func isGroupMember(gid int) bool {
  1759. groups, err := Getgroups()
  1760. if err != nil {
  1761. return false
  1762. }
  1763. for _, g := range groups {
  1764. if g == gid {
  1765. return true
  1766. }
  1767. }
  1768. return false
  1769. }
  1770. //sys faccessat(dirfd int, path string, mode uint32) (err error)
  1771. //sys Faccessat2(dirfd int, path string, mode uint32, flags int) (err error)
  1772. func Faccessat(dirfd int, path string, mode uint32, flags int) (err error) {
  1773. if flags == 0 {
  1774. return faccessat(dirfd, path, mode)
  1775. }
  1776. if err := Faccessat2(dirfd, path, mode, flags); err != ENOSYS && err != EPERM {
  1777. return err
  1778. }
  1779. // The Linux kernel faccessat system call does not take any flags.
  1780. // The glibc faccessat implements the flags itself; see
  1781. // https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/faccessat.c;hb=HEAD
  1782. // Because people naturally expect syscall.Faccessat to act
  1783. // like C faccessat, we do the same.
  1784. if flags & ^(AT_SYMLINK_NOFOLLOW|AT_EACCESS) != 0 {
  1785. return EINVAL
  1786. }
  1787. var st Stat_t
  1788. if err := Fstatat(dirfd, path, &st, flags&AT_SYMLINK_NOFOLLOW); err != nil {
  1789. return err
  1790. }
  1791. mode &= 7
  1792. if mode == 0 {
  1793. return nil
  1794. }
  1795. var uid int
  1796. if flags&AT_EACCESS != 0 {
  1797. uid = Geteuid()
  1798. } else {
  1799. uid = Getuid()
  1800. }
  1801. if uid == 0 {
  1802. if mode&1 == 0 {
  1803. // Root can read and write any file.
  1804. return nil
  1805. }
  1806. if st.Mode&0111 != 0 {
  1807. // Root can execute any file that anybody can execute.
  1808. return nil
  1809. }
  1810. return EACCES
  1811. }
  1812. var fmode uint32
  1813. if uint32(uid) == st.Uid {
  1814. fmode = (st.Mode >> 6) & 7
  1815. } else {
  1816. var gid int
  1817. if flags&AT_EACCESS != 0 {
  1818. gid = Getegid()
  1819. } else {
  1820. gid = Getgid()
  1821. }
  1822. if uint32(gid) == st.Gid || isGroupMember(gid) {
  1823. fmode = (st.Mode >> 3) & 7
  1824. } else {
  1825. fmode = st.Mode & 7
  1826. }
  1827. }
  1828. if fmode&mode == mode {
  1829. return nil
  1830. }
  1831. return EACCES
  1832. }
  1833. //sys nameToHandleAt(dirFD int, pathname string, fh *fileHandle, mountID *_C_int, flags int) (err error) = SYS_NAME_TO_HANDLE_AT
  1834. //sys openByHandleAt(mountFD int, fh *fileHandle, flags int) (fd int, err error) = SYS_OPEN_BY_HANDLE_AT
  1835. // fileHandle is the argument to nameToHandleAt and openByHandleAt. We
  1836. // originally tried to generate it via unix/linux/types.go with "type
  1837. // fileHandle C.struct_file_handle" but that generated empty structs
  1838. // for mips64 and mips64le. Instead, hard code it for now (it's the
  1839. // same everywhere else) until the mips64 generator issue is fixed.
  1840. type fileHandle struct {
  1841. Bytes uint32
  1842. Type int32
  1843. }
  1844. // FileHandle represents the C struct file_handle used by
  1845. // name_to_handle_at (see NameToHandleAt) and open_by_handle_at (see
  1846. // OpenByHandleAt).
  1847. type FileHandle struct {
  1848. *fileHandle
  1849. }
  1850. // NewFileHandle constructs a FileHandle.
  1851. func NewFileHandle(handleType int32, handle []byte) FileHandle {
  1852. const hdrSize = unsafe.Sizeof(fileHandle{})
  1853. buf := make([]byte, hdrSize+uintptr(len(handle)))
  1854. copy(buf[hdrSize:], handle)
  1855. fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
  1856. fh.Type = handleType
  1857. fh.Bytes = uint32(len(handle))
  1858. return FileHandle{fh}
  1859. }
  1860. func (fh *FileHandle) Size() int { return int(fh.fileHandle.Bytes) }
  1861. func (fh *FileHandle) Type() int32 { return fh.fileHandle.Type }
  1862. func (fh *FileHandle) Bytes() []byte {
  1863. n := fh.Size()
  1864. if n == 0 {
  1865. return nil
  1866. }
  1867. return (*[1 << 30]byte)(unsafe.Pointer(uintptr(unsafe.Pointer(&fh.fileHandle.Type)) + 4))[:n:n]
  1868. }
  1869. // NameToHandleAt wraps the name_to_handle_at system call; it obtains
  1870. // a handle for a path name.
  1871. func NameToHandleAt(dirfd int, path string, flags int) (handle FileHandle, mountID int, err error) {
  1872. var mid _C_int
  1873. // Try first with a small buffer, assuming the handle will
  1874. // only be 32 bytes.
  1875. size := uint32(32 + unsafe.Sizeof(fileHandle{}))
  1876. didResize := false
  1877. for {
  1878. buf := make([]byte, size)
  1879. fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
  1880. fh.Bytes = size - uint32(unsafe.Sizeof(fileHandle{}))
  1881. err = nameToHandleAt(dirfd, path, fh, &mid, flags)
  1882. if err == EOVERFLOW {
  1883. if didResize {
  1884. // We shouldn't need to resize more than once
  1885. return
  1886. }
  1887. didResize = true
  1888. size = fh.Bytes + uint32(unsafe.Sizeof(fileHandle{}))
  1889. continue
  1890. }
  1891. if err != nil {
  1892. return
  1893. }
  1894. return FileHandle{fh}, int(mid), nil
  1895. }
  1896. }
  1897. // OpenByHandleAt wraps the open_by_handle_at system call; it opens a
  1898. // file via a handle as previously returned by NameToHandleAt.
  1899. func OpenByHandleAt(mountFD int, handle FileHandle, flags int) (fd int, err error) {
  1900. return openByHandleAt(mountFD, handle.fileHandle, flags)
  1901. }
  1902. // Klogset wraps the sys_syslog system call; it sets console_loglevel to
  1903. // the value specified by arg and passes a dummy pointer to bufp.
  1904. func Klogset(typ int, arg int) (err error) {
  1905. var p unsafe.Pointer
  1906. _, _, errno := Syscall(SYS_SYSLOG, uintptr(typ), uintptr(p), uintptr(arg))
  1907. if errno != 0 {
  1908. return errnoErr(errno)
  1909. }
  1910. return nil
  1911. }
  1912. // RemoteIovec is Iovec with the pointer replaced with an integer.
  1913. // It is used for ProcessVMReadv and ProcessVMWritev, where the pointer
  1914. // refers to a location in a different process' address space, which
  1915. // would confuse the Go garbage collector.
  1916. type RemoteIovec struct {
  1917. Base uintptr
  1918. Len int
  1919. }
  1920. //sys ProcessVMReadv(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_READV
  1921. //sys ProcessVMWritev(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_WRITEV
  1922. /*
  1923. * Unimplemented
  1924. */
  1925. // AfsSyscall
  1926. // Alarm
  1927. // ArchPrctl
  1928. // Brk
  1929. // ClockNanosleep
  1930. // ClockSettime
  1931. // Clone
  1932. // EpollCtlOld
  1933. // EpollPwait
  1934. // EpollWaitOld
  1935. // Execve
  1936. // Fork
  1937. // Futex
  1938. // GetKernelSyms
  1939. // GetMempolicy
  1940. // GetRobustList
  1941. // GetThreadArea
  1942. // Getitimer
  1943. // Getpmsg
  1944. // IoCancel
  1945. // IoDestroy
  1946. // IoGetevents
  1947. // IoSetup
  1948. // IoSubmit
  1949. // IoprioGet
  1950. // IoprioSet
  1951. // KexecLoad
  1952. // LookupDcookie
  1953. // Mbind
  1954. // MigratePages
  1955. // Mincore
  1956. // ModifyLdt
  1957. // Mount
  1958. // MovePages
  1959. // MqGetsetattr
  1960. // MqNotify
  1961. // MqOpen
  1962. // MqTimedreceive
  1963. // MqTimedsend
  1964. // MqUnlink
  1965. // Mremap
  1966. // Msgctl
  1967. // Msgget
  1968. // Msgrcv
  1969. // Msgsnd
  1970. // Nfsservctl
  1971. // Personality
  1972. // Pselect6
  1973. // Ptrace
  1974. // Putpmsg
  1975. // Quotactl
  1976. // Readahead
  1977. // Readv
  1978. // RemapFilePages
  1979. // RestartSyscall
  1980. // RtSigaction
  1981. // RtSigpending
  1982. // RtSigprocmask
  1983. // RtSigqueueinfo
  1984. // RtSigreturn
  1985. // RtSigsuspend
  1986. // RtSigtimedwait
  1987. // SchedGetPriorityMax
  1988. // SchedGetPriorityMin
  1989. // SchedGetparam
  1990. // SchedGetscheduler
  1991. // SchedRrGetInterval
  1992. // SchedSetparam
  1993. // SchedYield
  1994. // Security
  1995. // Semctl
  1996. // Semget
  1997. // Semop
  1998. // Semtimedop
  1999. // SetMempolicy
  2000. // SetRobustList
  2001. // SetThreadArea
  2002. // SetTidAddress
  2003. // Shmat
  2004. // Shmctl
  2005. // Shmdt
  2006. // Shmget
  2007. // Sigaltstack
  2008. // Swapoff
  2009. // Swapon
  2010. // Sysfs
  2011. // TimerCreate
  2012. // TimerDelete
  2013. // TimerGetoverrun
  2014. // TimerGettime
  2015. // TimerSettime
  2016. // Tkill (obsolete)
  2017. // Tuxcall
  2018. // Umount2
  2019. // Uselib
  2020. // Utimensat
  2021. // Vfork
  2022. // Vhangup
  2023. // Vserver
  2024. // Waitid
  2025. // _Sysctl