123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423 |
- /*Package difflib is a partial port of Python difflib module.
- Original source: https://github.com/pmezard/go-difflib
- This file is trimmed to only the parts used by this repository.
- */
- package difflib // import "gotest.tools/internal/difflib"
- func min(a, b int) int {
- if a < b {
- return a
- }
- return b
- }
- func max(a, b int) int {
- if a > b {
- return a
- }
- return b
- }
- // Match stores line numbers of size of match
- type Match struct {
- A int
- B int
- Size int
- }
- // OpCode identifies the type of diff
- type OpCode struct {
- Tag byte
- I1 int
- I2 int
- J1 int
- J2 int
- }
- // SequenceMatcher compares sequence of strings. The basic
- // algorithm predates, and is a little fancier than, an algorithm
- // published in the late 1980's by Ratcliff and Obershelp under the
- // hyperbolic name "gestalt pattern matching". The basic idea is to find
- // the longest contiguous matching subsequence that contains no "junk"
- // elements (R-O doesn't address junk). The same idea is then applied
- // recursively to the pieces of the sequences to the left and to the right
- // of the matching subsequence. This does not yield minimal edit
- // sequences, but does tend to yield matches that "look right" to people.
- //
- // SequenceMatcher tries to compute a "human-friendly diff" between two
- // sequences. Unlike e.g. UNIX(tm) diff, the fundamental notion is the
- // longest *contiguous* & junk-free matching subsequence. That's what
- // catches peoples' eyes. The Windows(tm) windiff has another interesting
- // notion, pairing up elements that appear uniquely in each sequence.
- // That, and the method here, appear to yield more intuitive difference
- // reports than does diff. This method appears to be the least vulnerable
- // to synching up on blocks of "junk lines", though (like blank lines in
- // ordinary text files, or maybe "<P>" lines in HTML files). That may be
- // because this is the only method of the 3 that has a *concept* of
- // "junk" <wink>.
- //
- // Timing: Basic R-O is cubic time worst case and quadratic time expected
- // case. SequenceMatcher is quadratic time for the worst case and has
- // expected-case behavior dependent in a complicated way on how many
- // elements the sequences have in common; best case time is linear.
- type SequenceMatcher struct {
- a []string
- b []string
- b2j map[string][]int
- IsJunk func(string) bool
- autoJunk bool
- bJunk map[string]struct{}
- matchingBlocks []Match
- fullBCount map[string]int
- bPopular map[string]struct{}
- opCodes []OpCode
- }
- // NewMatcher returns a new SequenceMatcher
- func NewMatcher(a, b []string) *SequenceMatcher {
- m := SequenceMatcher{autoJunk: true}
- m.SetSeqs(a, b)
- return &m
- }
- // SetSeqs sets two sequences to be compared.
- func (m *SequenceMatcher) SetSeqs(a, b []string) {
- m.SetSeq1(a)
- m.SetSeq2(b)
- }
- // SetSeq1 sets the first sequence to be compared. The second sequence to be compared is
- // not changed.
- //
- // SequenceMatcher computes and caches detailed information about the second
- // sequence, so if you want to compare one sequence S against many sequences,
- // use .SetSeq2(s) once and call .SetSeq1(x) repeatedly for each of the other
- // sequences.
- //
- // See also SetSeqs() and SetSeq2().
- func (m *SequenceMatcher) SetSeq1(a []string) {
- if &a == &m.a {
- return
- }
- m.a = a
- m.matchingBlocks = nil
- m.opCodes = nil
- }
- // SetSeq2 sets the second sequence to be compared. The first sequence to be compared is
- // not changed.
- func (m *SequenceMatcher) SetSeq2(b []string) {
- if &b == &m.b {
- return
- }
- m.b = b
- m.matchingBlocks = nil
- m.opCodes = nil
- m.fullBCount = nil
- m.chainB()
- }
- func (m *SequenceMatcher) chainB() {
- // Populate line -> index mapping
- b2j := map[string][]int{}
- for i, s := range m.b {
- indices := b2j[s]
- indices = append(indices, i)
- b2j[s] = indices
- }
- // Purge junk elements
- m.bJunk = map[string]struct{}{}
- if m.IsJunk != nil {
- junk := m.bJunk
- for s := range b2j {
- if m.IsJunk(s) {
- junk[s] = struct{}{}
- }
- }
- for s := range junk {
- delete(b2j, s)
- }
- }
- // Purge remaining popular elements
- popular := map[string]struct{}{}
- n := len(m.b)
- if m.autoJunk && n >= 200 {
- ntest := n/100 + 1
- for s, indices := range b2j {
- if len(indices) > ntest {
- popular[s] = struct{}{}
- }
- }
- for s := range popular {
- delete(b2j, s)
- }
- }
- m.bPopular = popular
- m.b2j = b2j
- }
- func (m *SequenceMatcher) isBJunk(s string) bool {
- _, ok := m.bJunk[s]
- return ok
- }
- // Find longest matching block in a[alo:ahi] and b[blo:bhi].
- //
- // If IsJunk is not defined:
- //
- // Return (i,j,k) such that a[i:i+k] is equal to b[j:j+k], where
- // alo <= i <= i+k <= ahi
- // blo <= j <= j+k <= bhi
- // and for all (i',j',k') meeting those conditions,
- // k >= k'
- // i <= i'
- // and if i == i', j <= j'
- //
- // In other words, of all maximal matching blocks, return one that
- // starts earliest in a, and of all those maximal matching blocks that
- // start earliest in a, return the one that starts earliest in b.
- //
- // If IsJunk is defined, first the longest matching block is
- // determined as above, but with the additional restriction that no
- // junk element appears in the block. Then that block is extended as
- // far as possible by matching (only) junk elements on both sides. So
- // the resulting block never matches on junk except as identical junk
- // happens to be adjacent to an "interesting" match.
- //
- // If no blocks match, return (alo, blo, 0).
- func (m *SequenceMatcher) findLongestMatch(alo, ahi, blo, bhi int) Match {
- // CAUTION: stripping common prefix or suffix would be incorrect.
- // E.g.,
- // ab
- // acab
- // Longest matching block is "ab", but if common prefix is
- // stripped, it's "a" (tied with "b"). UNIX(tm) diff does so
- // strip, so ends up claiming that ab is changed to acab by
- // inserting "ca" in the middle. That's minimal but unintuitive:
- // "it's obvious" that someone inserted "ac" at the front.
- // Windiff ends up at the same place as diff, but by pairing up
- // the unique 'b's and then matching the first two 'a's.
- besti, bestj, bestsize := alo, blo, 0
- // find longest junk-free match
- // during an iteration of the loop, j2len[j] = length of longest
- // junk-free match ending with a[i-1] and b[j]
- j2len := map[int]int{}
- for i := alo; i != ahi; i++ {
- // look at all instances of a[i] in b; note that because
- // b2j has no junk keys, the loop is skipped if a[i] is junk
- newj2len := map[int]int{}
- for _, j := range m.b2j[m.a[i]] {
- // a[i] matches b[j]
- if j < blo {
- continue
- }
- if j >= bhi {
- break
- }
- k := j2len[j-1] + 1
- newj2len[j] = k
- if k > bestsize {
- besti, bestj, bestsize = i-k+1, j-k+1, k
- }
- }
- j2len = newj2len
- }
- // Extend the best by non-junk elements on each end. In particular,
- // "popular" non-junk elements aren't in b2j, which greatly speeds
- // the inner loop above, but also means "the best" match so far
- // doesn't contain any junk *or* popular non-junk elements.
- for besti > alo && bestj > blo && !m.isBJunk(m.b[bestj-1]) &&
- m.a[besti-1] == m.b[bestj-1] {
- besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
- }
- for besti+bestsize < ahi && bestj+bestsize < bhi &&
- !m.isBJunk(m.b[bestj+bestsize]) &&
- m.a[besti+bestsize] == m.b[bestj+bestsize] {
- bestsize += 1
- }
- // Now that we have a wholly interesting match (albeit possibly
- // empty!), we may as well suck up the matching junk on each
- // side of it too. Can't think of a good reason not to, and it
- // saves post-processing the (possibly considerable) expense of
- // figuring out what to do with it. In the case of an empty
- // interesting match, this is clearly the right thing to do,
- // because no other kind of match is possible in the regions.
- for besti > alo && bestj > blo && m.isBJunk(m.b[bestj-1]) &&
- m.a[besti-1] == m.b[bestj-1] {
- besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
- }
- for besti+bestsize < ahi && bestj+bestsize < bhi &&
- m.isBJunk(m.b[bestj+bestsize]) &&
- m.a[besti+bestsize] == m.b[bestj+bestsize] {
- bestsize += 1
- }
- return Match{A: besti, B: bestj, Size: bestsize}
- }
- // GetMatchingBlocks returns a list of triples describing matching subsequences.
- //
- // Each triple is of the form (i, j, n), and means that
- // a[i:i+n] == b[j:j+n]. The triples are monotonically increasing in
- // i and in j. It's also guaranteed that if (i, j, n) and (i', j', n') are
- // adjacent triples in the list, and the second is not the last triple in the
- // list, then i+n != i' or j+n != j'. IOW, adjacent triples never describe
- // adjacent equal blocks.
- //
- // The last triple is a dummy, (len(a), len(b), 0), and is the only
- // triple with n==0.
- func (m *SequenceMatcher) GetMatchingBlocks() []Match {
- if m.matchingBlocks != nil {
- return m.matchingBlocks
- }
- var matchBlocks func(alo, ahi, blo, bhi int, matched []Match) []Match
- matchBlocks = func(alo, ahi, blo, bhi int, matched []Match) []Match {
- match := m.findLongestMatch(alo, ahi, blo, bhi)
- i, j, k := match.A, match.B, match.Size
- if match.Size > 0 {
- if alo < i && blo < j {
- matched = matchBlocks(alo, i, blo, j, matched)
- }
- matched = append(matched, match)
- if i+k < ahi && j+k < bhi {
- matched = matchBlocks(i+k, ahi, j+k, bhi, matched)
- }
- }
- return matched
- }
- matched := matchBlocks(0, len(m.a), 0, len(m.b), nil)
- // It's possible that we have adjacent equal blocks in the
- // matching_blocks list now.
- nonAdjacent := []Match{}
- i1, j1, k1 := 0, 0, 0
- for _, b := range matched {
- // Is this block adjacent to i1, j1, k1?
- i2, j2, k2 := b.A, b.B, b.Size
- if i1+k1 == i2 && j1+k1 == j2 {
- // Yes, so collapse them -- this just increases the length of
- // the first block by the length of the second, and the first
- // block so lengthened remains the block to compare against.
- k1 += k2
- } else {
- // Not adjacent. Remember the first block (k1==0 means it's
- // the dummy we started with), and make the second block the
- // new block to compare against.
- if k1 > 0 {
- nonAdjacent = append(nonAdjacent, Match{i1, j1, k1})
- }
- i1, j1, k1 = i2, j2, k2
- }
- }
- if k1 > 0 {
- nonAdjacent = append(nonAdjacent, Match{i1, j1, k1})
- }
- nonAdjacent = append(nonAdjacent, Match{len(m.a), len(m.b), 0})
- m.matchingBlocks = nonAdjacent
- return m.matchingBlocks
- }
- // GetOpCodes returns a list of 5-tuples describing how to turn a into b.
- //
- // Each tuple is of the form (tag, i1, i2, j1, j2). The first tuple
- // has i1 == j1 == 0, and remaining tuples have i1 == the i2 from the
- // tuple preceding it, and likewise for j1 == the previous j2.
- //
- // The tags are characters, with these meanings:
- //
- // 'r' (replace): a[i1:i2] should be replaced by b[j1:j2]
- //
- // 'd' (delete): a[i1:i2] should be deleted, j1==j2 in this case.
- //
- // 'i' (insert): b[j1:j2] should be inserted at a[i1:i1], i1==i2 in this case.
- //
- // 'e' (equal): a[i1:i2] == b[j1:j2]
- func (m *SequenceMatcher) GetOpCodes() []OpCode {
- if m.opCodes != nil {
- return m.opCodes
- }
- i, j := 0, 0
- matching := m.GetMatchingBlocks()
- opCodes := make([]OpCode, 0, len(matching))
- for _, m := range matching {
- // invariant: we've pumped out correct diffs to change
- // a[:i] into b[:j], and the next matching block is
- // a[ai:ai+size] == b[bj:bj+size]. So we need to pump
- // out a diff to change a[i:ai] into b[j:bj], pump out
- // the matching block, and move (i,j) beyond the match
- ai, bj, size := m.A, m.B, m.Size
- tag := byte(0)
- if i < ai && j < bj {
- tag = 'r'
- } else if i < ai {
- tag = 'd'
- } else if j < bj {
- tag = 'i'
- }
- if tag > 0 {
- opCodes = append(opCodes, OpCode{tag, i, ai, j, bj})
- }
- i, j = ai+size, bj+size
- // the list of matching blocks is terminated by a
- // sentinel with size 0
- if size > 0 {
- opCodes = append(opCodes, OpCode{'e', ai, i, bj, j})
- }
- }
- m.opCodes = opCodes
- return m.opCodes
- }
- // GetGroupedOpCodes isolates change clusters by eliminating ranges with no changes.
- //
- // Return a generator of groups with up to n lines of context.
- // Each group is in the same format as returned by GetOpCodes().
- func (m *SequenceMatcher) GetGroupedOpCodes(n int) [][]OpCode {
- if n < 0 {
- n = 3
- }
- codes := m.GetOpCodes()
- if len(codes) == 0 {
- codes = []OpCode{{'e', 0, 1, 0, 1}}
- }
- // Fixup leading and trailing groups if they show no changes.
- if codes[0].Tag == 'e' {
- c := codes[0]
- i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
- codes[0] = OpCode{c.Tag, max(i1, i2-n), i2, max(j1, j2-n), j2}
- }
- if codes[len(codes)-1].Tag == 'e' {
- c := codes[len(codes)-1]
- i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
- codes[len(codes)-1] = OpCode{c.Tag, i1, min(i2, i1+n), j1, min(j2, j1+n)}
- }
- nn := n + n
- groups := [][]OpCode{}
- group := []OpCode{}
- for _, c := range codes {
- i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
- // End the current group and start a new one whenever
- // there is a large range with no changes.
- if c.Tag == 'e' && i2-i1 > nn {
- group = append(group, OpCode{c.Tag, i1, min(i2, i1+n),
- j1, min(j2, j1+n)})
- groups = append(groups, group)
- group = []OpCode{}
- i1, j1 = max(i1, i2-n), max(j1, j2-n)
- }
- group = append(group, OpCode{c.Tag, i1, i2, j1, j2})
- }
- if len(group) > 0 && !(len(group) == 1 && group[0].Tag == 'e') {
- groups = append(groups, group)
- }
- return groups
- }
|