vendor: update golang/net to c427ad74c

Signed-off-by: Tonis Tiigi <tonistiigi@gmail.com>
This commit is contained in:
Tonis Tiigi 2017-01-13 15:18:46 -08:00
parent 1eafa0f706
commit db37a86d37
84 changed files with 36664 additions and 1488 deletions

View file

@ -14,10 +14,11 @@ github.com/mattn/go-sqlite3 v1.1.0
github.com/tchap/go-patricia v2.2.6
github.com/vdemeester/shakers 24d7f1d6a71aa5d9cbe7390e4afb66b7eef9e1b3
# forked golang.org/x/net package includes a patch for lazy loading trace templates
golang.org/x/net 2beffdc2e92c8a3027590f898fe88f69af48a3f8 https://github.com/tonistiigi/net.git
golang.org/x/net c427ad74c6d7a814201695e9ffde0c5d400a7674
golang.org/x/sys 8f0908ab3b2457e2e15403d3697c9ef5cb4b57a9
github.com/docker/go-units e30f1e79f3cd72542f2026ceec18d3bd67ab859c
github.com/docker/go-connections 4ccf312bf1d35e5dbda654e57a9be4c3f3cd0366
golang.org/x/text f72d8390a633d5dfb0cc84043294db9f6c935756
github.com/RackSec/srslog 456df3a81436d29ba874f3590eeeee25d666f8a5
github.com/imdario/mergo 0.2.1

View file

@ -36,12 +36,7 @@
// Contexts.
package context // import "golang.org/x/net/context"
import (
"errors"
"fmt"
"sync"
"time"
)
import "time"
// A Context carries a deadline, a cancelation signal, and other values across
// API boundaries.
@ -66,7 +61,7 @@ type Context interface {
//
// // Stream generates values with DoSomething and sends them to out
// // until DoSomething returns an error or ctx.Done is closed.
// func Stream(ctx context.Context, out <-chan Value) error {
// func Stream(ctx context.Context, out chan<- Value) error {
// for {
// v, err := DoSomething(ctx)
// if err != nil {
@ -138,48 +133,6 @@ type Context interface {
Value(key interface{}) interface{}
}
// Canceled is the error returned by Context.Err when the context is canceled.
var Canceled = errors.New("context canceled")
// DeadlineExceeded is the error returned by Context.Err when the context's
// deadline passes.
var DeadlineExceeded = errors.New("context deadline exceeded")
// An emptyCtx is never canceled, has no values, and has no deadline. It is not
// struct{}, since vars of this type must have distinct addresses.
type emptyCtx int
func (*emptyCtx) Deadline() (deadline time.Time, ok bool) {
return
}
func (*emptyCtx) Done() <-chan struct{} {
return nil
}
func (*emptyCtx) Err() error {
return nil
}
func (*emptyCtx) Value(key interface{}) interface{} {
return nil
}
func (e *emptyCtx) String() string {
switch e {
case background:
return "context.Background"
case todo:
return "context.TODO"
}
return "unknown empty Context"
}
var (
background = new(emptyCtx)
todo = new(emptyCtx)
)
// Background returns a non-nil, empty Context. It is never canceled, has no
// values, and has no deadline. It is typically used by the main function,
// initialization, and tests, and as the top-level Context for incoming
@ -201,247 +154,3 @@ func TODO() Context {
// A CancelFunc does not wait for the work to stop.
// After the first call, subsequent calls to a CancelFunc do nothing.
type CancelFunc func()
// WithCancel returns a copy of parent with a new Done channel. The returned
// context's Done channel is closed when the returned cancel function is called
// or when the parent context's Done channel is closed, whichever happens first.
//
// Canceling this context releases resources associated with it, so code should
// call cancel as soon as the operations running in this Context complete.
func WithCancel(parent Context) (ctx Context, cancel CancelFunc) {
c := newCancelCtx(parent)
propagateCancel(parent, c)
return c, func() { c.cancel(true, Canceled) }
}
// newCancelCtx returns an initialized cancelCtx.
func newCancelCtx(parent Context) *cancelCtx {
return &cancelCtx{
Context: parent,
done: make(chan struct{}),
}
}
// propagateCancel arranges for child to be canceled when parent is.
func propagateCancel(parent Context, child canceler) {
if parent.Done() == nil {
return // parent is never canceled
}
if p, ok := parentCancelCtx(parent); ok {
p.mu.Lock()
if p.err != nil {
// parent has already been canceled
child.cancel(false, p.err)
} else {
if p.children == nil {
p.children = make(map[canceler]bool)
}
p.children[child] = true
}
p.mu.Unlock()
} else {
go func() {
select {
case <-parent.Done():
child.cancel(false, parent.Err())
case <-child.Done():
}
}()
}
}
// parentCancelCtx follows a chain of parent references until it finds a
// *cancelCtx. This function understands how each of the concrete types in this
// package represents its parent.
func parentCancelCtx(parent Context) (*cancelCtx, bool) {
for {
switch c := parent.(type) {
case *cancelCtx:
return c, true
case *timerCtx:
return c.cancelCtx, true
case *valueCtx:
parent = c.Context
default:
return nil, false
}
}
}
// removeChild removes a context from its parent.
func removeChild(parent Context, child canceler) {
p, ok := parentCancelCtx(parent)
if !ok {
return
}
p.mu.Lock()
if p.children != nil {
delete(p.children, child)
}
p.mu.Unlock()
}
// A canceler is a context type that can be canceled directly. The
// implementations are *cancelCtx and *timerCtx.
type canceler interface {
cancel(removeFromParent bool, err error)
Done() <-chan struct{}
}
// A cancelCtx can be canceled. When canceled, it also cancels any children
// that implement canceler.
type cancelCtx struct {
Context
done chan struct{} // closed by the first cancel call.
mu sync.Mutex
children map[canceler]bool // set to nil by the first cancel call
err error // set to non-nil by the first cancel call
}
func (c *cancelCtx) Done() <-chan struct{} {
return c.done
}
func (c *cancelCtx) Err() error {
c.mu.Lock()
defer c.mu.Unlock()
return c.err
}
func (c *cancelCtx) String() string {
return fmt.Sprintf("%v.WithCancel", c.Context)
}
// cancel closes c.done, cancels each of c's children, and, if
// removeFromParent is true, removes c from its parent's children.
func (c *cancelCtx) cancel(removeFromParent bool, err error) {
if err == nil {
panic("context: internal error: missing cancel error")
}
c.mu.Lock()
if c.err != nil {
c.mu.Unlock()
return // already canceled
}
c.err = err
close(c.done)
for child := range c.children {
// NOTE: acquiring the child's lock while holding parent's lock.
child.cancel(false, err)
}
c.children = nil
c.mu.Unlock()
if removeFromParent {
removeChild(c.Context, c)
}
}
// WithDeadline returns a copy of the parent context with the deadline adjusted
// to be no later than d. If the parent's deadline is already earlier than d,
// WithDeadline(parent, d) is semantically equivalent to parent. The returned
// context's Done channel is closed when the deadline expires, when the returned
// cancel function is called, or when the parent context's Done channel is
// closed, whichever happens first.
//
// Canceling this context releases resources associated with it, so code should
// call cancel as soon as the operations running in this Context complete.
func WithDeadline(parent Context, deadline time.Time) (Context, CancelFunc) {
if cur, ok := parent.Deadline(); ok && cur.Before(deadline) {
// The current deadline is already sooner than the new one.
return WithCancel(parent)
}
c := &timerCtx{
cancelCtx: newCancelCtx(parent),
deadline: deadline,
}
propagateCancel(parent, c)
d := deadline.Sub(time.Now())
if d <= 0 {
c.cancel(true, DeadlineExceeded) // deadline has already passed
return c, func() { c.cancel(true, Canceled) }
}
c.mu.Lock()
defer c.mu.Unlock()
if c.err == nil {
c.timer = time.AfterFunc(d, func() {
c.cancel(true, DeadlineExceeded)
})
}
return c, func() { c.cancel(true, Canceled) }
}
// A timerCtx carries a timer and a deadline. It embeds a cancelCtx to
// implement Done and Err. It implements cancel by stopping its timer then
// delegating to cancelCtx.cancel.
type timerCtx struct {
*cancelCtx
timer *time.Timer // Under cancelCtx.mu.
deadline time.Time
}
func (c *timerCtx) Deadline() (deadline time.Time, ok bool) {
return c.deadline, true
}
func (c *timerCtx) String() string {
return fmt.Sprintf("%v.WithDeadline(%s [%s])", c.cancelCtx.Context, c.deadline, c.deadline.Sub(time.Now()))
}
func (c *timerCtx) cancel(removeFromParent bool, err error) {
c.cancelCtx.cancel(false, err)
if removeFromParent {
// Remove this timerCtx from its parent cancelCtx's children.
removeChild(c.cancelCtx.Context, c)
}
c.mu.Lock()
if c.timer != nil {
c.timer.Stop()
c.timer = nil
}
c.mu.Unlock()
}
// WithTimeout returns WithDeadline(parent, time.Now().Add(timeout)).
//
// Canceling this context releases resources associated with it, so code should
// call cancel as soon as the operations running in this Context complete:
//
// func slowOperationWithTimeout(ctx context.Context) (Result, error) {
// ctx, cancel := context.WithTimeout(ctx, 100*time.Millisecond)
// defer cancel() // releases resources if slowOperation completes before timeout elapses
// return slowOperation(ctx)
// }
func WithTimeout(parent Context, timeout time.Duration) (Context, CancelFunc) {
return WithDeadline(parent, time.Now().Add(timeout))
}
// WithValue returns a copy of parent in which the value associated with key is
// val.
//
// Use context Values only for request-scoped data that transits processes and
// APIs, not for passing optional parameters to functions.
func WithValue(parent Context, key interface{}, val interface{}) Context {
return &valueCtx{parent, key, val}
}
// A valueCtx carries a key-value pair. It implements Value for that key and
// delegates all other calls to the embedded Context.
type valueCtx struct {
Context
key, val interface{}
}
func (c *valueCtx) String() string {
return fmt.Sprintf("%v.WithValue(%#v, %#v)", c.Context, c.key, c.val)
}
func (c *valueCtx) Value(key interface{}) interface{} {
if c.key == key {
return c.val
}
return c.Context.Value(key)
}

View file

@ -1,19 +0,0 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.5
package ctxhttp
import "net/http"
func canceler(client *http.Client, req *http.Request) func() {
// TODO(djd): Respect any existing value of req.Cancel.
ch := make(chan struct{})
req.Cancel = ch
return func() {
close(ch)
}
}

View file

@ -1,23 +0,0 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.5
package ctxhttp
import "net/http"
type requestCanceler interface {
CancelRequest(*http.Request)
}
func canceler(client *http.Client, req *http.Request) func() {
rc, ok := client.Transport.(requestCanceler)
if !ok {
return func() {}
}
return func() {
rc.CancelRequest(req)
}
}

View file

@ -1,7 +1,9 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.7
// Package ctxhttp provides helper functions for performing context-aware HTTP requests.
package ctxhttp // import "golang.org/x/net/context/ctxhttp"
@ -14,76 +16,28 @@ import (
"golang.org/x/net/context"
)
func nop() {}
var (
testHookContextDoneBeforeHeaders = nop
testHookDoReturned = nop
testHookDidBodyClose = nop
)
// Do sends an HTTP request with the provided http.Client and returns an HTTP response.
// Do sends an HTTP request with the provided http.Client and returns
// an HTTP response.
//
// If the client is nil, http.DefaultClient is used.
// If the context is canceled or times out, ctx.Err() will be returned.
//
// The provided ctx must be non-nil. If it is canceled or times out,
// ctx.Err() will be returned.
func Do(ctx context.Context, client *http.Client, req *http.Request) (*http.Response, error) {
if client == nil {
client = http.DefaultClient
}
// Request cancelation changed in Go 1.5, see cancelreq.go and cancelreq_go14.go.
cancel := canceler(client, req)
type responseAndError struct {
resp *http.Response
err error
}
result := make(chan responseAndError, 1)
// Make local copies of test hooks closed over by goroutines below.
// Prevents data races in tests.
testHookDoReturned := testHookDoReturned
testHookDidBodyClose := testHookDidBodyClose
go func() {
resp, err := client.Do(req)
testHookDoReturned()
result <- responseAndError{resp, err}
}()
var resp *http.Response
select {
case <-ctx.Done():
testHookContextDoneBeforeHeaders()
cancel()
// Clean up after the goroutine calling client.Do:
go func() {
if r := <-result; r.resp != nil {
testHookDidBodyClose()
r.resp.Body.Close()
}
}()
return nil, ctx.Err()
case r := <-result:
var err error
resp, err = r.resp, r.err
if err != nil {
return resp, err
}
}
c := make(chan struct{})
go func() {
resp, err := client.Do(req.WithContext(ctx))
// If we got an error, and the context has been canceled,
// the context's error is probably more useful.
if err != nil {
select {
case <-ctx.Done():
cancel()
case <-c:
// The response's Body is closed.
err = ctx.Err()
default:
}
}()
resp.Body = &notifyingReader{resp.Body, c}
return resp, nil
}
return resp, err
}
// Get issues a GET request via the Do function.
@ -118,28 +72,3 @@ func Post(ctx context.Context, client *http.Client, url string, bodyType string,
func PostForm(ctx context.Context, client *http.Client, url string, data url.Values) (*http.Response, error) {
return Post(ctx, client, url, "application/x-www-form-urlencoded", strings.NewReader(data.Encode()))
}
// notifyingReader is an io.ReadCloser that closes the notify channel after
// Close is called or a Read fails on the underlying ReadCloser.
type notifyingReader struct {
io.ReadCloser
notify chan<- struct{}
}
func (r *notifyingReader) Read(p []byte) (int, error) {
n, err := r.ReadCloser.Read(p)
if err != nil && r.notify != nil {
close(r.notify)
r.notify = nil
}
return n, err
}
func (r *notifyingReader) Close() error {
err := r.ReadCloser.Close()
if r.notify != nil {
close(r.notify)
r.notify = nil
}
return err
}

View file

@ -0,0 +1,147 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.7
package ctxhttp // import "golang.org/x/net/context/ctxhttp"
import (
"io"
"net/http"
"net/url"
"strings"
"golang.org/x/net/context"
)
func nop() {}
var (
testHookContextDoneBeforeHeaders = nop
testHookDoReturned = nop
testHookDidBodyClose = nop
)
// Do sends an HTTP request with the provided http.Client and returns an HTTP response.
// If the client is nil, http.DefaultClient is used.
// If the context is canceled or times out, ctx.Err() will be returned.
func Do(ctx context.Context, client *http.Client, req *http.Request) (*http.Response, error) {
if client == nil {
client = http.DefaultClient
}
// TODO(djd): Respect any existing value of req.Cancel.
cancel := make(chan struct{})
req.Cancel = cancel
type responseAndError struct {
resp *http.Response
err error
}
result := make(chan responseAndError, 1)
// Make local copies of test hooks closed over by goroutines below.
// Prevents data races in tests.
testHookDoReturned := testHookDoReturned
testHookDidBodyClose := testHookDidBodyClose
go func() {
resp, err := client.Do(req)
testHookDoReturned()
result <- responseAndError{resp, err}
}()
var resp *http.Response
select {
case <-ctx.Done():
testHookContextDoneBeforeHeaders()
close(cancel)
// Clean up after the goroutine calling client.Do:
go func() {
if r := <-result; r.resp != nil {
testHookDidBodyClose()
r.resp.Body.Close()
}
}()
return nil, ctx.Err()
case r := <-result:
var err error
resp, err = r.resp, r.err
if err != nil {
return resp, err
}
}
c := make(chan struct{})
go func() {
select {
case <-ctx.Done():
close(cancel)
case <-c:
// The response's Body is closed.
}
}()
resp.Body = &notifyingReader{resp.Body, c}
return resp, nil
}
// Get issues a GET request via the Do function.
func Get(ctx context.Context, client *http.Client, url string) (*http.Response, error) {
req, err := http.NewRequest("GET", url, nil)
if err != nil {
return nil, err
}
return Do(ctx, client, req)
}
// Head issues a HEAD request via the Do function.
func Head(ctx context.Context, client *http.Client, url string) (*http.Response, error) {
req, err := http.NewRequest("HEAD", url, nil)
if err != nil {
return nil, err
}
return Do(ctx, client, req)
}
// Post issues a POST request via the Do function.
func Post(ctx context.Context, client *http.Client, url string, bodyType string, body io.Reader) (*http.Response, error) {
req, err := http.NewRequest("POST", url, body)
if err != nil {
return nil, err
}
req.Header.Set("Content-Type", bodyType)
return Do(ctx, client, req)
}
// PostForm issues a POST request via the Do function.
func PostForm(ctx context.Context, client *http.Client, url string, data url.Values) (*http.Response, error) {
return Post(ctx, client, url, "application/x-www-form-urlencoded", strings.NewReader(data.Encode()))
}
// notifyingReader is an io.ReadCloser that closes the notify channel after
// Close is called or a Read fails on the underlying ReadCloser.
type notifyingReader struct {
io.ReadCloser
notify chan<- struct{}
}
func (r *notifyingReader) Read(p []byte) (int, error) {
n, err := r.ReadCloser.Read(p)
if err != nil && r.notify != nil {
close(r.notify)
r.notify = nil
}
return n, err
}
func (r *notifyingReader) Close() error {
err := r.ReadCloser.Close()
if r.notify != nil {
close(r.notify)
r.notify = nil
}
return err
}

72
vendor/golang.org/x/net/context/go17.go generated vendored Normal file
View file

@ -0,0 +1,72 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.7
package context
import (
"context" // standard library's context, as of Go 1.7
"time"
)
var (
todo = context.TODO()
background = context.Background()
)
// Canceled is the error returned by Context.Err when the context is canceled.
var Canceled = context.Canceled
// DeadlineExceeded is the error returned by Context.Err when the context's
// deadline passes.
var DeadlineExceeded = context.DeadlineExceeded
// WithCancel returns a copy of parent with a new Done channel. The returned
// context's Done channel is closed when the returned cancel function is called
// or when the parent context's Done channel is closed, whichever happens first.
//
// Canceling this context releases resources associated with it, so code should
// call cancel as soon as the operations running in this Context complete.
func WithCancel(parent Context) (ctx Context, cancel CancelFunc) {
ctx, f := context.WithCancel(parent)
return ctx, CancelFunc(f)
}
// WithDeadline returns a copy of the parent context with the deadline adjusted
// to be no later than d. If the parent's deadline is already earlier than d,
// WithDeadline(parent, d) is semantically equivalent to parent. The returned
// context's Done channel is closed when the deadline expires, when the returned
// cancel function is called, or when the parent context's Done channel is
// closed, whichever happens first.
//
// Canceling this context releases resources associated with it, so code should
// call cancel as soon as the operations running in this Context complete.
func WithDeadline(parent Context, deadline time.Time) (Context, CancelFunc) {
ctx, f := context.WithDeadline(parent, deadline)
return ctx, CancelFunc(f)
}
// WithTimeout returns WithDeadline(parent, time.Now().Add(timeout)).
//
// Canceling this context releases resources associated with it, so code should
// call cancel as soon as the operations running in this Context complete:
//
// func slowOperationWithTimeout(ctx context.Context) (Result, error) {
// ctx, cancel := context.WithTimeout(ctx, 100*time.Millisecond)
// defer cancel() // releases resources if slowOperation completes before timeout elapses
// return slowOperation(ctx)
// }
func WithTimeout(parent Context, timeout time.Duration) (Context, CancelFunc) {
return WithDeadline(parent, time.Now().Add(timeout))
}
// WithValue returns a copy of parent in which the value associated with key is
// val.
//
// Use context Values only for request-scoped data that transits processes and
// APIs, not for passing optional parameters to functions.
func WithValue(parent Context, key interface{}, val interface{}) Context {
return context.WithValue(parent, key, val)
}

300
vendor/golang.org/x/net/context/pre_go17.go generated vendored Normal file
View file

@ -0,0 +1,300 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.7
package context
import (
"errors"
"fmt"
"sync"
"time"
)
// An emptyCtx is never canceled, has no values, and has no deadline. It is not
// struct{}, since vars of this type must have distinct addresses.
type emptyCtx int
func (*emptyCtx) Deadline() (deadline time.Time, ok bool) {
return
}
func (*emptyCtx) Done() <-chan struct{} {
return nil
}
func (*emptyCtx) Err() error {
return nil
}
func (*emptyCtx) Value(key interface{}) interface{} {
return nil
}
func (e *emptyCtx) String() string {
switch e {
case background:
return "context.Background"
case todo:
return "context.TODO"
}
return "unknown empty Context"
}
var (
background = new(emptyCtx)
todo = new(emptyCtx)
)
// Canceled is the error returned by Context.Err when the context is canceled.
var Canceled = errors.New("context canceled")
// DeadlineExceeded is the error returned by Context.Err when the context's
// deadline passes.
var DeadlineExceeded = errors.New("context deadline exceeded")
// WithCancel returns a copy of parent with a new Done channel. The returned
// context's Done channel is closed when the returned cancel function is called
// or when the parent context's Done channel is closed, whichever happens first.
//
// Canceling this context releases resources associated with it, so code should
// call cancel as soon as the operations running in this Context complete.
func WithCancel(parent Context) (ctx Context, cancel CancelFunc) {
c := newCancelCtx(parent)
propagateCancel(parent, c)
return c, func() { c.cancel(true, Canceled) }
}
// newCancelCtx returns an initialized cancelCtx.
func newCancelCtx(parent Context) *cancelCtx {
return &cancelCtx{
Context: parent,
done: make(chan struct{}),
}
}
// propagateCancel arranges for child to be canceled when parent is.
func propagateCancel(parent Context, child canceler) {
if parent.Done() == nil {
return // parent is never canceled
}
if p, ok := parentCancelCtx(parent); ok {
p.mu.Lock()
if p.err != nil {
// parent has already been canceled
child.cancel(false, p.err)
} else {
if p.children == nil {
p.children = make(map[canceler]bool)
}
p.children[child] = true
}
p.mu.Unlock()
} else {
go func() {
select {
case <-parent.Done():
child.cancel(false, parent.Err())
case <-child.Done():
}
}()
}
}
// parentCancelCtx follows a chain of parent references until it finds a
// *cancelCtx. This function understands how each of the concrete types in this
// package represents its parent.
func parentCancelCtx(parent Context) (*cancelCtx, bool) {
for {
switch c := parent.(type) {
case *cancelCtx:
return c, true
case *timerCtx:
return c.cancelCtx, true
case *valueCtx:
parent = c.Context
default:
return nil, false
}
}
}
// removeChild removes a context from its parent.
func removeChild(parent Context, child canceler) {
p, ok := parentCancelCtx(parent)
if !ok {
return
}
p.mu.Lock()
if p.children != nil {
delete(p.children, child)
}
p.mu.Unlock()
}
// A canceler is a context type that can be canceled directly. The
// implementations are *cancelCtx and *timerCtx.
type canceler interface {
cancel(removeFromParent bool, err error)
Done() <-chan struct{}
}
// A cancelCtx can be canceled. When canceled, it also cancels any children
// that implement canceler.
type cancelCtx struct {
Context
done chan struct{} // closed by the first cancel call.
mu sync.Mutex
children map[canceler]bool // set to nil by the first cancel call
err error // set to non-nil by the first cancel call
}
func (c *cancelCtx) Done() <-chan struct{} {
return c.done
}
func (c *cancelCtx) Err() error {
c.mu.Lock()
defer c.mu.Unlock()
return c.err
}
func (c *cancelCtx) String() string {
return fmt.Sprintf("%v.WithCancel", c.Context)
}
// cancel closes c.done, cancels each of c's children, and, if
// removeFromParent is true, removes c from its parent's children.
func (c *cancelCtx) cancel(removeFromParent bool, err error) {
if err == nil {
panic("context: internal error: missing cancel error")
}
c.mu.Lock()
if c.err != nil {
c.mu.Unlock()
return // already canceled
}
c.err = err
close(c.done)
for child := range c.children {
// NOTE: acquiring the child's lock while holding parent's lock.
child.cancel(false, err)
}
c.children = nil
c.mu.Unlock()
if removeFromParent {
removeChild(c.Context, c)
}
}
// WithDeadline returns a copy of the parent context with the deadline adjusted
// to be no later than d. If the parent's deadline is already earlier than d,
// WithDeadline(parent, d) is semantically equivalent to parent. The returned
// context's Done channel is closed when the deadline expires, when the returned
// cancel function is called, or when the parent context's Done channel is
// closed, whichever happens first.
//
// Canceling this context releases resources associated with it, so code should
// call cancel as soon as the operations running in this Context complete.
func WithDeadline(parent Context, deadline time.Time) (Context, CancelFunc) {
if cur, ok := parent.Deadline(); ok && cur.Before(deadline) {
// The current deadline is already sooner than the new one.
return WithCancel(parent)
}
c := &timerCtx{
cancelCtx: newCancelCtx(parent),
deadline: deadline,
}
propagateCancel(parent, c)
d := deadline.Sub(time.Now())
if d <= 0 {
c.cancel(true, DeadlineExceeded) // deadline has already passed
return c, func() { c.cancel(true, Canceled) }
}
c.mu.Lock()
defer c.mu.Unlock()
if c.err == nil {
c.timer = time.AfterFunc(d, func() {
c.cancel(true, DeadlineExceeded)
})
}
return c, func() { c.cancel(true, Canceled) }
}
// A timerCtx carries a timer and a deadline. It embeds a cancelCtx to
// implement Done and Err. It implements cancel by stopping its timer then
// delegating to cancelCtx.cancel.
type timerCtx struct {
*cancelCtx
timer *time.Timer // Under cancelCtx.mu.
deadline time.Time
}
func (c *timerCtx) Deadline() (deadline time.Time, ok bool) {
return c.deadline, true
}
func (c *timerCtx) String() string {
return fmt.Sprintf("%v.WithDeadline(%s [%s])", c.cancelCtx.Context, c.deadline, c.deadline.Sub(time.Now()))
}
func (c *timerCtx) cancel(removeFromParent bool, err error) {
c.cancelCtx.cancel(false, err)
if removeFromParent {
// Remove this timerCtx from its parent cancelCtx's children.
removeChild(c.cancelCtx.Context, c)
}
c.mu.Lock()
if c.timer != nil {
c.timer.Stop()
c.timer = nil
}
c.mu.Unlock()
}
// WithTimeout returns WithDeadline(parent, time.Now().Add(timeout)).
//
// Canceling this context releases resources associated with it, so code should
// call cancel as soon as the operations running in this Context complete:
//
// func slowOperationWithTimeout(ctx context.Context) (Result, error) {
// ctx, cancel := context.WithTimeout(ctx, 100*time.Millisecond)
// defer cancel() // releases resources if slowOperation completes before timeout elapses
// return slowOperation(ctx)
// }
func WithTimeout(parent Context, timeout time.Duration) (Context, CancelFunc) {
return WithDeadline(parent, time.Now().Add(timeout))
}
// WithValue returns a copy of parent in which the value associated with key is
// val.
//
// Use context Values only for request-scoped data that transits processes and
// APIs, not for passing optional parameters to functions.
func WithValue(parent Context, key interface{}, val interface{}) Context {
return &valueCtx{parent, key, val}
}
// A valueCtx carries a key-value pair. It implements Value for that key and
// delegates all other calls to the embedded Context.
type valueCtx struct {
Context
key, val interface{}
}
func (c *valueCtx) String() string {
return fmt.Sprintf("%v.WithValue(%#v, %#v)", c.Context, c.key, c.val)
}
func (c *valueCtx) Value(key interface{}) interface{} {
if c.key == key {
return c.val
}
return c.Context.Value(key)
}

View file

@ -18,6 +18,18 @@ type ClientConnPool interface {
MarkDead(*ClientConn)
}
// clientConnPoolIdleCloser is the interface implemented by ClientConnPool
// implementations which can close their idle connections.
type clientConnPoolIdleCloser interface {
ClientConnPool
closeIdleConnections()
}
var (
_ clientConnPoolIdleCloser = (*clientConnPool)(nil)
_ clientConnPoolIdleCloser = noDialClientConnPool{}
)
// TODO: use singleflight for dialing and addConnCalls?
type clientConnPool struct {
t *Transport
@ -40,7 +52,16 @@ const (
noDialOnMiss = false
)
func (p *clientConnPool) getClientConn(_ *http.Request, addr string, dialOnMiss bool) (*ClientConn, error) {
func (p *clientConnPool) getClientConn(req *http.Request, addr string, dialOnMiss bool) (*ClientConn, error) {
if isConnectionCloseRequest(req) && dialOnMiss {
// It gets its own connection.
const singleUse = true
cc, err := p.t.dialClientConn(addr, singleUse)
if err != nil {
return nil, err
}
return cc, nil
}
p.mu.Lock()
for _, cc := range p.conns[addr] {
if cc.CanTakeNewRequest() {
@ -83,7 +104,8 @@ func (p *clientConnPool) getStartDialLocked(addr string) *dialCall {
// run in its own goroutine.
func (c *dialCall) dial(addr string) {
c.res, c.err = c.p.t.dialClientConn(addr)
const singleUse = false // shared conn
c.res, c.err = c.p.t.dialClientConn(addr, singleUse)
close(c.done)
c.p.mu.Lock()
@ -223,3 +245,12 @@ func filterOutClientConn(in []*ClientConn, exclude *ClientConn) []*ClientConn {
}
return out
}
// noDialClientConnPool is an implementation of http2.ClientConnPool
// which never dials. We let the HTTP/1.1 client dial and use its TLS
// connection instead.
type noDialClientConnPool struct{ *clientConnPool }
func (p noDialClientConnPool) GetClientConn(req *http.Request, addr string) (*ClientConn, error) {
return p.getClientConn(req, addr, noDialOnMiss)
}

View file

@ -32,7 +32,7 @@ func configureTransport(t1 *http.Transport) (*Transport, error) {
t1.TLSClientConfig.NextProtos = append(t1.TLSClientConfig.NextProtos, "http/1.1")
}
upgradeFn := func(authority string, c *tls.Conn) http.RoundTripper {
addr := authorityAddr(authority)
addr := authorityAddr("https", authority)
if used, err := connPool.addConnIfNeeded(addr, t2, c); err != nil {
go c.Close()
return erringRoundTripper{err}
@ -67,15 +67,6 @@ func registerHTTPSProtocol(t *http.Transport, rt http.RoundTripper) (err error)
return nil
}
// noDialClientConnPool is an implementation of http2.ClientConnPool
// which never dials. We let the HTTP/1.1 client dial and use its TLS
// connection instead.
type noDialClientConnPool struct{ *clientConnPool }
func (p noDialClientConnPool) GetClientConn(req *http.Request, addr string) (*ClientConn, error) {
return p.getClientConn(req, addr, noDialOnMiss)
}
// noDialH2RoundTripper is a RoundTripper which only tries to complete the request
// if there's already has a cached connection to the host.
type noDialH2RoundTripper struct{ t *Transport }

View file

@ -64,9 +64,17 @@ func (e ConnectionError) Error() string { return fmt.Sprintf("connection error:
type StreamError struct {
StreamID uint32
Code ErrCode
Cause error // optional additional detail
}
func streamError(id uint32, code ErrCode) StreamError {
return StreamError{StreamID: id, Code: code}
}
func (e StreamError) Error() string {
if e.Cause != nil {
return fmt.Sprintf("stream error: stream ID %d; %v; %v", e.StreamID, e.Code, e.Cause)
}
return fmt.Sprintf("stream error: stream ID %d; %v", e.StreamID, e.Code)
}

View file

@ -15,6 +15,7 @@ import (
"sync"
"golang.org/x/net/http2/hpack"
"golang.org/x/net/lex/httplex"
)
const frameHeaderLen = 9
@ -316,10 +317,12 @@ type Framer struct {
// non-Continuation or Continuation on a different stream is
// attempted to be written.
logReads bool
logReads, logWrites bool
debugFramer *Framer // only use for logging written writes
debugFramerBuf *bytes.Buffer
debugFramer *Framer // only use for logging written writes
debugFramerBuf *bytes.Buffer
debugReadLoggerf func(string, ...interface{})
debugWriteLoggerf func(string, ...interface{})
}
func (fr *Framer) maxHeaderListSize() uint32 {
@ -354,7 +357,7 @@ func (f *Framer) endWrite() error {
byte(length>>16),
byte(length>>8),
byte(length))
if logFrameWrites {
if f.logWrites {
f.logWrite()
}
@ -377,10 +380,10 @@ func (f *Framer) logWrite() {
f.debugFramerBuf.Write(f.wbuf)
fr, err := f.debugFramer.ReadFrame()
if err != nil {
log.Printf("http2: Framer %p: failed to decode just-written frame", f)
f.debugWriteLoggerf("http2: Framer %p: failed to decode just-written frame", f)
return
}
log.Printf("http2: Framer %p: wrote %v", f, summarizeFrame(fr))
f.debugWriteLoggerf("http2: Framer %p: wrote %v", f, summarizeFrame(fr))
}
func (f *Framer) writeByte(v byte) { f.wbuf = append(f.wbuf, v) }
@ -398,9 +401,12 @@ const (
// NewFramer returns a Framer that writes frames to w and reads them from r.
func NewFramer(w io.Writer, r io.Reader) *Framer {
fr := &Framer{
w: w,
r: r,
logReads: logFrameReads,
w: w,
r: r,
logReads: logFrameReads,
logWrites: logFrameWrites,
debugReadLoggerf: log.Printf,
debugWriteLoggerf: log.Printf,
}
fr.getReadBuf = func(size uint32) []byte {
if cap(fr.readBuf) >= int(size) {
@ -453,7 +459,7 @@ func terminalReadFrameError(err error) bool {
//
// If the frame is larger than previously set with SetMaxReadFrameSize, the
// returned error is ErrFrameTooLarge. Other errors may be of type
// ConnectionError, StreamError, or anything else from from the underlying
// ConnectionError, StreamError, or anything else from the underlying
// reader.
func (fr *Framer) ReadFrame() (Frame, error) {
fr.errDetail = nil
@ -482,7 +488,7 @@ func (fr *Framer) ReadFrame() (Frame, error) {
return nil, err
}
if fr.logReads {
log.Printf("http2: Framer %p: read %v", fr, summarizeFrame(f))
fr.debugReadLoggerf("http2: Framer %p: read %v", fr, summarizeFrame(f))
}
if fh.Type == FrameHeaders && fr.ReadMetaHeaders != nil {
return fr.readMetaFrame(f.(*HeadersFrame))
@ -590,7 +596,15 @@ func parseDataFrame(fh FrameHeader, payload []byte) (Frame, error) {
return f, nil
}
var errStreamID = errors.New("invalid streamid")
var (
errStreamID = errors.New("invalid stream ID")
errDepStreamID = errors.New("invalid dependent stream ID")
errPadLength = errors.New("pad length too large")
)
func validStreamIDOrZero(streamID uint32) bool {
return streamID&(1<<31) == 0
}
func validStreamID(streamID uint32) bool {
return streamID != 0 && streamID&(1<<31) == 0
@ -599,18 +613,40 @@ func validStreamID(streamID uint32) bool {
// WriteData writes a DATA frame.
//
// It will perform exactly one Write to the underlying Writer.
// It is the caller's responsibility to not call other Write methods concurrently.
// It is the caller's responsibility not to violate the maximum frame size
// and to not call other Write methods concurrently.
func (f *Framer) WriteData(streamID uint32, endStream bool, data []byte) error {
// TODO: ignoring padding for now. will add when somebody cares.
return f.WriteDataPadded(streamID, endStream, data, nil)
}
// WriteData writes a DATA frame with optional padding.
//
// If pad is nil, the padding bit is not sent.
// The length of pad must not exceed 255 bytes.
//
// It will perform exactly one Write to the underlying Writer.
// It is the caller's responsibility not to violate the maximum frame size
// and to not call other Write methods concurrently.
func (f *Framer) WriteDataPadded(streamID uint32, endStream bool, data, pad []byte) error {
if !validStreamID(streamID) && !f.AllowIllegalWrites {
return errStreamID
}
if len(pad) > 255 {
return errPadLength
}
var flags Flags
if endStream {
flags |= FlagDataEndStream
}
if pad != nil {
flags |= FlagDataPadded
}
f.startWrite(FrameData, flags, streamID)
if pad != nil {
f.wbuf = append(f.wbuf, byte(len(pad)))
}
f.wbuf = append(f.wbuf, data...)
f.wbuf = append(f.wbuf, pad...)
return f.endWrite()
}
@ -706,7 +742,7 @@ func (f *Framer) WriteSettings(settings ...Setting) error {
return f.endWrite()
}
// WriteSettings writes an empty SETTINGS frame with the ACK bit set.
// WriteSettingsAck writes an empty SETTINGS frame with the ACK bit set.
//
// It will perform exactly one Write to the underlying Writer.
// It is the caller's responsibility to not call other Write methods concurrently.
@ -832,7 +868,7 @@ func parseWindowUpdateFrame(fh FrameHeader, p []byte) (Frame, error) {
if fh.StreamID == 0 {
return nil, ConnectionError(ErrCodeProtocol)
}
return nil, StreamError{fh.StreamID, ErrCodeProtocol}
return nil, streamError(fh.StreamID, ErrCodeProtocol)
}
return &WindowUpdateFrame{
FrameHeader: fh,
@ -913,7 +949,7 @@ func parseHeadersFrame(fh FrameHeader, p []byte) (_ Frame, err error) {
}
}
if len(p)-int(padLength) <= 0 {
return nil, StreamError{fh.StreamID, ErrCodeProtocol}
return nil, streamError(fh.StreamID, ErrCodeProtocol)
}
hf.headerFragBuf = p[:len(p)-int(padLength)]
return hf, nil
@ -977,8 +1013,8 @@ func (f *Framer) WriteHeaders(p HeadersFrameParam) error {
}
if !p.Priority.IsZero() {
v := p.Priority.StreamDep
if !validStreamID(v) && !f.AllowIllegalWrites {
return errors.New("invalid dependent stream id")
if !validStreamIDOrZero(v) && !f.AllowIllegalWrites {
return errDepStreamID
}
if p.Priority.Exclusive {
v |= 1 << 31
@ -1046,6 +1082,9 @@ func (f *Framer) WritePriority(streamID uint32, p PriorityParam) error {
if !validStreamID(streamID) && !f.AllowIllegalWrites {
return errStreamID
}
if !validStreamIDOrZero(p.StreamDep) {
return errDepStreamID
}
f.startWrite(FramePriority, 0, streamID)
v := p.StreamDep
if p.Exclusive {
@ -1385,7 +1424,10 @@ func (fr *Framer) readMetaFrame(hf *HeadersFrame) (*MetaHeadersFrame, error) {
hdec.SetEmitEnabled(true)
hdec.SetMaxStringLength(fr.maxHeaderStringLen())
hdec.SetEmitFunc(func(hf hpack.HeaderField) {
if !validHeaderFieldValue(hf.Value) {
if VerboseLogs && fr.logReads {
fr.debugReadLoggerf("http2: decoded hpack field %+v", hf)
}
if !httplex.ValidHeaderFieldValue(hf.Value) {
invalid = headerFieldValueError(hf.Value)
}
isPseudo := strings.HasPrefix(hf.Name, ":")
@ -1395,7 +1437,7 @@ func (fr *Framer) readMetaFrame(hf *HeadersFrame) (*MetaHeadersFrame, error) {
}
} else {
sawRegular = true
if !validHeaderFieldName(hf.Name) {
if !validWireHeaderFieldName(hf.Name) {
invalid = headerFieldNameError(hf.Name)
}
}
@ -1443,11 +1485,17 @@ func (fr *Framer) readMetaFrame(hf *HeadersFrame) (*MetaHeadersFrame, error) {
}
if invalid != nil {
fr.errDetail = invalid
return nil, StreamError{mh.StreamID, ErrCodeProtocol}
if VerboseLogs {
log.Printf("http2: invalid header: %v", invalid)
}
return nil, StreamError{mh.StreamID, ErrCodeProtocol, invalid}
}
if err := mh.checkPseudos(); err != nil {
fr.errDetail = err
return nil, StreamError{mh.StreamID, ErrCodeProtocol}
if VerboseLogs {
log.Printf("http2: invalid pseudo headers: %v", err)
}
return nil, StreamError{mh.StreamID, ErrCodeProtocol, err}
}
return mh, nil
}

View file

@ -1,11 +0,0 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.5
package http2
import "net/http"
func requestCancel(req *http.Request) <-chan struct{} { return req.Cancel }

43
vendor/golang.org/x/net/http2/go16.go generated vendored Normal file
View file

@ -0,0 +1,43 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.6
package http2
import (
"crypto/tls"
"net/http"
"time"
)
func transportExpectContinueTimeout(t1 *http.Transport) time.Duration {
return t1.ExpectContinueTimeout
}
// isBadCipher reports whether the cipher is blacklisted by the HTTP/2 spec.
func isBadCipher(cipher uint16) bool {
switch cipher {
case tls.TLS_RSA_WITH_RC4_128_SHA,
tls.TLS_RSA_WITH_3DES_EDE_CBC_SHA,
tls.TLS_RSA_WITH_AES_128_CBC_SHA,
tls.TLS_RSA_WITH_AES_256_CBC_SHA,
tls.TLS_RSA_WITH_AES_128_GCM_SHA256,
tls.TLS_RSA_WITH_AES_256_GCM_SHA384,
tls.TLS_ECDHE_ECDSA_WITH_RC4_128_SHA,
tls.TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
tls.TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
tls.TLS_ECDHE_RSA_WITH_RC4_128_SHA,
tls.TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,
tls.TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,
tls.TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA:
// Reject cipher suites from Appendix A.
// "This list includes those cipher suites that do not
// offer an ephemeral key exchange and those that are
// based on the TLS null, stream or block cipher type"
return true
default:
return false
}
}

106
vendor/golang.org/x/net/http2/go17.go generated vendored Normal file
View file

@ -0,0 +1,106 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.7
package http2
import (
"context"
"net"
"net/http"
"net/http/httptrace"
"time"
)
type contextContext interface {
context.Context
}
func serverConnBaseContext(c net.Conn, opts *ServeConnOpts) (ctx contextContext, cancel func()) {
ctx, cancel = context.WithCancel(context.Background())
ctx = context.WithValue(ctx, http.LocalAddrContextKey, c.LocalAddr())
if hs := opts.baseConfig(); hs != nil {
ctx = context.WithValue(ctx, http.ServerContextKey, hs)
}
return
}
func contextWithCancel(ctx contextContext) (_ contextContext, cancel func()) {
return context.WithCancel(ctx)
}
func requestWithContext(req *http.Request, ctx contextContext) *http.Request {
return req.WithContext(ctx)
}
type clientTrace httptrace.ClientTrace
func reqContext(r *http.Request) context.Context { return r.Context() }
func (t *Transport) idleConnTimeout() time.Duration {
if t.t1 != nil {
return t.t1.IdleConnTimeout
}
return 0
}
func setResponseUncompressed(res *http.Response) { res.Uncompressed = true }
func traceGotConn(req *http.Request, cc *ClientConn) {
trace := httptrace.ContextClientTrace(req.Context())
if trace == nil || trace.GotConn == nil {
return
}
ci := httptrace.GotConnInfo{Conn: cc.tconn}
cc.mu.Lock()
ci.Reused = cc.nextStreamID > 1
ci.WasIdle = len(cc.streams) == 0 && ci.Reused
if ci.WasIdle && !cc.lastActive.IsZero() {
ci.IdleTime = time.Now().Sub(cc.lastActive)
}
cc.mu.Unlock()
trace.GotConn(ci)
}
func traceWroteHeaders(trace *clientTrace) {
if trace != nil && trace.WroteHeaders != nil {
trace.WroteHeaders()
}
}
func traceGot100Continue(trace *clientTrace) {
if trace != nil && trace.Got100Continue != nil {
trace.Got100Continue()
}
}
func traceWait100Continue(trace *clientTrace) {
if trace != nil && trace.Wait100Continue != nil {
trace.Wait100Continue()
}
}
func traceWroteRequest(trace *clientTrace, err error) {
if trace != nil && trace.WroteRequest != nil {
trace.WroteRequest(httptrace.WroteRequestInfo{Err: err})
}
}
func traceFirstResponseByte(trace *clientTrace) {
if trace != nil && trace.GotFirstResponseByte != nil {
trace.GotFirstResponseByte()
}
}
func requestTrace(req *http.Request) *clientTrace {
trace := httptrace.ContextClientTrace(req.Context())
return (*clientTrace)(trace)
}
// Ping sends a PING frame to the server and waits for the ack.
func (cc *ClientConn) Ping(ctx context.Context) error {
return cc.ping(ctx)
}

36
vendor/golang.org/x/net/http2/go17_not18.go generated vendored Normal file
View file

@ -0,0 +1,36 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.7,!go1.8
package http2
import "crypto/tls"
// temporary copy of Go 1.7's private tls.Config.clone:
func cloneTLSConfig(c *tls.Config) *tls.Config {
return &tls.Config{
Rand: c.Rand,
Time: c.Time,
Certificates: c.Certificates,
NameToCertificate: c.NameToCertificate,
GetCertificate: c.GetCertificate,
RootCAs: c.RootCAs,
NextProtos: c.NextProtos,
ServerName: c.ServerName,
ClientAuth: c.ClientAuth,
ClientCAs: c.ClientCAs,
InsecureSkipVerify: c.InsecureSkipVerify,
CipherSuites: c.CipherSuites,
PreferServerCipherSuites: c.PreferServerCipherSuites,
SessionTicketsDisabled: c.SessionTicketsDisabled,
SessionTicketKey: c.SessionTicketKey,
ClientSessionCache: c.ClientSessionCache,
MinVersion: c.MinVersion,
MaxVersion: c.MaxVersion,
CurvePreferences: c.CurvePreferences,
DynamicRecordSizingDisabled: c.DynamicRecordSizingDisabled,
Renegotiation: c.Renegotiation,
}
}

50
vendor/golang.org/x/net/http2/go18.go generated vendored Normal file
View file

@ -0,0 +1,50 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.8
package http2
import (
"crypto/tls"
"io"
"net/http"
)
func cloneTLSConfig(c *tls.Config) *tls.Config { return c.Clone() }
var _ http.Pusher = (*responseWriter)(nil)
// Push implements http.Pusher.
func (w *responseWriter) Push(target string, opts *http.PushOptions) error {
internalOpts := pushOptions{}
if opts != nil {
internalOpts.Method = opts.Method
internalOpts.Header = opts.Header
}
return w.push(target, internalOpts)
}
func configureServer18(h1 *http.Server, h2 *Server) error {
if h2.IdleTimeout == 0 {
if h1.IdleTimeout != 0 {
h2.IdleTimeout = h1.IdleTimeout
} else {
h2.IdleTimeout = h1.ReadTimeout
}
}
return nil
}
func shouldLogPanic(panicValue interface{}) bool {
return panicValue != nil && panicValue != http.ErrAbortHandler
}
func reqGetBody(req *http.Request) func() (io.ReadCloser, error) {
return req.GetBody
}
func reqBodyIsNoBody(body io.ReadCloser) bool {
return body == http.NoBody
}

View file

@ -43,7 +43,7 @@ type HeaderField struct {
// IsPseudo reports whether the header field is an http2 pseudo header.
// That is, it reports whether it starts with a colon.
// It is not otherwise guaranteed to be a valid psuedo header field,
// It is not otherwise guaranteed to be a valid pseudo header field,
// though.
func (hf HeaderField) IsPseudo() bool {
return len(hf.Name) != 0 && hf.Name[0] == ':'
@ -57,7 +57,7 @@ func (hf HeaderField) String() string {
return fmt.Sprintf("header field %q = %q%s", hf.Name, hf.Value, suffix)
}
// Size returns the size of an entry per RFC 7540 section 5.2.
// Size returns the size of an entry per RFC 7541 section 4.1.
func (hf HeaderField) Size() uint32 {
// http://http2.github.io/http2-spec/compression.html#rfc.section.4.1
// "The size of the dynamic table is the sum of the size of

View file

@ -48,12 +48,16 @@ var ErrInvalidHuffman = errors.New("hpack: invalid Huffman-encoded data")
// maxLen bytes will return ErrStringLength.
func huffmanDecode(buf *bytes.Buffer, maxLen int, v []byte) error {
n := rootHuffmanNode
cur, nbits := uint(0), uint8(0)
// cur is the bit buffer that has not been fed into n.
// cbits is the number of low order bits in cur that are valid.
// sbits is the number of bits of the symbol prefix being decoded.
cur, cbits, sbits := uint(0), uint8(0), uint8(0)
for _, b := range v {
cur = cur<<8 | uint(b)
nbits += 8
for nbits >= 8 {
idx := byte(cur >> (nbits - 8))
cbits += 8
sbits += 8
for cbits >= 8 {
idx := byte(cur >> (cbits - 8))
n = n.children[idx]
if n == nil {
return ErrInvalidHuffman
@ -63,22 +67,40 @@ func huffmanDecode(buf *bytes.Buffer, maxLen int, v []byte) error {
return ErrStringLength
}
buf.WriteByte(n.sym)
nbits -= n.codeLen
cbits -= n.codeLen
n = rootHuffmanNode
sbits = cbits
} else {
nbits -= 8
cbits -= 8
}
}
}
for nbits > 0 {
n = n.children[byte(cur<<(8-nbits))]
if n.children != nil || n.codeLen > nbits {
for cbits > 0 {
n = n.children[byte(cur<<(8-cbits))]
if n == nil {
return ErrInvalidHuffman
}
if n.children != nil || n.codeLen > cbits {
break
}
if maxLen != 0 && buf.Len() == maxLen {
return ErrStringLength
}
buf.WriteByte(n.sym)
nbits -= n.codeLen
cbits -= n.codeLen
n = rootHuffmanNode
sbits = cbits
}
if sbits > 7 {
// Either there was an incomplete symbol, or overlong padding.
// Both are decoding errors per RFC 7541 section 5.2.
return ErrInvalidHuffman
}
if mask := uint(1<<cbits - 1); cur&mask != mask {
// Trailing bits must be a prefix of EOS per RFC 7541 section 5.2.
return ErrInvalidHuffman
}
return nil
}

View file

@ -13,7 +13,8 @@
// See https://http2.github.io/ for more information on HTTP/2.
//
// See https://http2.golang.org/ for a test server running this code.
package http2
//
package http2 // import "golang.org/x/net/http2"
import (
"bufio"
@ -27,12 +28,15 @@ import (
"strconv"
"strings"
"sync"
"golang.org/x/net/lex/httplex"
)
var (
VerboseLogs bool
logFrameWrites bool
logFrameReads bool
inTests bool
)
func init() {
@ -74,13 +78,23 @@ var (
type streamState int
// HTTP/2 stream states.
//
// See http://tools.ietf.org/html/rfc7540#section-5.1.
//
// For simplicity, the server code merges "reserved (local)" into
// "half-closed (remote)". This is one less state transition to track.
// The only downside is that we send PUSH_PROMISEs slightly less
// liberally than allowable. More discussion here:
// https://lists.w3.org/Archives/Public/ietf-http-wg/2016JulSep/0599.html
//
// "reserved (remote)" is omitted since the client code does not
// support server push.
const (
stateIdle streamState = iota
stateOpen
stateHalfClosedLocal
stateHalfClosedRemote
stateResvLocal
stateResvRemote
stateClosed
)
@ -89,8 +103,6 @@ var stateName = [...]string{
stateOpen: "Open",
stateHalfClosedLocal: "HalfClosedLocal",
stateHalfClosedRemote: "HalfClosedRemote",
stateResvLocal: "ResvLocal",
stateResvRemote: "ResvRemote",
stateClosed: "Closed",
}
@ -166,58 +178,23 @@ var (
errInvalidHeaderFieldValue = errors.New("http2: invalid header field value")
)
// validHeaderFieldName reports whether v is a valid header field name (key).
// RFC 7230 says:
// header-field = field-name ":" OWS field-value OWS
// field-name = token
// token = 1*tchar
// tchar = "!" / "#" / "$" / "%" / "&" / "'" / "*" / "+" / "-" / "." /
// "^" / "_" / "`" / "|" / "~" / DIGIT / ALPHA
// validWireHeaderFieldName reports whether v is a valid header field
// name (key). See httplex.ValidHeaderName for the base rules.
//
// Further, http2 says:
// "Just as in HTTP/1.x, header field names are strings of ASCII
// characters that are compared in a case-insensitive
// fashion. However, header field names MUST be converted to
// lowercase prior to their encoding in HTTP/2. "
func validHeaderFieldName(v string) bool {
func validWireHeaderFieldName(v string) bool {
if len(v) == 0 {
return false
}
for _, r := range v {
if int(r) >= len(isTokenTable) || ('A' <= r && r <= 'Z') {
if !httplex.IsTokenRune(r) {
return false
}
if !isTokenTable[byte(r)] {
return false
}
}
return true
}
// validHeaderFieldValue reports whether v is a valid header field value.
//
// RFC 7230 says:
// field-value = *( field-content / obs-fold )
// obj-fold = N/A to http2, and deprecated
// field-content = field-vchar [ 1*( SP / HTAB ) field-vchar ]
// field-vchar = VCHAR / obs-text
// obs-text = %x80-FF
// VCHAR = "any visible [USASCII] character"
//
// http2 further says: "Similarly, HTTP/2 allows header field values
// that are not valid. While most of the values that can be encoded
// will not alter header field parsing, carriage return (CR, ASCII
// 0xd), line feed (LF, ASCII 0xa), and the zero character (NUL, ASCII
// 0x0) might be exploited by an attacker if they are translated
// verbatim. Any request or response that contains a character not
// permitted in a header field value MUST be treated as malformed
// (Section 8.1.2.6). Valid characters are defined by the
// field-content ABNF rule in Section 3.2 of [RFC7230]."
//
// This function does not (yet?) properly handle the rejection of
// strings that begin or end with SP or HTAB.
func validHeaderFieldValue(v string) bool {
for i := 0; i < len(v); i++ {
if b := v[i]; b < ' ' && b != '\t' || b == 0x7f {
if 'A' <= r && r <= 'Z' {
return false
}
}
@ -285,14 +262,27 @@ func newBufferedWriter(w io.Writer) *bufferedWriter {
return &bufferedWriter{w: w}
}
// bufWriterPoolBufferSize is the size of bufio.Writer's
// buffers created using bufWriterPool.
//
// TODO: pick a less arbitrary value? this is a bit under
// (3 x typical 1500 byte MTU) at least. Other than that,
// not much thought went into it.
const bufWriterPoolBufferSize = 4 << 10
var bufWriterPool = sync.Pool{
New: func() interface{} {
// TODO: pick something better? this is a bit under
// (3 x typical 1500 byte MTU) at least.
return bufio.NewWriterSize(nil, 4<<10)
return bufio.NewWriterSize(nil, bufWriterPoolBufferSize)
},
}
func (w *bufferedWriter) Available() int {
if w.bw == nil {
return bufWriterPoolBufferSize
}
return w.bw.Available()
}
func (w *bufferedWriter) Write(p []byte) (n int, err error) {
if w.bw == nil {
bw := bufWriterPool.Get().(*bufio.Writer)
@ -322,7 +312,7 @@ func mustUint31(v int32) uint32 {
}
// bodyAllowedForStatus reports whether a given response status code
// permits a body. See RFC2616, section 4.4.
// permits a body. See RFC 2616, section 4.4.
func bodyAllowedForStatus(status int) bool {
switch {
case status >= 100 && status <= 199:
@ -346,86 +336,6 @@ func (e *httpError) Temporary() bool { return true }
var errTimeout error = &httpError{msg: "http2: timeout awaiting response headers", timeout: true}
var isTokenTable = [127]bool{
'!': true,
'#': true,
'$': true,
'%': true,
'&': true,
'\'': true,
'*': true,
'+': true,
'-': true,
'.': true,
'0': true,
'1': true,
'2': true,
'3': true,
'4': true,
'5': true,
'6': true,
'7': true,
'8': true,
'9': true,
'A': true,
'B': true,
'C': true,
'D': true,
'E': true,
'F': true,
'G': true,
'H': true,
'I': true,
'J': true,
'K': true,
'L': true,
'M': true,
'N': true,
'O': true,
'P': true,
'Q': true,
'R': true,
'S': true,
'T': true,
'U': true,
'W': true,
'V': true,
'X': true,
'Y': true,
'Z': true,
'^': true,
'_': true,
'`': true,
'a': true,
'b': true,
'c': true,
'd': true,
'e': true,
'f': true,
'g': true,
'h': true,
'i': true,
'j': true,
'k': true,
'l': true,
'm': true,
'n': true,
'o': true,
'p': true,
'q': true,
'r': true,
's': true,
't': true,
'u': true,
'v': true,
'w': true,
'x': true,
'y': true,
'z': true,
'|': true,
'~': true,
}
type connectionStater interface {
ConnectionState() tls.ConnectionState
}
@ -455,10 +365,23 @@ func (s *sorter) Keys(h http.Header) []string {
}
func (s *sorter) SortStrings(ss []string) {
// Our sorter works on s.v, which sorter owners, so
// Our sorter works on s.v, which sorter owns, so
// stash it away while we sort the user's buffer.
save := s.v
s.v = ss
sort.Sort(s)
s.v = save
}
// validPseudoPath reports whether v is a valid :path pseudo-header
// value. It must be either:
//
// *) a non-empty string starting with '/', but not with with "//",
// *) the string '*', for OPTIONS requests.
//
// For now this is only used a quick check for deciding when to clean
// up Opaque URLs before sending requests from the Transport.
// See golang.org/issue/16847
func validPseudoPath(v string) bool {
return (len(v) > 0 && v[0] == '/' && (len(v) == 1 || v[1] != '/')) || v == "*"
}

View file

@ -1,11 +0,0 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.5
package http2
import "net/http"
func requestCancel(req *http.Request) <-chan struct{} { return nil }

View file

@ -6,8 +6,41 @@
package http2
import "net/http"
import (
"crypto/tls"
"net/http"
"time"
)
func configureTransport(t1 *http.Transport) (*Transport, error) {
return nil, errTransportVersion
}
func transportExpectContinueTimeout(t1 *http.Transport) time.Duration {
return 0
}
// isBadCipher reports whether the cipher is blacklisted by the HTTP/2 spec.
func isBadCipher(cipher uint16) bool {
switch cipher {
case tls.TLS_RSA_WITH_RC4_128_SHA,
tls.TLS_RSA_WITH_3DES_EDE_CBC_SHA,
tls.TLS_RSA_WITH_AES_128_CBC_SHA,
tls.TLS_RSA_WITH_AES_256_CBC_SHA,
tls.TLS_ECDHE_ECDSA_WITH_RC4_128_SHA,
tls.TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
tls.TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
tls.TLS_ECDHE_RSA_WITH_RC4_128_SHA,
tls.TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,
tls.TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,
tls.TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA:
// Reject cipher suites from Appendix A.
// "This list includes those cipher suites that do not
// offer an ephemeral key exchange and those that are
// based on the TLS null, stream or block cipher type"
return true
default:
return false
}
}

87
vendor/golang.org/x/net/http2/not_go17.go generated vendored Normal file
View file

@ -0,0 +1,87 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.7
package http2
import (
"crypto/tls"
"net"
"net/http"
"time"
)
type contextContext interface {
Done() <-chan struct{}
Err() error
}
type fakeContext struct{}
func (fakeContext) Done() <-chan struct{} { return nil }
func (fakeContext) Err() error { panic("should not be called") }
func reqContext(r *http.Request) fakeContext {
return fakeContext{}
}
func setResponseUncompressed(res *http.Response) {
// Nothing.
}
type clientTrace struct{}
func requestTrace(*http.Request) *clientTrace { return nil }
func traceGotConn(*http.Request, *ClientConn) {}
func traceFirstResponseByte(*clientTrace) {}
func traceWroteHeaders(*clientTrace) {}
func traceWroteRequest(*clientTrace, error) {}
func traceGot100Continue(trace *clientTrace) {}
func traceWait100Continue(trace *clientTrace) {}
func nop() {}
func serverConnBaseContext(c net.Conn, opts *ServeConnOpts) (ctx contextContext, cancel func()) {
return nil, nop
}
func contextWithCancel(ctx contextContext) (_ contextContext, cancel func()) {
return ctx, nop
}
func requestWithContext(req *http.Request, ctx contextContext) *http.Request {
return req
}
// temporary copy of Go 1.6's private tls.Config.clone:
func cloneTLSConfig(c *tls.Config) *tls.Config {
return &tls.Config{
Rand: c.Rand,
Time: c.Time,
Certificates: c.Certificates,
NameToCertificate: c.NameToCertificate,
GetCertificate: c.GetCertificate,
RootCAs: c.RootCAs,
NextProtos: c.NextProtos,
ServerName: c.ServerName,
ClientAuth: c.ClientAuth,
ClientCAs: c.ClientCAs,
InsecureSkipVerify: c.InsecureSkipVerify,
CipherSuites: c.CipherSuites,
PreferServerCipherSuites: c.PreferServerCipherSuites,
SessionTicketsDisabled: c.SessionTicketsDisabled,
SessionTicketKey: c.SessionTicketKey,
ClientSessionCache: c.ClientSessionCache,
MinVersion: c.MinVersion,
MaxVersion: c.MaxVersion,
CurvePreferences: c.CurvePreferences,
}
}
func (cc *ClientConn) Ping(ctx contextContext) error {
return cc.ping(ctx)
}
func (t *Transport) idleConnTimeout() time.Duration { return 0 }

27
vendor/golang.org/x/net/http2/not_go18.go generated vendored Normal file
View file

@ -0,0 +1,27 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.8
package http2
import (
"io"
"net/http"
)
func configureServer18(h1 *http.Server, h2 *Server) error {
// No IdleTimeout to sync prior to Go 1.8.
return nil
}
func shouldLogPanic(panicValue interface{}) bool {
return panicValue != nil
}
func reqGetBody(req *http.Request) func() (io.ReadCloser, error) {
return nil
}
func reqBodyIsNoBody(io.ReadCloser) bool { return false }

View file

@ -29,6 +29,12 @@ type pipeBuffer interface {
io.Reader
}
func (p *pipe) Len() int {
p.mu.Lock()
defer p.mu.Unlock()
return p.b.Len()
}
// Read waits until data is available and copies bytes
// from the buffer into p.
func (p *pipe) Read(d []byte) (n int, err error) {

1295
vendor/golang.org/x/net/http2/server.go generated vendored

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -9,14 +9,21 @@ import (
"fmt"
"log"
"net/http"
"net/url"
"time"
"golang.org/x/net/http2/hpack"
"golang.org/x/net/lex/httplex"
)
// writeFramer is implemented by any type that is used to write frames.
type writeFramer interface {
writeFrame(writeContext) error
// staysWithinBuffer reports whether this writer promises that
// it will only write less than or equal to size bytes, and it
// won't Flush the write context.
staysWithinBuffer(size int) bool
}
// writeContext is the interface needed by the various frame writer
@ -38,9 +45,10 @@ type writeContext interface {
HeaderEncoder() (*hpack.Encoder, *bytes.Buffer)
}
// endsStream reports whether the given frame writer w will locally
// close the stream.
func endsStream(w writeFramer) bool {
// writeEndsStream reports whether w writes a frame that will transition
// the stream to a half-closed local state. This returns false for RST_STREAM,
// which closes the entire stream (not just the local half).
func writeEndsStream(w writeFramer) bool {
switch v := w.(type) {
case *writeData:
return v.endStream
@ -50,7 +58,7 @@ func endsStream(w writeFramer) bool {
// This can only happen if the caller reuses w after it's
// been intentionally nil'ed out to prevent use. Keep this
// here to catch future refactoring breaking it.
panic("endsStream called on nil writeFramer")
panic("writeEndsStream called on nil writeFramer")
}
return false
}
@ -61,8 +69,16 @@ func (flushFrameWriter) writeFrame(ctx writeContext) error {
return ctx.Flush()
}
func (flushFrameWriter) staysWithinBuffer(max int) bool { return false }
type writeSettings []Setting
func (s writeSettings) staysWithinBuffer(max int) bool {
const settingSize = 6 // uint16 + uint32
return frameHeaderLen+settingSize*len(s) <= max
}
func (s writeSettings) writeFrame(ctx writeContext) error {
return ctx.Framer().WriteSettings([]Setting(s)...)
}
@ -82,6 +98,8 @@ func (p *writeGoAway) writeFrame(ctx writeContext) error {
return err
}
func (*writeGoAway) staysWithinBuffer(max int) bool { return false } // flushes
type writeData struct {
streamID uint32
p []byte
@ -96,6 +114,10 @@ func (w *writeData) writeFrame(ctx writeContext) error {
return ctx.Framer().WriteData(w.streamID, w.endStream, w.p)
}
func (w *writeData) staysWithinBuffer(max int) bool {
return frameHeaderLen+len(w.p) <= max
}
// handlerPanicRST is the message sent from handler goroutines when
// the handler panics.
type handlerPanicRST struct {
@ -106,22 +128,57 @@ func (hp handlerPanicRST) writeFrame(ctx writeContext) error {
return ctx.Framer().WriteRSTStream(hp.StreamID, ErrCodeInternal)
}
func (hp handlerPanicRST) staysWithinBuffer(max int) bool { return frameHeaderLen+4 <= max }
func (se StreamError) writeFrame(ctx writeContext) error {
return ctx.Framer().WriteRSTStream(se.StreamID, se.Code)
}
func (se StreamError) staysWithinBuffer(max int) bool { return frameHeaderLen+4 <= max }
type writePingAck struct{ pf *PingFrame }
func (w writePingAck) writeFrame(ctx writeContext) error {
return ctx.Framer().WritePing(true, w.pf.Data)
}
func (w writePingAck) staysWithinBuffer(max int) bool { return frameHeaderLen+len(w.pf.Data) <= max }
type writeSettingsAck struct{}
func (writeSettingsAck) writeFrame(ctx writeContext) error {
return ctx.Framer().WriteSettingsAck()
}
func (writeSettingsAck) staysWithinBuffer(max int) bool { return frameHeaderLen <= max }
// splitHeaderBlock splits headerBlock into fragments so that each fragment fits
// in a single frame, then calls fn for each fragment. firstFrag/lastFrag are true
// for the first/last fragment, respectively.
func splitHeaderBlock(ctx writeContext, headerBlock []byte, fn func(ctx writeContext, frag []byte, firstFrag, lastFrag bool) error) error {
// For now we're lazy and just pick the minimum MAX_FRAME_SIZE
// that all peers must support (16KB). Later we could care
// more and send larger frames if the peer advertised it, but
// there's little point. Most headers are small anyway (so we
// generally won't have CONTINUATION frames), and extra frames
// only waste 9 bytes anyway.
const maxFrameSize = 16384
first := true
for len(headerBlock) > 0 {
frag := headerBlock
if len(frag) > maxFrameSize {
frag = frag[:maxFrameSize]
}
headerBlock = headerBlock[len(frag):]
if err := fn(ctx, frag, first, len(headerBlock) == 0); err != nil {
return err
}
first = false
}
return nil
}
// writeResHeaders is a request to write a HEADERS and 0+ CONTINUATION frames
// for HTTP response headers or trailers from a server handler.
type writeResHeaders struct {
@ -143,6 +200,17 @@ func encKV(enc *hpack.Encoder, k, v string) {
enc.WriteField(hpack.HeaderField{Name: k, Value: v})
}
func (w *writeResHeaders) staysWithinBuffer(max int) bool {
// TODO: this is a common one. It'd be nice to return true
// here and get into the fast path if we could be clever and
// calculate the size fast enough, or at least a conservative
// uppper bound that usually fires. (Maybe if w.h and
// w.trailers are nil, so we don't need to enumerate it.)
// Otherwise I'm afraid that just calculating the length to
// answer this question would be slower than the ~2µs benefit.
return false
}
func (w *writeResHeaders) writeFrame(ctx writeContext) error {
enc, buf := ctx.HeaderEncoder()
buf.Reset()
@ -168,39 +236,69 @@ func (w *writeResHeaders) writeFrame(ctx writeContext) error {
panic("unexpected empty hpack")
}
// For now we're lazy and just pick the minimum MAX_FRAME_SIZE
// that all peers must support (16KB). Later we could care
// more and send larger frames if the peer advertised it, but
// there's little point. Most headers are small anyway (so we
// generally won't have CONTINUATION frames), and extra frames
// only waste 9 bytes anyway.
const maxFrameSize = 16384
return splitHeaderBlock(ctx, headerBlock, w.writeHeaderBlock)
}
first := true
for len(headerBlock) > 0 {
frag := headerBlock
if len(frag) > maxFrameSize {
frag = frag[:maxFrameSize]
}
headerBlock = headerBlock[len(frag):]
endHeaders := len(headerBlock) == 0
var err error
if first {
first = false
err = ctx.Framer().WriteHeaders(HeadersFrameParam{
StreamID: w.streamID,
BlockFragment: frag,
EndStream: w.endStream,
EndHeaders: endHeaders,
})
} else {
err = ctx.Framer().WriteContinuation(w.streamID, endHeaders, frag)
}
if err != nil {
return err
}
func (w *writeResHeaders) writeHeaderBlock(ctx writeContext, frag []byte, firstFrag, lastFrag bool) error {
if firstFrag {
return ctx.Framer().WriteHeaders(HeadersFrameParam{
StreamID: w.streamID,
BlockFragment: frag,
EndStream: w.endStream,
EndHeaders: lastFrag,
})
} else {
return ctx.Framer().WriteContinuation(w.streamID, lastFrag, frag)
}
}
// writePushPromise is a request to write a PUSH_PROMISE and 0+ CONTINUATION frames.
type writePushPromise struct {
streamID uint32 // pusher stream
method string // for :method
url *url.URL // for :scheme, :authority, :path
h http.Header
// Creates an ID for a pushed stream. This runs on serveG just before
// the frame is written. The returned ID is copied to promisedID.
allocatePromisedID func() (uint32, error)
promisedID uint32
}
func (w *writePushPromise) staysWithinBuffer(max int) bool {
// TODO: see writeResHeaders.staysWithinBuffer
return false
}
func (w *writePushPromise) writeFrame(ctx writeContext) error {
enc, buf := ctx.HeaderEncoder()
buf.Reset()
encKV(enc, ":method", w.method)
encKV(enc, ":scheme", w.url.Scheme)
encKV(enc, ":authority", w.url.Host)
encKV(enc, ":path", w.url.RequestURI())
encodeHeaders(enc, w.h, nil)
headerBlock := buf.Bytes()
if len(headerBlock) == 0 {
panic("unexpected empty hpack")
}
return splitHeaderBlock(ctx, headerBlock, w.writeHeaderBlock)
}
func (w *writePushPromise) writeHeaderBlock(ctx writeContext, frag []byte, firstFrag, lastFrag bool) error {
if firstFrag {
return ctx.Framer().WritePushPromise(PushPromiseParam{
StreamID: w.streamID,
PromiseID: w.promisedID,
BlockFragment: frag,
EndHeaders: lastFrag,
})
} else {
return ctx.Framer().WriteContinuation(w.streamID, lastFrag, frag)
}
return nil
}
type write100ContinueHeadersFrame struct {
@ -219,15 +317,24 @@ func (w write100ContinueHeadersFrame) writeFrame(ctx writeContext) error {
})
}
func (w write100ContinueHeadersFrame) staysWithinBuffer(max int) bool {
// Sloppy but conservative:
return 9+2*(len(":status")+len("100")) <= max
}
type writeWindowUpdate struct {
streamID uint32 // or 0 for conn-level
n uint32
}
func (wu writeWindowUpdate) staysWithinBuffer(max int) bool { return frameHeaderLen+4 <= max }
func (wu writeWindowUpdate) writeFrame(ctx writeContext) error {
return ctx.Framer().WriteWindowUpdate(wu.streamID, wu.n)
}
// encodeHeaders encodes an http.Header. If keys is not nil, then (k, h[k])
// is encoded only only if k is in keys.
func encodeHeaders(enc *hpack.Encoder, h http.Header, keys []string) {
if keys == nil {
sorter := sorterPool.Get().(*sorter)
@ -240,14 +347,15 @@ func encodeHeaders(enc *hpack.Encoder, h http.Header, keys []string) {
for _, k := range keys {
vv := h[k]
k = lowerHeader(k)
if !validHeaderFieldName(k) {
// TODO: return an error? golang.org/issue/14048
// For now just omit it.
if !validWireHeaderFieldName(k) {
// Skip it as backup paranoia. Per
// golang.org/issue/14048, these should
// already be rejected at a higher level.
continue
}
isTE := k == "transfer-encoding"
for _, v := range vv {
if !validHeaderFieldValue(v) {
if !httplex.ValidHeaderFieldValue(v) {
// TODO: return an error? golang.org/issue/14048
// For now just omit it.
continue

View file

@ -6,14 +6,53 @@ package http2
import "fmt"
// frameWriteMsg is a request to write a frame.
type frameWriteMsg struct {
// WriteScheduler is the interface implemented by HTTP/2 write schedulers.
// Methods are never called concurrently.
type WriteScheduler interface {
// OpenStream opens a new stream in the write scheduler.
// It is illegal to call this with streamID=0 or with a streamID that is
// already open -- the call may panic.
OpenStream(streamID uint32, options OpenStreamOptions)
// CloseStream closes a stream in the write scheduler. Any frames queued on
// this stream should be discarded. It is illegal to call this on a stream
// that is not open -- the call may panic.
CloseStream(streamID uint32)
// AdjustStream adjusts the priority of the given stream. This may be called
// on a stream that has not yet been opened or has been closed. Note that
// RFC 7540 allows PRIORITY frames to be sent on streams in any state. See:
// https://tools.ietf.org/html/rfc7540#section-5.1
AdjustStream(streamID uint32, priority PriorityParam)
// Push queues a frame in the scheduler. In most cases, this will not be
// called with wr.StreamID()!=0 unless that stream is currently open. The one
// exception is RST_STREAM frames, which may be sent on idle or closed streams.
Push(wr FrameWriteRequest)
// Pop dequeues the next frame to write. Returns false if no frames can
// be written. Frames with a given wr.StreamID() are Pop'd in the same
// order they are Push'd.
Pop() (wr FrameWriteRequest, ok bool)
}
// OpenStreamOptions specifies extra options for WriteScheduler.OpenStream.
type OpenStreamOptions struct {
// PusherID is zero if the stream was initiated by the client. Otherwise,
// PusherID names the stream that pushed the newly opened stream.
PusherID uint32
}
// FrameWriteRequest is a request to write a frame.
type FrameWriteRequest struct {
// write is the interface value that does the writing, once the
// writeScheduler (below) has decided to select this frame
// to write. The write functions are all defined in write.go.
// WriteScheduler has selected this frame to write. The write
// functions are all defined in write.go.
write writeFramer
stream *stream // used for prioritization. nil for non-stream frames.
// stream is the stream on which this frame will be written.
// nil for non-stream frames like PING and SETTINGS.
stream *stream
// done, if non-nil, must be a buffered channel with space for
// 1 message and is sent the return value from write (or an
@ -21,263 +60,183 @@ type frameWriteMsg struct {
done chan error
}
// for debugging only:
func (wm frameWriteMsg) String() string {
var streamID uint32
if wm.stream != nil {
streamID = wm.stream.id
}
var des string
if s, ok := wm.write.(fmt.Stringer); ok {
des = s.String()
} else {
des = fmt.Sprintf("%T", wm.write)
}
return fmt.Sprintf("[frameWriteMsg stream=%d, ch=%v, type: %v]", streamID, wm.done != nil, des)
}
// writeScheduler tracks pending frames to write, priorities, and decides
// the next one to use. It is not thread-safe.
type writeScheduler struct {
// zero are frames not associated with a specific stream.
// They're sent before any stream-specific freams.
zero writeQueue
// maxFrameSize is the maximum size of a DATA frame
// we'll write. Must be non-zero and between 16K-16M.
maxFrameSize uint32
// sq contains the stream-specific queues, keyed by stream ID.
// when a stream is idle, it's deleted from the map.
sq map[uint32]*writeQueue
// canSend is a slice of memory that's reused between frame
// scheduling decisions to hold the list of writeQueues (from sq)
// which have enough flow control data to send. After canSend is
// built, the best is selected.
canSend []*writeQueue
// pool of empty queues for reuse.
queuePool []*writeQueue
}
func (ws *writeScheduler) putEmptyQueue(q *writeQueue) {
if len(q.s) != 0 {
panic("queue must be empty")
}
ws.queuePool = append(ws.queuePool, q)
}
func (ws *writeScheduler) getEmptyQueue() *writeQueue {
ln := len(ws.queuePool)
if ln == 0 {
return new(writeQueue)
}
q := ws.queuePool[ln-1]
ws.queuePool = ws.queuePool[:ln-1]
return q
}
func (ws *writeScheduler) empty() bool { return ws.zero.empty() && len(ws.sq) == 0 }
func (ws *writeScheduler) add(wm frameWriteMsg) {
st := wm.stream
if st == nil {
ws.zero.push(wm)
} else {
ws.streamQueue(st.id).push(wm)
}
}
func (ws *writeScheduler) streamQueue(streamID uint32) *writeQueue {
if q, ok := ws.sq[streamID]; ok {
return q
}
if ws.sq == nil {
ws.sq = make(map[uint32]*writeQueue)
}
q := ws.getEmptyQueue()
ws.sq[streamID] = q
return q
}
// take returns the most important frame to write and removes it from the scheduler.
// It is illegal to call this if the scheduler is empty or if there are no connection-level
// flow control bytes available.
func (ws *writeScheduler) take() (wm frameWriteMsg, ok bool) {
if ws.maxFrameSize == 0 {
panic("internal error: ws.maxFrameSize not initialized or invalid")
}
// If there any frames not associated with streams, prefer those first.
// These are usually SETTINGS, etc.
if !ws.zero.empty() {
return ws.zero.shift(), true
}
if len(ws.sq) == 0 {
return
}
// Next, prioritize frames on streams that aren't DATA frames (no cost).
for id, q := range ws.sq {
if q.firstIsNoCost() {
return ws.takeFrom(id, q)
// StreamID returns the id of the stream this frame will be written to.
// 0 is used for non-stream frames such as PING and SETTINGS.
func (wr FrameWriteRequest) StreamID() uint32 {
if wr.stream == nil {
if se, ok := wr.write.(StreamError); ok {
// (*serverConn).resetStream doesn't set
// stream because it doesn't necessarily have
// one. So special case this type of write
// message.
return se.StreamID
}
}
// Now, all that remains are DATA frames with non-zero bytes to
// send. So pick the best one.
if len(ws.canSend) != 0 {
panic("should be empty")
}
for _, q := range ws.sq {
if n := ws.streamWritableBytes(q); n > 0 {
ws.canSend = append(ws.canSend, q)
}
}
if len(ws.canSend) == 0 {
return
}
defer ws.zeroCanSend()
// TODO: find the best queue
q := ws.canSend[0]
return ws.takeFrom(q.streamID(), q)
}
// zeroCanSend is defered from take.
func (ws *writeScheduler) zeroCanSend() {
for i := range ws.canSend {
ws.canSend[i] = nil
}
ws.canSend = ws.canSend[:0]
}
// streamWritableBytes returns the number of DATA bytes we could write
// from the given queue's stream, if this stream/queue were
// selected. It is an error to call this if q's head isn't a
// *writeData.
func (ws *writeScheduler) streamWritableBytes(q *writeQueue) int32 {
wm := q.head()
ret := wm.stream.flow.available() // max we can write
if ret == 0 {
return 0
}
if int32(ws.maxFrameSize) < ret {
ret = int32(ws.maxFrameSize)
}
if ret == 0 {
panic("internal error: ws.maxFrameSize not initialized or invalid")
}
wd := wm.write.(*writeData)
if len(wd.p) < int(ret) {
ret = int32(len(wd.p))
}
return ret
return wr.stream.id
}
func (ws *writeScheduler) takeFrom(id uint32, q *writeQueue) (wm frameWriteMsg, ok bool) {
wm = q.head()
// If the first item in this queue costs flow control tokens
// and we don't have enough, write as much as we can.
if wd, ok := wm.write.(*writeData); ok && len(wd.p) > 0 {
allowed := wm.stream.flow.available() // max we can write
if allowed == 0 {
// No quota available. Caller can try the next stream.
return frameWriteMsg{}, false
}
if int32(ws.maxFrameSize) < allowed {
allowed = int32(ws.maxFrameSize)
}
// TODO: further restrict the allowed size, because even if
// the peer says it's okay to write 16MB data frames, we might
// want to write smaller ones to properly weight competing
// streams' priorities.
if len(wd.p) > int(allowed) {
wm.stream.flow.take(allowed)
chunk := wd.p[:allowed]
wd.p = wd.p[allowed:]
// Make up a new write message of a valid size, rather
// than shifting one off the queue.
return frameWriteMsg{
stream: wm.stream,
write: &writeData{
streamID: wd.streamID,
p: chunk,
// even if the original had endStream set, there
// arebytes remaining because len(wd.p) > allowed,
// so we know endStream is false:
endStream: false,
},
// our caller is blocking on the final DATA frame, not
// these intermediates, so no need to wait:
done: nil,
}, true
}
wm.stream.flow.take(int32(len(wd.p)))
// DataSize returns the number of flow control bytes that must be consumed
// to write this entire frame. This is 0 for non-DATA frames.
func (wr FrameWriteRequest) DataSize() int {
if wd, ok := wr.write.(*writeData); ok {
return len(wd.p)
}
q.shift()
if q.empty() {
ws.putEmptyQueue(q)
delete(ws.sq, id)
}
return wm, true
return 0
}
func (ws *writeScheduler) forgetStream(id uint32) {
q, ok := ws.sq[id]
if !ok {
// Consume consumes min(n, available) bytes from this frame, where available
// is the number of flow control bytes available on the stream. Consume returns
// 0, 1, or 2 frames, where the integer return value gives the number of frames
// returned.
//
// If flow control prevents consuming any bytes, this returns (_, _, 0). If
// the entire frame was consumed, this returns (wr, _, 1). Otherwise, this
// returns (consumed, rest, 2), where 'consumed' contains the consumed bytes and
// 'rest' contains the remaining bytes. The consumed bytes are deducted from the
// underlying stream's flow control budget.
func (wr FrameWriteRequest) Consume(n int32) (FrameWriteRequest, FrameWriteRequest, int) {
var empty FrameWriteRequest
// Non-DATA frames are always consumed whole.
wd, ok := wr.write.(*writeData)
if !ok || len(wd.p) == 0 {
return wr, empty, 1
}
// Might need to split after applying limits.
allowed := wr.stream.flow.available()
if n < allowed {
allowed = n
}
if wr.stream.sc.maxFrameSize < allowed {
allowed = wr.stream.sc.maxFrameSize
}
if allowed <= 0 {
return empty, empty, 0
}
if len(wd.p) > int(allowed) {
wr.stream.flow.take(allowed)
consumed := FrameWriteRequest{
stream: wr.stream,
write: &writeData{
streamID: wd.streamID,
p: wd.p[:allowed],
// Even if the original had endStream set, there
// are bytes remaining because len(wd.p) > allowed,
// so we know endStream is false.
endStream: false,
},
// Our caller is blocking on the final DATA frame, not
// this intermediate frame, so no need to wait.
done: nil,
}
rest := FrameWriteRequest{
stream: wr.stream,
write: &writeData{
streamID: wd.streamID,
p: wd.p[allowed:],
endStream: wd.endStream,
},
done: wr.done,
}
return consumed, rest, 2
}
// The frame is consumed whole.
// NB: This cast cannot overflow because allowed is <= math.MaxInt32.
wr.stream.flow.take(int32(len(wd.p)))
return wr, empty, 1
}
// String is for debugging only.
func (wr FrameWriteRequest) String() string {
var des string
if s, ok := wr.write.(fmt.Stringer); ok {
des = s.String()
} else {
des = fmt.Sprintf("%T", wr.write)
}
return fmt.Sprintf("[FrameWriteRequest stream=%d, ch=%v, writer=%v]", wr.StreamID(), wr.done != nil, des)
}
// replyToWriter sends err to wr.done and panics if the send must block
// This does nothing if wr.done is nil.
func (wr *FrameWriteRequest) replyToWriter(err error) {
if wr.done == nil {
return
}
delete(ws.sq, id)
// But keep it for others later.
for i := range q.s {
q.s[i] = frameWriteMsg{}
select {
case wr.done <- err:
default:
panic(fmt.Sprintf("unbuffered done channel passed in for type %T", wr.write))
}
q.s = q.s[:0]
ws.putEmptyQueue(q)
wr.write = nil // prevent use (assume it's tainted after wr.done send)
}
// writeQueue is used by implementations of WriteScheduler.
type writeQueue struct {
s []frameWriteMsg
s []FrameWriteRequest
}
// streamID returns the stream ID for a non-empty stream-specific queue.
func (q *writeQueue) streamID() uint32 { return q.s[0].stream.id }
func (q *writeQueue) empty() bool { return len(q.s) == 0 }
func (q *writeQueue) push(wm frameWriteMsg) {
q.s = append(q.s, wm)
func (q *writeQueue) push(wr FrameWriteRequest) {
q.s = append(q.s, wr)
}
// head returns the next item that would be removed by shift.
func (q *writeQueue) head() frameWriteMsg {
func (q *writeQueue) shift() FrameWriteRequest {
if len(q.s) == 0 {
panic("invalid use of queue")
}
return q.s[0]
}
func (q *writeQueue) shift() frameWriteMsg {
if len(q.s) == 0 {
panic("invalid use of queue")
}
wm := q.s[0]
wr := q.s[0]
// TODO: less copy-happy queue.
copy(q.s, q.s[1:])
q.s[len(q.s)-1] = frameWriteMsg{}
q.s[len(q.s)-1] = FrameWriteRequest{}
q.s = q.s[:len(q.s)-1]
return wm
return wr
}
func (q *writeQueue) firstIsNoCost() bool {
if df, ok := q.s[0].write.(*writeData); ok {
return len(df.p) == 0
// consume consumes up to n bytes from q.s[0]. If the frame is
// entirely consumed, it is removed from the queue. If the frame
// is partially consumed, the frame is kept with the consumed
// bytes removed. Returns true iff any bytes were consumed.
func (q *writeQueue) consume(n int32) (FrameWriteRequest, bool) {
if len(q.s) == 0 {
return FrameWriteRequest{}, false
}
return true
consumed, rest, numresult := q.s[0].Consume(n)
switch numresult {
case 0:
return FrameWriteRequest{}, false
case 1:
q.shift()
case 2:
q.s[0] = rest
}
return consumed, true
}
type writeQueuePool []*writeQueue
// put inserts an unused writeQueue into the pool.
func (p *writeQueuePool) put(q *writeQueue) {
for i := range q.s {
q.s[i] = FrameWriteRequest{}
}
q.s = q.s[:0]
*p = append(*p, q)
}
// get returns an empty writeQueue.
func (p *writeQueuePool) get() *writeQueue {
ln := len(*p)
if ln == 0 {
return new(writeQueue)
}
x := ln - 1
q := (*p)[x]
(*p)[x] = nil
*p = (*p)[:x]
return q
}

452
vendor/golang.org/x/net/http2/writesched_priority.go generated vendored Normal file
View file

@ -0,0 +1,452 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package http2
import (
"fmt"
"math"
"sort"
)
// RFC 7540, Section 5.3.5: the default weight is 16.
const priorityDefaultWeight = 15 // 16 = 15 + 1
// PriorityWriteSchedulerConfig configures a priorityWriteScheduler.
type PriorityWriteSchedulerConfig struct {
// MaxClosedNodesInTree controls the maximum number of closed streams to
// retain in the priority tree. Setting this to zero saves a small amount
// of memory at the cost of performance.
//
// See RFC 7540, Section 5.3.4:
// "It is possible for a stream to become closed while prioritization
// information ... is in transit. ... This potentially creates suboptimal
// prioritization, since the stream could be given a priority that is
// different from what is intended. To avoid these problems, an endpoint
// SHOULD retain stream prioritization state for a period after streams
// become closed. The longer state is retained, the lower the chance that
// streams are assigned incorrect or default priority values."
MaxClosedNodesInTree int
// MaxIdleNodesInTree controls the maximum number of idle streams to
// retain in the priority tree. Setting this to zero saves a small amount
// of memory at the cost of performance.
//
// See RFC 7540, Section 5.3.4:
// Similarly, streams that are in the "idle" state can be assigned
// priority or become a parent of other streams. This allows for the
// creation of a grouping node in the dependency tree, which enables
// more flexible expressions of priority. Idle streams begin with a
// default priority (Section 5.3.5).
MaxIdleNodesInTree int
// ThrottleOutOfOrderWrites enables write throttling to help ensure that
// data is delivered in priority order. This works around a race where
// stream B depends on stream A and both streams are about to call Write
// to queue DATA frames. If B wins the race, a naive scheduler would eagerly
// write as much data from B as possible, but this is suboptimal because A
// is a higher-priority stream. With throttling enabled, we write a small
// amount of data from B to minimize the amount of bandwidth that B can
// steal from A.
ThrottleOutOfOrderWrites bool
}
// NewPriorityWriteScheduler constructs a WriteScheduler that schedules
// frames by following HTTP/2 priorities as described in RFC 7340 Section 5.3.
// If cfg is nil, default options are used.
func NewPriorityWriteScheduler(cfg *PriorityWriteSchedulerConfig) WriteScheduler {
if cfg == nil {
// For justification of these defaults, see:
// https://docs.google.com/document/d/1oLhNg1skaWD4_DtaoCxdSRN5erEXrH-KnLrMwEpOtFY
cfg = &PriorityWriteSchedulerConfig{
MaxClosedNodesInTree: 10,
MaxIdleNodesInTree: 10,
ThrottleOutOfOrderWrites: false,
}
}
ws := &priorityWriteScheduler{
nodes: make(map[uint32]*priorityNode),
maxClosedNodesInTree: cfg.MaxClosedNodesInTree,
maxIdleNodesInTree: cfg.MaxIdleNodesInTree,
enableWriteThrottle: cfg.ThrottleOutOfOrderWrites,
}
ws.nodes[0] = &ws.root
if cfg.ThrottleOutOfOrderWrites {
ws.writeThrottleLimit = 1024
} else {
ws.writeThrottleLimit = math.MaxInt32
}
return ws
}
type priorityNodeState int
const (
priorityNodeOpen priorityNodeState = iota
priorityNodeClosed
priorityNodeIdle
)
// priorityNode is a node in an HTTP/2 priority tree.
// Each node is associated with a single stream ID.
// See RFC 7540, Section 5.3.
type priorityNode struct {
q writeQueue // queue of pending frames to write
id uint32 // id of the stream, or 0 for the root of the tree
weight uint8 // the actual weight is weight+1, so the value is in [1,256]
state priorityNodeState // open | closed | idle
bytes int64 // number of bytes written by this node, or 0 if closed
subtreeBytes int64 // sum(node.bytes) of all nodes in this subtree
// These links form the priority tree.
parent *priorityNode
kids *priorityNode // start of the kids list
prev, next *priorityNode // doubly-linked list of siblings
}
func (n *priorityNode) setParent(parent *priorityNode) {
if n == parent {
panic("setParent to self")
}
if n.parent == parent {
return
}
// Unlink from current parent.
if parent := n.parent; parent != nil {
if n.prev == nil {
parent.kids = n.next
} else {
n.prev.next = n.next
}
if n.next != nil {
n.next.prev = n.prev
}
}
// Link to new parent.
// If parent=nil, remove n from the tree.
// Always insert at the head of parent.kids (this is assumed by walkReadyInOrder).
n.parent = parent
if parent == nil {
n.next = nil
n.prev = nil
} else {
n.next = parent.kids
n.prev = nil
if n.next != nil {
n.next.prev = n
}
parent.kids = n
}
}
func (n *priorityNode) addBytes(b int64) {
n.bytes += b
for ; n != nil; n = n.parent {
n.subtreeBytes += b
}
}
// walkReadyInOrder iterates over the tree in priority order, calling f for each node
// with a non-empty write queue. When f returns true, this funcion returns true and the
// walk halts. tmp is used as scratch space for sorting.
//
// f(n, openParent) takes two arguments: the node to visit, n, and a bool that is true
// if any ancestor p of n is still open (ignoring the root node).
func (n *priorityNode) walkReadyInOrder(openParent bool, tmp *[]*priorityNode, f func(*priorityNode, bool) bool) bool {
if !n.q.empty() && f(n, openParent) {
return true
}
if n.kids == nil {
return false
}
// Don't consider the root "open" when updating openParent since
// we can't send data frames on the root stream (only control frames).
if n.id != 0 {
openParent = openParent || (n.state == priorityNodeOpen)
}
// Common case: only one kid or all kids have the same weight.
// Some clients don't use weights; other clients (like web browsers)
// use mostly-linear priority trees.
w := n.kids.weight
needSort := false
for k := n.kids.next; k != nil; k = k.next {
if k.weight != w {
needSort = true
break
}
}
if !needSort {
for k := n.kids; k != nil; k = k.next {
if k.walkReadyInOrder(openParent, tmp, f) {
return true
}
}
return false
}
// Uncommon case: sort the child nodes. We remove the kids from the parent,
// then re-insert after sorting so we can reuse tmp for future sort calls.
*tmp = (*tmp)[:0]
for n.kids != nil {
*tmp = append(*tmp, n.kids)
n.kids.setParent(nil)
}
sort.Sort(sortPriorityNodeSiblings(*tmp))
for i := len(*tmp) - 1; i >= 0; i-- {
(*tmp)[i].setParent(n) // setParent inserts at the head of n.kids
}
for k := n.kids; k != nil; k = k.next {
if k.walkReadyInOrder(openParent, tmp, f) {
return true
}
}
return false
}
type sortPriorityNodeSiblings []*priorityNode
func (z sortPriorityNodeSiblings) Len() int { return len(z) }
func (z sortPriorityNodeSiblings) Swap(i, k int) { z[i], z[k] = z[k], z[i] }
func (z sortPriorityNodeSiblings) Less(i, k int) bool {
// Prefer the subtree that has sent fewer bytes relative to its weight.
// See sections 5.3.2 and 5.3.4.
wi, bi := float64(z[i].weight+1), float64(z[i].subtreeBytes)
wk, bk := float64(z[k].weight+1), float64(z[k].subtreeBytes)
if bi == 0 && bk == 0 {
return wi >= wk
}
if bk == 0 {
return false
}
return bi/bk <= wi/wk
}
type priorityWriteScheduler struct {
// root is the root of the priority tree, where root.id = 0.
// The root queues control frames that are not associated with any stream.
root priorityNode
// nodes maps stream ids to priority tree nodes.
nodes map[uint32]*priorityNode
// maxID is the maximum stream id in nodes.
maxID uint32
// lists of nodes that have been closed or are idle, but are kept in
// the tree for improved prioritization. When the lengths exceed either
// maxClosedNodesInTree or maxIdleNodesInTree, old nodes are discarded.
closedNodes, idleNodes []*priorityNode
// From the config.
maxClosedNodesInTree int
maxIdleNodesInTree int
writeThrottleLimit int32
enableWriteThrottle bool
// tmp is scratch space for priorityNode.walkReadyInOrder to reduce allocations.
tmp []*priorityNode
// pool of empty queues for reuse.
queuePool writeQueuePool
}
func (ws *priorityWriteScheduler) OpenStream(streamID uint32, options OpenStreamOptions) {
// The stream may be currently idle but cannot be opened or closed.
if curr := ws.nodes[streamID]; curr != nil {
if curr.state != priorityNodeIdle {
panic(fmt.Sprintf("stream %d already opened", streamID))
}
curr.state = priorityNodeOpen
return
}
// RFC 7540, Section 5.3.5:
// "All streams are initially assigned a non-exclusive dependency on stream 0x0.
// Pushed streams initially depend on their associated stream. In both cases,
// streams are assigned a default weight of 16."
parent := ws.nodes[options.PusherID]
if parent == nil {
parent = &ws.root
}
n := &priorityNode{
q: *ws.queuePool.get(),
id: streamID,
weight: priorityDefaultWeight,
state: priorityNodeOpen,
}
n.setParent(parent)
ws.nodes[streamID] = n
if streamID > ws.maxID {
ws.maxID = streamID
}
}
func (ws *priorityWriteScheduler) CloseStream(streamID uint32) {
if streamID == 0 {
panic("violation of WriteScheduler interface: cannot close stream 0")
}
if ws.nodes[streamID] == nil {
panic(fmt.Sprintf("violation of WriteScheduler interface: unknown stream %d", streamID))
}
if ws.nodes[streamID].state != priorityNodeOpen {
panic(fmt.Sprintf("violation of WriteScheduler interface: stream %d already closed", streamID))
}
n := ws.nodes[streamID]
n.state = priorityNodeClosed
n.addBytes(-n.bytes)
q := n.q
ws.queuePool.put(&q)
n.q.s = nil
if ws.maxClosedNodesInTree > 0 {
ws.addClosedOrIdleNode(&ws.closedNodes, ws.maxClosedNodesInTree, n)
} else {
ws.removeNode(n)
}
}
func (ws *priorityWriteScheduler) AdjustStream(streamID uint32, priority PriorityParam) {
if streamID == 0 {
panic("adjustPriority on root")
}
// If streamID does not exist, there are two cases:
// - A closed stream that has been removed (this will have ID <= maxID)
// - An idle stream that is being used for "grouping" (this will have ID > maxID)
n := ws.nodes[streamID]
if n == nil {
if streamID <= ws.maxID || ws.maxIdleNodesInTree == 0 {
return
}
ws.maxID = streamID
n = &priorityNode{
q: *ws.queuePool.get(),
id: streamID,
weight: priorityDefaultWeight,
state: priorityNodeIdle,
}
n.setParent(&ws.root)
ws.nodes[streamID] = n
ws.addClosedOrIdleNode(&ws.idleNodes, ws.maxIdleNodesInTree, n)
}
// Section 5.3.1: A dependency on a stream that is not currently in the tree
// results in that stream being given a default priority (Section 5.3.5).
parent := ws.nodes[priority.StreamDep]
if parent == nil {
n.setParent(&ws.root)
n.weight = priorityDefaultWeight
return
}
// Ignore if the client tries to make a node its own parent.
if n == parent {
return
}
// Section 5.3.3:
// "If a stream is made dependent on one of its own dependencies, the
// formerly dependent stream is first moved to be dependent on the
// reprioritized stream's previous parent. The moved dependency retains
// its weight."
//
// That is: if parent depends on n, move parent to depend on n.parent.
for x := parent.parent; x != nil; x = x.parent {
if x == n {
parent.setParent(n.parent)
break
}
}
// Section 5.3.3: The exclusive flag causes the stream to become the sole
// dependency of its parent stream, causing other dependencies to become
// dependent on the exclusive stream.
if priority.Exclusive {
k := parent.kids
for k != nil {
next := k.next
if k != n {
k.setParent(n)
}
k = next
}
}
n.setParent(parent)
n.weight = priority.Weight
}
func (ws *priorityWriteScheduler) Push(wr FrameWriteRequest) {
var n *priorityNode
if id := wr.StreamID(); id == 0 {
n = &ws.root
} else {
n = ws.nodes[id]
if n == nil {
// id is an idle or closed stream. wr should not be a HEADERS or
// DATA frame. However, wr can be a RST_STREAM. In this case, we
// push wr onto the root, rather than creating a new priorityNode,
// since RST_STREAM is tiny and the stream's priority is unknown
// anyway. See issue #17919.
if wr.DataSize() > 0 {
panic("add DATA on non-open stream")
}
n = &ws.root
}
}
n.q.push(wr)
}
func (ws *priorityWriteScheduler) Pop() (wr FrameWriteRequest, ok bool) {
ws.root.walkReadyInOrder(false, &ws.tmp, func(n *priorityNode, openParent bool) bool {
limit := int32(math.MaxInt32)
if openParent {
limit = ws.writeThrottleLimit
}
wr, ok = n.q.consume(limit)
if !ok {
return false
}
n.addBytes(int64(wr.DataSize()))
// If B depends on A and B continuously has data available but A
// does not, gradually increase the throttling limit to allow B to
// steal more and more bandwidth from A.
if openParent {
ws.writeThrottleLimit += 1024
if ws.writeThrottleLimit < 0 {
ws.writeThrottleLimit = math.MaxInt32
}
} else if ws.enableWriteThrottle {
ws.writeThrottleLimit = 1024
}
return true
})
return wr, ok
}
func (ws *priorityWriteScheduler) addClosedOrIdleNode(list *[]*priorityNode, maxSize int, n *priorityNode) {
if maxSize == 0 {
return
}
if len(*list) == maxSize {
// Remove the oldest node, then shift left.
ws.removeNode((*list)[0])
x := (*list)[1:]
copy(*list, x)
*list = (*list)[:len(x)]
}
*list = append(*list, n)
}
func (ws *priorityWriteScheduler) removeNode(n *priorityNode) {
for k := n.kids; k != nil; k = k.next {
k.setParent(n.parent)
}
n.setParent(nil)
delete(ws.nodes, n.id)
}

72
vendor/golang.org/x/net/http2/writesched_random.go generated vendored Normal file
View file

@ -0,0 +1,72 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package http2
import "math"
// NewRandomWriteScheduler constructs a WriteScheduler that ignores HTTP/2
// priorities. Control frames like SETTINGS and PING are written before DATA
// frames, but if no control frames are queued and multiple streams have queued
// HEADERS or DATA frames, Pop selects a ready stream arbitrarily.
func NewRandomWriteScheduler() WriteScheduler {
return &randomWriteScheduler{sq: make(map[uint32]*writeQueue)}
}
type randomWriteScheduler struct {
// zero are frames not associated with a specific stream.
zero writeQueue
// sq contains the stream-specific queues, keyed by stream ID.
// When a stream is idle or closed, it's deleted from the map.
sq map[uint32]*writeQueue
// pool of empty queues for reuse.
queuePool writeQueuePool
}
func (ws *randomWriteScheduler) OpenStream(streamID uint32, options OpenStreamOptions) {
// no-op: idle streams are not tracked
}
func (ws *randomWriteScheduler) CloseStream(streamID uint32) {
q, ok := ws.sq[streamID]
if !ok {
return
}
delete(ws.sq, streamID)
ws.queuePool.put(q)
}
func (ws *randomWriteScheduler) AdjustStream(streamID uint32, priority PriorityParam) {
// no-op: priorities are ignored
}
func (ws *randomWriteScheduler) Push(wr FrameWriteRequest) {
id := wr.StreamID()
if id == 0 {
ws.zero.push(wr)
return
}
q, ok := ws.sq[id]
if !ok {
q = ws.queuePool.get()
ws.sq[id] = q
}
q.push(wr)
}
func (ws *randomWriteScheduler) Pop() (FrameWriteRequest, bool) {
// Control frames first.
if !ws.zero.empty() {
return ws.zero.shift(), true
}
// Iterate over all non-idle streams until finding one that can be consumed.
for _, q := range ws.sq {
if wr, ok := q.consume(math.MaxInt32); ok {
return wr, true
}
}
return FrameWriteRequest{}, false
}

508
vendor/golang.org/x/net/idna/idna.go generated vendored Normal file
View file

@ -0,0 +1,508 @@
// Copied from the golang.org/x/text repo; DO NOT EDIT
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package idna implements IDNA2008 using the compatibility processing
// defined by UTS (Unicode Technical Standard) #46, which defines a standard to
// deal with the transition from IDNA2003.
//
// IDNA2008 (Internationalized Domain Names for Applications), is defined in RFC
// 5890, RFC 5891, RFC 5892, RFC 5893 and RFC 5894.
// UTS #46 is defined in http://www.unicode.org/reports/tr46.
// See http://unicode.org/cldr/utility/idna.jsp for a visualization of the
// differences between these two standards.
package idna // import "golang.org/x/net/idna"
import (
"fmt"
"strings"
"unicode/utf8"
"golang.org/x/text/secure/bidirule"
"golang.org/x/text/unicode/norm"
)
// NOTE: Unlike common practice in Go APIs, the functions will return a
// sanitized domain name in case of errors. Browsers sometimes use a partially
// evaluated string as lookup.
// TODO: the current error handling is, in my opinion, the least opinionated.
// Other strategies are also viable, though:
// Option 1) Return an empty string in case of error, but allow the user to
// specify explicitly which errors to ignore.
// Option 2) Return the partially evaluated string if it is itself a valid
// string, otherwise return the empty string in case of error.
// Option 3) Option 1 and 2.
// Option 4) Always return an empty string for now and implement Option 1 as
// needed, and document that the return string may not be empty in case of
// error in the future.
// I think Option 1 is best, but it is quite opinionated.
// ToASCII converts a domain or domain label to its ASCII form. For example,
// ToASCII("bücher.example.com") is "xn--bcher-kva.example.com", and
// ToASCII("golang") is "golang". If an error is encountered it will return
// an error and a (partially) processed result.
func ToASCII(s string) (string, error) {
return Resolve.process(s, true)
}
// ToUnicode converts a domain or domain label to its Unicode form. For example,
// ToUnicode("xn--bcher-kva.example.com") is "bücher.example.com", and
// ToUnicode("golang") is "golang". If an error is encountered it will return
// an error and a (partially) processed result.
func ToUnicode(s string) (string, error) {
return NonTransitional.process(s, false)
}
// An Option configures a Profile at creation time.
type Option func(*options)
// Transitional sets a Profile to use the Transitional mapping as defined
// in UTS #46.
func Transitional(transitional bool) Option {
return func(o *options) { o.transitional = true }
}
// VerifyDNSLength sets whether a Profile should fail if any of the IDN parts
// are longer than allowed by the RFC.
func VerifyDNSLength(verify bool) Option {
return func(o *options) { o.verifyDNSLength = verify }
}
// IgnoreSTD3Rules sets whether ASCII characters outside the A-Z, a-z, 0-9 and
// the hyphen should be allowed. By default this is not allowed, but IDNA2003,
// and as a consequence UTS #46, allows this to be overridden to support
// browsers that allow characters outside this range, for example a '_' (U+005F
// LOW LINE). See http://www.rfc- editor.org/std/std3.txt for more details.
func IgnoreSTD3Rules(ignore bool) Option {
return func(o *options) { o.ignoreSTD3Rules = ignore }
}
type options struct {
transitional bool
ignoreSTD3Rules bool
verifyDNSLength bool
}
// A Profile defines the configuration of a IDNA mapper.
type Profile struct {
options
}
func apply(o *options, opts []Option) {
for _, f := range opts {
f(o)
}
}
// New creates a new Profile.
// With no options, the returned profile is the non-transitional profile as
// defined in UTS #46.
func New(o ...Option) *Profile {
p := &Profile{}
apply(&p.options, o)
return p
}
// ToASCII converts a domain or domain label to its ASCII form. For example,
// ToASCII("bücher.example.com") is "xn--bcher-kva.example.com", and
// ToASCII("golang") is "golang". If an error is encountered it will return
// an error and a (partially) processed result.
func (p *Profile) ToASCII(s string) (string, error) {
return p.process(s, true)
}
// ToUnicode converts a domain or domain label to its Unicode form. For example,
// ToUnicode("xn--bcher-kva.example.com") is "bücher.example.com", and
// ToUnicode("golang") is "golang". If an error is encountered it will return
// an error and a (partially) processed result.
func (p *Profile) ToUnicode(s string) (string, error) {
pp := *p
pp.transitional = false
return pp.process(s, false)
}
// String reports a string with a description of the profile for debugging
// purposes. The string format may change with different versions.
func (p *Profile) String() string {
s := ""
if p.transitional {
s = "Transitional"
} else {
s = "NonTransitional"
}
if p.ignoreSTD3Rules {
s += ":NoSTD3Rules"
}
return s
}
var (
// Resolve is the recommended profile for resolving domain names.
// The configuration of this profile may change over time.
Resolve = resolve
// Display is the recommended profile for displaying domain names.
// The configuration of this profile may change over time.
Display = display
// NonTransitional defines a profile that implements the Transitional
// mapping as defined in UTS #46 with no additional constraints.
NonTransitional = nonTransitional
resolve = &Profile{options{transitional: true}}
display = &Profile{}
nonTransitional = &Profile{}
// TODO: profiles
// V2008: strict IDNA2008
// Register: recommended for approving domain names: nontransitional, but
// bundle or block deviation characters.
)
type labelError struct{ label, code_ string }
func (e labelError) code() string { return e.code_ }
func (e labelError) Error() string {
return fmt.Sprintf("idna: invalid label %q", e.label)
}
type runeError rune
func (e runeError) code() string { return "P1" }
func (e runeError) Error() string {
return fmt.Sprintf("idna: disallowed rune %U", e)
}
// process implements the algorithm described in section 4 of UTS #46,
// see http://www.unicode.org/reports/tr46.
func (p *Profile) process(s string, toASCII bool) (string, error) {
var (
b []byte
err error
k, i int
)
for i < len(s) {
v, sz := trie.lookupString(s[i:])
start := i
i += sz
// Copy bytes not copied so far.
switch p.simplify(info(v).category()) {
case valid:
continue
case disallowed:
if err == nil {
r, _ := utf8.DecodeRuneInString(s[i:])
err = runeError(r)
}
continue
case mapped, deviation:
b = append(b, s[k:start]...)
b = info(v).appendMapping(b, s[start:i])
case ignored:
b = append(b, s[k:start]...)
// drop the rune
case unknown:
b = append(b, s[k:start]...)
b = append(b, "\ufffd"...)
}
k = i
}
if k == 0 {
// No changes so far.
s = norm.NFC.String(s)
} else {
b = append(b, s[k:]...)
if norm.NFC.QuickSpan(b) != len(b) {
b = norm.NFC.Bytes(b)
}
// TODO: the punycode converters require strings as input.
s = string(b)
}
// Remove leading empty labels
for ; len(s) > 0 && s[0] == '.'; s = s[1:] {
}
if s == "" {
return "", &labelError{s, "A4"}
}
labels := labelIter{orig: s}
for ; !labels.done(); labels.next() {
label := labels.label()
if label == "" {
// Empty labels are not okay. The label iterator skips the last
// label if it is empty.
if err == nil {
err = &labelError{s, "A4"}
}
continue
}
if strings.HasPrefix(label, acePrefix) {
u, err2 := decode(label[len(acePrefix):])
if err2 != nil {
if err == nil {
err = err2
}
// Spec says keep the old label.
continue
}
labels.set(u)
if err == nil {
err = p.validateFromPunycode(u)
}
if err == nil {
err = NonTransitional.validate(u)
}
} else if err == nil {
err = p.validate(label)
}
}
if toASCII {
for labels.reset(); !labels.done(); labels.next() {
label := labels.label()
if !ascii(label) {
a, err2 := encode(acePrefix, label)
if err == nil {
err = err2
}
label = a
labels.set(a)
}
n := len(label)
if p.verifyDNSLength && err == nil && (n == 0 || n > 63) {
err = &labelError{label, "A4"}
}
}
}
s = labels.result()
if toASCII && p.verifyDNSLength && err == nil {
// Compute the length of the domain name minus the root label and its dot.
n := len(s)
if n > 0 && s[n-1] == '.' {
n--
}
if len(s) < 1 || n > 253 {
err = &labelError{s, "A4"}
}
}
return s, err
}
// A labelIter allows iterating over domain name labels.
type labelIter struct {
orig string
slice []string
curStart int
curEnd int
i int
}
func (l *labelIter) reset() {
l.curStart = 0
l.curEnd = 0
l.i = 0
}
func (l *labelIter) done() bool {
return l.curStart >= len(l.orig)
}
func (l *labelIter) result() string {
if l.slice != nil {
return strings.Join(l.slice, ".")
}
return l.orig
}
func (l *labelIter) label() string {
if l.slice != nil {
return l.slice[l.i]
}
p := strings.IndexByte(l.orig[l.curStart:], '.')
l.curEnd = l.curStart + p
if p == -1 {
l.curEnd = len(l.orig)
}
return l.orig[l.curStart:l.curEnd]
}
// next sets the value to the next label. It skips the last label if it is empty.
func (l *labelIter) next() {
l.i++
if l.slice != nil {
if l.i >= len(l.slice) || l.i == len(l.slice)-1 && l.slice[l.i] == "" {
l.curStart = len(l.orig)
}
} else {
l.curStart = l.curEnd + 1
if l.curStart == len(l.orig)-1 && l.orig[l.curStart] == '.' {
l.curStart = len(l.orig)
}
}
}
func (l *labelIter) set(s string) {
if l.slice == nil {
l.slice = strings.Split(l.orig, ".")
}
l.slice[l.i] = s
}
// acePrefix is the ASCII Compatible Encoding prefix.
const acePrefix = "xn--"
func (p *Profile) simplify(cat category) category {
switch cat {
case disallowedSTD3Mapped:
if !p.ignoreSTD3Rules {
cat = disallowed
} else {
cat = mapped
}
case disallowedSTD3Valid:
if !p.ignoreSTD3Rules {
cat = disallowed
} else {
cat = valid
}
case deviation:
if !p.transitional {
cat = valid
}
case validNV8, validXV8:
// TODO: handle V2008
cat = valid
}
return cat
}
func (p *Profile) validateFromPunycode(s string) error {
if !norm.NFC.IsNormalString(s) {
return &labelError{s, "V1"}
}
for i := 0; i < len(s); {
v, sz := trie.lookupString(s[i:])
if c := p.simplify(info(v).category()); c != valid && c != deviation {
return &labelError{s, "V6"}
}
i += sz
}
return nil
}
const (
zwnj = "\u200c"
zwj = "\u200d"
)
type joinState int8
const (
stateStart joinState = iota
stateVirama
stateBefore
stateBeforeVirama
stateAfter
stateFAIL
)
var joinStates = [][numJoinTypes]joinState{
stateStart: {
joiningL: stateBefore,
joiningD: stateBefore,
joinZWNJ: stateFAIL,
joinZWJ: stateFAIL,
joinVirama: stateVirama,
},
stateVirama: {
joiningL: stateBefore,
joiningD: stateBefore,
},
stateBefore: {
joiningL: stateBefore,
joiningD: stateBefore,
joiningT: stateBefore,
joinZWNJ: stateAfter,
joinZWJ: stateFAIL,
joinVirama: stateBeforeVirama,
},
stateBeforeVirama: {
joiningL: stateBefore,
joiningD: stateBefore,
joiningT: stateBefore,
},
stateAfter: {
joiningL: stateFAIL,
joiningD: stateBefore,
joiningT: stateAfter,
joiningR: stateStart,
joinZWNJ: stateFAIL,
joinZWJ: stateFAIL,
joinVirama: stateAfter, // no-op as we can't accept joiners here
},
stateFAIL: {
0: stateFAIL,
joiningL: stateFAIL,
joiningD: stateFAIL,
joiningT: stateFAIL,
joiningR: stateFAIL,
joinZWNJ: stateFAIL,
joinZWJ: stateFAIL,
joinVirama: stateFAIL,
},
}
// validate validates the criteria from Section 4.1. Item 1, 4, and 6 are
// already implicitly satisfied by the overall implementation.
func (p *Profile) validate(s string) error {
if len(s) > 4 && s[2] == '-' && s[3] == '-' {
return &labelError{s, "V2"}
}
if s[0] == '-' || s[len(s)-1] == '-' {
return &labelError{s, "V3"}
}
// TODO: merge the use of this in the trie.
v, sz := trie.lookupString(s)
x := info(v)
if x.isModifier() {
return &labelError{s, "V5"}
}
if !bidirule.ValidString(s) {
return &labelError{s, "B"}
}
// Quickly return in the absence of zero-width (non) joiners.
if strings.Index(s, zwj) == -1 && strings.Index(s, zwnj) == -1 {
return nil
}
st := stateStart
for i := 0; ; {
jt := x.joinType()
if s[i:i+sz] == zwj {
jt = joinZWJ
} else if s[i:i+sz] == zwnj {
jt = joinZWNJ
}
st = joinStates[st][jt]
if x.isViramaModifier() {
st = joinStates[st][joinVirama]
}
if i += sz; i == len(s) {
break
}
v, sz = trie.lookupString(s[i:])
x = info(v)
}
if st == stateFAIL || st == stateAfter {
return &labelError{s, "C"}
}
return nil
}
func ascii(s string) bool {
for i := 0; i < len(s); i++ {
if s[i] >= utf8.RuneSelf {
return false
}
}
return true
}

203
vendor/golang.org/x/net/idna/punycode.go generated vendored Normal file
View file

@ -0,0 +1,203 @@
// Copied from the golang.org/x/text repo; DO NOT EDIT
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package idna
// This file implements the Punycode algorithm from RFC 3492.
import (
"math"
"strings"
"unicode/utf8"
)
// These parameter values are specified in section 5.
//
// All computation is done with int32s, so that overflow behavior is identical
// regardless of whether int is 32-bit or 64-bit.
const (
base int32 = 36
damp int32 = 700
initialBias int32 = 72
initialN int32 = 128
skew int32 = 38
tmax int32 = 26
tmin int32 = 1
)
func punyError(s string) error { return &labelError{s, "A3"} }
// decode decodes a string as specified in section 6.2.
func decode(encoded string) (string, error) {
if encoded == "" {
return "", nil
}
pos := 1 + strings.LastIndex(encoded, "-")
if pos == 1 {
return "", punyError(encoded)
}
if pos == len(encoded) {
return encoded[:len(encoded)-1], nil
}
output := make([]rune, 0, len(encoded))
if pos != 0 {
for _, r := range encoded[:pos-1] {
output = append(output, r)
}
}
i, n, bias := int32(0), initialN, initialBias
for pos < len(encoded) {
oldI, w := i, int32(1)
for k := base; ; k += base {
if pos == len(encoded) {
return "", punyError(encoded)
}
digit, ok := decodeDigit(encoded[pos])
if !ok {
return "", punyError(encoded)
}
pos++
i += digit * w
if i < 0 {
return "", punyError(encoded)
}
t := k - bias
if t < tmin {
t = tmin
} else if t > tmax {
t = tmax
}
if digit < t {
break
}
w *= base - t
if w >= math.MaxInt32/base {
return "", punyError(encoded)
}
}
x := int32(len(output) + 1)
bias = adapt(i-oldI, x, oldI == 0)
n += i / x
i %= x
if n > utf8.MaxRune || len(output) >= 1024 {
return "", punyError(encoded)
}
output = append(output, 0)
copy(output[i+1:], output[i:])
output[i] = n
i++
}
return string(output), nil
}
// encode encodes a string as specified in section 6.3 and prepends prefix to
// the result.
//
// The "while h < length(input)" line in the specification becomes "for
// remaining != 0" in the Go code, because len(s) in Go is in bytes, not runes.
func encode(prefix, s string) (string, error) {
output := make([]byte, len(prefix), len(prefix)+1+2*len(s))
copy(output, prefix)
delta, n, bias := int32(0), initialN, initialBias
b, remaining := int32(0), int32(0)
for _, r := range s {
if r < 0x80 {
b++
output = append(output, byte(r))
} else {
remaining++
}
}
h := b
if b > 0 {
output = append(output, '-')
}
for remaining != 0 {
m := int32(0x7fffffff)
for _, r := range s {
if m > r && r >= n {
m = r
}
}
delta += (m - n) * (h + 1)
if delta < 0 {
return "", punyError(s)
}
n = m
for _, r := range s {
if r < n {
delta++
if delta < 0 {
return "", punyError(s)
}
continue
}
if r > n {
continue
}
q := delta
for k := base; ; k += base {
t := k - bias
if t < tmin {
t = tmin
} else if t > tmax {
t = tmax
}
if q < t {
break
}
output = append(output, encodeDigit(t+(q-t)%(base-t)))
q = (q - t) / (base - t)
}
output = append(output, encodeDigit(q))
bias = adapt(delta, h+1, h == b)
delta = 0
h++
remaining--
}
delta++
n++
}
return string(output), nil
}
func decodeDigit(x byte) (digit int32, ok bool) {
switch {
case '0' <= x && x <= '9':
return int32(x - ('0' - 26)), true
case 'A' <= x && x <= 'Z':
return int32(x - 'A'), true
case 'a' <= x && x <= 'z':
return int32(x - 'a'), true
}
return 0, false
}
func encodeDigit(digit int32) byte {
switch {
case 0 <= digit && digit < 26:
return byte(digit + 'a')
case 26 <= digit && digit < 36:
return byte(digit + ('0' - 26))
}
panic("idna: internal error in punycode encoding")
}
// adapt is the bias adaptation function specified in section 6.1.
func adapt(delta, numPoints int32, firstTime bool) int32 {
if firstTime {
delta /= damp
} else {
delta /= 2
}
delta += delta / numPoints
k := int32(0)
for delta > ((base-tmin)*tmax)/2 {
delta /= base - tmin
k += base
}
return k + (base-tmin+1)*delta/(delta+skew)
}

4479
vendor/golang.org/x/net/idna/tables.go generated vendored Normal file

File diff suppressed because it is too large Load diff

71
vendor/golang.org/x/net/idna/trie.go generated vendored Normal file
View file

@ -0,0 +1,71 @@
// Copied from the golang.org/x/text repo; DO NOT EDIT
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package idna
// appendMapping appends the mapping for the respective rune. isMapped must be
// true. A mapping is a categorization of a rune as defined in UTS #46.
func (c info) appendMapping(b []byte, s string) []byte {
index := int(c >> indexShift)
if c&xorBit == 0 {
s := mappings[index:]
return append(b, s[1:s[0]+1]...)
}
b = append(b, s...)
if c&inlineXOR == inlineXOR {
// TODO: support and handle two-byte inline masks
b[len(b)-1] ^= byte(index)
} else {
for p := len(b) - int(xorData[index]); p < len(b); p++ {
index++
b[p] ^= xorData[index]
}
}
return b
}
// Sparse block handling code.
type valueRange struct {
value uint16 // header: value:stride
lo, hi byte // header: lo:n
}
type sparseBlocks struct {
values []valueRange
offset []uint16
}
var idnaSparse = sparseBlocks{
values: idnaSparseValues[:],
offset: idnaSparseOffset[:],
}
var trie = newIdnaTrie(0)
// lookup determines the type of block n and looks up the value for b.
// For n < t.cutoff, the block is a simple lookup table. Otherwise, the block
// is a list of ranges with an accompanying value. Given a matching range r,
// the value for b is by r.value + (b - r.lo) * stride.
func (t *sparseBlocks) lookup(n uint32, b byte) uint16 {
offset := t.offset[n]
header := t.values[offset]
lo := offset + 1
hi := lo + uint16(header.lo)
for lo < hi {
m := lo + (hi-lo)/2
r := t.values[m]
if r.lo <= b && b <= r.hi {
return r.value + uint16(b-r.lo)*header.value
}
if b < r.lo {
hi = m
} else {
lo = m + 1
}
}
return 0
}

116
vendor/golang.org/x/net/idna/trieval.go generated vendored Normal file
View file

@ -0,0 +1,116 @@
// Copied from the golang.org/x/text repo; DO NOT EDIT
// This file was generated by go generate; DO NOT EDIT
package idna
// This file contains definitions for interpreting the trie value of the idna
// trie generated by "go run gen*.go". It is shared by both the generator
// program and the resultant package. Sharing is achieved by the generator
// copying gen_trieval.go to trieval.go and changing what's above this comment.
// info holds information from the IDNA mapping table for a single rune. It is
// the value returned by a trie lookup. In most cases, all information fits in
// a 16-bit value. For mappings, this value may contain an index into a slice
// with the mapped string. Such mappings can consist of the actual mapped value
// or an XOR pattern to be applied to the bytes of the UTF8 encoding of the
// input rune. This technique is used by the cases packages and reduces the
// table size significantly.
//
// The per-rune values have the following format:
//
// if mapped {
// if inlinedXOR {
// 15..13 inline XOR marker
// 12..11 unused
// 10..3 inline XOR mask
// } else {
// 15..3 index into xor or mapping table
// }
// } else {
// 15..13 unused
// 12 modifier (including virama)
// 11 virama modifier
// 10..8 joining type
// 7..3 category type
// }
// 2 use xor pattern
// 1..0 mapped category
//
// See the definitions below for a more detailed description of the various
// bits.
type info uint16
const (
catSmallMask = 0x3
catBigMask = 0xF8
indexShift = 3
xorBit = 0x4 // interpret the index as an xor pattern
inlineXOR = 0xE000 // These bits are set if the XOR pattern is inlined.
joinShift = 8
joinMask = 0x07
viramaModifier = 0x0800
modifier = 0x1000
)
// A category corresponds to a category defined in the IDNA mapping table.
type category uint16
const (
unknown category = 0 // not defined currently in unicode.
mapped category = 1
disallowedSTD3Mapped category = 2
deviation category = 3
)
const (
valid category = 0x08
validNV8 category = 0x18
validXV8 category = 0x28
disallowed category = 0x40
disallowedSTD3Valid category = 0x80
ignored category = 0xC0
)
// join types and additional rune information
const (
joiningL = (iota + 1)
joiningD
joiningT
joiningR
//the following types are derived during processing
joinZWJ
joinZWNJ
joinVirama
numJoinTypes
)
func (c info) isMapped() bool {
return c&0x3 != 0
}
func (c info) category() category {
small := c & catSmallMask
if small != 0 {
return category(small)
}
return category(c & catBigMask)
}
func (c info) joinType() info {
if c.isMapped() {
return 0
}
return (c >> joinShift) & joinMask
}
func (c info) isModifier() bool {
return c&(modifier|catSmallMask) == modifier
}
func (c info) isViramaModifier() bool {
return c&(viramaModifier|catSmallMask) == viramaModifier
}

351
vendor/golang.org/x/net/lex/httplex/httplex.go generated vendored Normal file
View file

@ -0,0 +1,351 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package httplex contains rules around lexical matters of various
// HTTP-related specifications.
//
// This package is shared by the standard library (which vendors it)
// and x/net/http2. It comes with no API stability promise.
package httplex
import (
"net"
"strings"
"unicode/utf8"
"golang.org/x/net/idna"
)
var isTokenTable = [127]bool{
'!': true,
'#': true,
'$': true,
'%': true,
'&': true,
'\'': true,
'*': true,
'+': true,
'-': true,
'.': true,
'0': true,
'1': true,
'2': true,
'3': true,
'4': true,
'5': true,
'6': true,
'7': true,
'8': true,
'9': true,
'A': true,
'B': true,
'C': true,
'D': true,
'E': true,
'F': true,
'G': true,
'H': true,
'I': true,
'J': true,
'K': true,
'L': true,
'M': true,
'N': true,
'O': true,
'P': true,
'Q': true,
'R': true,
'S': true,
'T': true,
'U': true,
'W': true,
'V': true,
'X': true,
'Y': true,
'Z': true,
'^': true,
'_': true,
'`': true,
'a': true,
'b': true,
'c': true,
'd': true,
'e': true,
'f': true,
'g': true,
'h': true,
'i': true,
'j': true,
'k': true,
'l': true,
'm': true,
'n': true,
'o': true,
'p': true,
'q': true,
'r': true,
's': true,
't': true,
'u': true,
'v': true,
'w': true,
'x': true,
'y': true,
'z': true,
'|': true,
'~': true,
}
func IsTokenRune(r rune) bool {
i := int(r)
return i < len(isTokenTable) && isTokenTable[i]
}
func isNotToken(r rune) bool {
return !IsTokenRune(r)
}
// HeaderValuesContainsToken reports whether any string in values
// contains the provided token, ASCII case-insensitively.
func HeaderValuesContainsToken(values []string, token string) bool {
for _, v := range values {
if headerValueContainsToken(v, token) {
return true
}
}
return false
}
// isOWS reports whether b is an optional whitespace byte, as defined
// by RFC 7230 section 3.2.3.
func isOWS(b byte) bool { return b == ' ' || b == '\t' }
// trimOWS returns x with all optional whitespace removes from the
// beginning and end.
func trimOWS(x string) string {
// TODO: consider using strings.Trim(x, " \t") instead,
// if and when it's fast enough. See issue 10292.
// But this ASCII-only code will probably always beat UTF-8
// aware code.
for len(x) > 0 && isOWS(x[0]) {
x = x[1:]
}
for len(x) > 0 && isOWS(x[len(x)-1]) {
x = x[:len(x)-1]
}
return x
}
// headerValueContainsToken reports whether v (assumed to be a
// 0#element, in the ABNF extension described in RFC 7230 section 7)
// contains token amongst its comma-separated tokens, ASCII
// case-insensitively.
func headerValueContainsToken(v string, token string) bool {
v = trimOWS(v)
if comma := strings.IndexByte(v, ','); comma != -1 {
return tokenEqual(trimOWS(v[:comma]), token) || headerValueContainsToken(v[comma+1:], token)
}
return tokenEqual(v, token)
}
// lowerASCII returns the ASCII lowercase version of b.
func lowerASCII(b byte) byte {
if 'A' <= b && b <= 'Z' {
return b + ('a' - 'A')
}
return b
}
// tokenEqual reports whether t1 and t2 are equal, ASCII case-insensitively.
func tokenEqual(t1, t2 string) bool {
if len(t1) != len(t2) {
return false
}
for i, b := range t1 {
if b >= utf8.RuneSelf {
// No UTF-8 or non-ASCII allowed in tokens.
return false
}
if lowerASCII(byte(b)) != lowerASCII(t2[i]) {
return false
}
}
return true
}
// isLWS reports whether b is linear white space, according
// to http://www.w3.org/Protocols/rfc2616/rfc2616-sec2.html#sec2.2
// LWS = [CRLF] 1*( SP | HT )
func isLWS(b byte) bool { return b == ' ' || b == '\t' }
// isCTL reports whether b is a control byte, according
// to http://www.w3.org/Protocols/rfc2616/rfc2616-sec2.html#sec2.2
// CTL = <any US-ASCII control character
// (octets 0 - 31) and DEL (127)>
func isCTL(b byte) bool {
const del = 0x7f // a CTL
return b < ' ' || b == del
}
// ValidHeaderFieldName reports whether v is a valid HTTP/1.x header name.
// HTTP/2 imposes the additional restriction that uppercase ASCII
// letters are not allowed.
//
// RFC 7230 says:
// header-field = field-name ":" OWS field-value OWS
// field-name = token
// token = 1*tchar
// tchar = "!" / "#" / "$" / "%" / "&" / "'" / "*" / "+" / "-" / "." /
// "^" / "_" / "`" / "|" / "~" / DIGIT / ALPHA
func ValidHeaderFieldName(v string) bool {
if len(v) == 0 {
return false
}
for _, r := range v {
if !IsTokenRune(r) {
return false
}
}
return true
}
// ValidHostHeader reports whether h is a valid host header.
func ValidHostHeader(h string) bool {
// The latest spec is actually this:
//
// http://tools.ietf.org/html/rfc7230#section-5.4
// Host = uri-host [ ":" port ]
//
// Where uri-host is:
// http://tools.ietf.org/html/rfc3986#section-3.2.2
//
// But we're going to be much more lenient for now and just
// search for any byte that's not a valid byte in any of those
// expressions.
for i := 0; i < len(h); i++ {
if !validHostByte[h[i]] {
return false
}
}
return true
}
// See the validHostHeader comment.
var validHostByte = [256]bool{
'0': true, '1': true, '2': true, '3': true, '4': true, '5': true, '6': true, '7': true,
'8': true, '9': true,
'a': true, 'b': true, 'c': true, 'd': true, 'e': true, 'f': true, 'g': true, 'h': true,
'i': true, 'j': true, 'k': true, 'l': true, 'm': true, 'n': true, 'o': true, 'p': true,
'q': true, 'r': true, 's': true, 't': true, 'u': true, 'v': true, 'w': true, 'x': true,
'y': true, 'z': true,
'A': true, 'B': true, 'C': true, 'D': true, 'E': true, 'F': true, 'G': true, 'H': true,
'I': true, 'J': true, 'K': true, 'L': true, 'M': true, 'N': true, 'O': true, 'P': true,
'Q': true, 'R': true, 'S': true, 'T': true, 'U': true, 'V': true, 'W': true, 'X': true,
'Y': true, 'Z': true,
'!': true, // sub-delims
'$': true, // sub-delims
'%': true, // pct-encoded (and used in IPv6 zones)
'&': true, // sub-delims
'(': true, // sub-delims
')': true, // sub-delims
'*': true, // sub-delims
'+': true, // sub-delims
',': true, // sub-delims
'-': true, // unreserved
'.': true, // unreserved
':': true, // IPv6address + Host expression's optional port
';': true, // sub-delims
'=': true, // sub-delims
'[': true,
'\'': true, // sub-delims
']': true,
'_': true, // unreserved
'~': true, // unreserved
}
// ValidHeaderFieldValue reports whether v is a valid "field-value" according to
// http://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html#sec4.2 :
//
// message-header = field-name ":" [ field-value ]
// field-value = *( field-content | LWS )
// field-content = <the OCTETs making up the field-value
// and consisting of either *TEXT or combinations
// of token, separators, and quoted-string>
//
// http://www.w3.org/Protocols/rfc2616/rfc2616-sec2.html#sec2.2 :
//
// TEXT = <any OCTET except CTLs,
// but including LWS>
// LWS = [CRLF] 1*( SP | HT )
// CTL = <any US-ASCII control character
// (octets 0 - 31) and DEL (127)>
//
// RFC 7230 says:
// field-value = *( field-content / obs-fold )
// obj-fold = N/A to http2, and deprecated
// field-content = field-vchar [ 1*( SP / HTAB ) field-vchar ]
// field-vchar = VCHAR / obs-text
// obs-text = %x80-FF
// VCHAR = "any visible [USASCII] character"
//
// http2 further says: "Similarly, HTTP/2 allows header field values
// that are not valid. While most of the values that can be encoded
// will not alter header field parsing, carriage return (CR, ASCII
// 0xd), line feed (LF, ASCII 0xa), and the zero character (NUL, ASCII
// 0x0) might be exploited by an attacker if they are translated
// verbatim. Any request or response that contains a character not
// permitted in a header field value MUST be treated as malformed
// (Section 8.1.2.6). Valid characters are defined by the
// field-content ABNF rule in Section 3.2 of [RFC7230]."
//
// This function does not (yet?) properly handle the rejection of
// strings that begin or end with SP or HTAB.
func ValidHeaderFieldValue(v string) bool {
for i := 0; i < len(v); i++ {
b := v[i]
if isCTL(b) && !isLWS(b) {
return false
}
}
return true
}
func isASCII(s string) bool {
for i := 0; i < len(s); i++ {
if s[i] >= utf8.RuneSelf {
return false
}
}
return true
}
// PunycodeHostPort returns the IDNA Punycode version
// of the provided "host" or "host:port" string.
func PunycodeHostPort(v string) (string, error) {
if isASCII(v) {
return v, nil
}
host, port, err := net.SplitHostPort(v)
if err != nil {
// The input 'v' argument was just a "host" argument,
// without a port. This error should not be returned
// to the caller.
host = v
port = ""
}
host, err = idna.ToASCII(host)
if err != nil {
// Non-UTF-8? Not representable in Punycode, in any
// case.
return "", err
}
if port == "" {
return host, nil
}
return net.JoinHostPort(host, port), nil
}

View file

@ -91,9 +91,10 @@ var DebugUseAfterFinish = false
// It returns two bools; the first indicates whether the page may be viewed at all,
// and the second indicates whether sensitive events will be shown.
//
// AuthRequest may be replaced by a program to customise its authorisation requirements.
// AuthRequest may be replaced by a program to customize its authorization requirements.
//
// The default AuthRequest function returns (true, true) iff the request comes from localhost/127.0.0.1/[::1].
// The default AuthRequest function returns (true, true) if and only if the request
// comes from localhost/127.0.0.1/[::1].
var AuthRequest = func(req *http.Request) (any, sensitive bool) {
// RemoteAddr is commonly in the form "IP" or "IP:port".
// If it is in the form "IP:port", split off the port.
@ -332,7 +333,8 @@ func New(family, title string) Trace {
tr.ref()
tr.Family, tr.Title = family, title
tr.Start = time.Now()
tr.events = make([]event, 0, maxEventsPerTrace)
tr.maxEvents = maxEventsPerTrace
tr.events = tr.eventsBuf[:0]
activeMu.RLock()
s := activeTraces[tr.Family]
@ -649,8 +651,8 @@ type event struct {
Elapsed time.Duration // since previous event in trace
NewDay bool // whether this event is on a different day to the previous event
Recyclable bool // whether this event was passed via LazyLog
What interface{} // string or fmt.Stringer
Sensitive bool // whether this event contains sensitive information
What interface{} // string or fmt.Stringer
}
// WhenString returns a string representation of the elapsed time of the event.
@ -691,14 +693,17 @@ type trace struct {
IsError bool
// Append-only sequence of events (modulo discards).
mu sync.RWMutex
events []event
mu sync.RWMutex
events []event
maxEvents int
refs int32 // how many buckets this is in
recycler func(interface{})
disc discarded // scratch space to avoid allocation
finishStack []byte // where finish was called, if DebugUseAfterFinish is set
eventsBuf [4]event // preallocated buffer in case we only log a few events
}
func (tr *trace) reset() {
@ -710,11 +715,15 @@ func (tr *trace) reset() {
tr.traceID = 0
tr.spanID = 0
tr.IsError = false
tr.maxEvents = 0
tr.events = nil
tr.refs = 0
tr.recycler = nil
tr.disc = 0
tr.finishStack = nil
for i := range tr.eventsBuf {
tr.eventsBuf[i] = event{}
}
}
// delta returns the elapsed time since the last event or the trace start,
@ -743,7 +752,7 @@ func (tr *trace) addEvent(x interface{}, recyclable, sensitive bool) {
and very unlikely to be the fault of this code.
The most likely scenario is that some code elsewhere is using
a requestz.Trace after its Finish method is called.
a trace.Trace after its Finish method is called.
You can temporarily set the DebugUseAfterFinish var
to help discover where that is; do not leave that var set,
since it makes this package much less efficient.
@ -752,11 +761,11 @@ func (tr *trace) addEvent(x interface{}, recyclable, sensitive bool) {
e := event{When: time.Now(), What: x, Recyclable: recyclable, Sensitive: sensitive}
tr.mu.Lock()
e.Elapsed, e.NewDay = tr.delta(e.When)
if len(tr.events) < cap(tr.events) {
if len(tr.events) < tr.maxEvents {
tr.events = append(tr.events, e)
} else {
// Discard the middle events.
di := int((cap(tr.events) - 1) / 2)
di := int((tr.maxEvents - 1) / 2)
if d, ok := tr.events[di].What.(*discarded); ok {
(*d)++
} else {
@ -776,7 +785,7 @@ func (tr *trace) addEvent(x interface{}, recyclable, sensitive bool) {
go tr.recycler(tr.events[di+1].What)
}
copy(tr.events[di+1:], tr.events[di+2:])
tr.events[cap(tr.events)-1] = e
tr.events[tr.maxEvents-1] = e
}
tr.mu.Unlock()
}
@ -802,7 +811,7 @@ func (tr *trace) SetTraceInfo(traceID, spanID uint64) {
func (tr *trace) SetMaxEvents(m int) {
// Always keep at least three events: first, discarded count, last.
if len(tr.events) == 0 && m > 3 {
tr.events = make([]event, 0, m)
tr.maxEvents = m
}
}

View file

@ -6,7 +6,6 @@ package websocket
import (
"bufio"
"crypto/tls"
"io"
"net"
"net/http"
@ -87,20 +86,14 @@ func DialConfig(config *Config) (ws *Conn, err error) {
if config.Origin == nil {
return nil, &DialError{config, ErrBadWebSocketOrigin}
}
switch config.Location.Scheme {
case "ws":
client, err = net.Dial("tcp", parseAuthority(config.Location))
case "wss":
client, err = tls.Dial("tcp", parseAuthority(config.Location), config.TlsConfig)
default:
err = ErrBadScheme
dialer := config.Dialer
if dialer == nil {
dialer = &net.Dialer{}
}
client, err = dialWithDialer(dialer, config)
if err != nil {
goto Error
}
ws, err = NewClient(config, client)
if err != nil {
client.Close()

24
vendor/golang.org/x/net/websocket/dial.go generated vendored Normal file
View file

@ -0,0 +1,24 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package websocket
import (
"crypto/tls"
"net"
)
func dialWithDialer(dialer *net.Dialer, config *Config) (conn net.Conn, err error) {
switch config.Location.Scheme {
case "ws":
conn, err = dialer.Dial("tcp", parseAuthority(config.Location))
case "wss":
conn, err = tls.DialWithDialer(dialer, "tcp", parseAuthority(config.Location), config.TlsConfig)
default:
err = ErrBadScheme
}
return
}

View file

@ -81,9 +81,6 @@ type hybiFrameReader struct {
func (frame *hybiFrameReader) Read(msg []byte) (n int, err error) {
n, err = frame.reader.Read(msg)
if err != nil {
return 0, err
}
if frame.header.MaskingKey != nil {
for i := 0; i < n; i++ {
msg[i] = msg[i] ^ frame.header.MaskingKey[frame.pos%4]

View file

@ -4,6 +4,12 @@
// Package websocket implements a client and server for the WebSocket protocol
// as specified in RFC 6455.
//
// This package currently lacks some features found in an alternative
// and more actively maintained WebSocket package:
//
// https://godoc.org/github.com/gorilla/websocket
//
package websocket // import "golang.org/x/net/websocket"
import (
@ -32,6 +38,8 @@ const (
PingFrame = 9
PongFrame = 10
UnknownFrame = 255
DefaultMaxPayloadBytes = 32 << 20 // 32MB
)
// ProtocolError represents WebSocket protocol errors.
@ -58,6 +66,10 @@ var (
ErrNotSupported = &ProtocolError{"not supported"}
)
// ErrFrameTooLarge is returned by Codec's Receive method if payload size
// exceeds limit set by Conn.MaxPayloadBytes
var ErrFrameTooLarge = errors.New("websocket: frame payload size exceeds limit")
// Addr is an implementation of net.Addr for WebSocket.
type Addr struct {
*url.URL
@ -86,6 +98,9 @@ type Config struct {
// Additional header fields to be sent in WebSocket opening handshake.
Header http.Header
// Dialer used when opening websocket connections.
Dialer *net.Dialer
handshakeData map[string]string
}
@ -163,6 +178,10 @@ type Conn struct {
frameHandler
PayloadType byte
defaultCloseStatus int
// MaxPayloadBytes limits the size of frame payload received over Conn
// by Codec's Receive method. If zero, DefaultMaxPayloadBytes is used.
MaxPayloadBytes int
}
// Read implements the io.Reader interface:
@ -209,9 +228,6 @@ func (ws *Conn) Write(msg []byte) (n int, err error) {
}
n, err = w.Write(msg)
w.Close()
if err != nil {
return n, err
}
return n, err
}
@ -302,7 +318,12 @@ func (cd Codec) Send(ws *Conn, v interface{}) (err error) {
return err
}
// Receive receives single frame from ws, unmarshaled by cd.Unmarshal and stores in v.
// Receive receives single frame from ws, unmarshaled by cd.Unmarshal and stores
// in v. The whole frame payload is read to an in-memory buffer; max size of
// payload is defined by ws.MaxPayloadBytes. If frame payload size exceeds
// limit, ErrFrameTooLarge is returned; in this case frame is not read off wire
// completely. The next call to Receive would read and discard leftover data of
// previous oversized frame before processing next frame.
func (cd Codec) Receive(ws *Conn, v interface{}) (err error) {
ws.rio.Lock()
defer ws.rio.Unlock()
@ -325,6 +346,19 @@ again:
if frame == nil {
goto again
}
maxPayloadBytes := ws.MaxPayloadBytes
if maxPayloadBytes == 0 {
maxPayloadBytes = DefaultMaxPayloadBytes
}
if hf, ok := frame.(*hybiFrameReader); ok && hf.header.Length > int64(maxPayloadBytes) {
// payload size exceeds limit, no need to call Unmarshal
//
// set frameReader to current oversized frame so that
// the next call to this function can drain leftover
// data before processing the next frame
ws.frameReader = frame
return ErrFrameTooLarge
}
payloadType := frame.PayloadType()
data, err := ioutil.ReadAll(frame)
if err != nil {

27
vendor/golang.org/x/text/LICENSE generated vendored Normal file
View file

@ -0,0 +1,27 @@
Copyright (c) 2009 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

22
vendor/golang.org/x/text/PATENTS generated vendored Normal file
View file

@ -0,0 +1,22 @@
Additional IP Rights Grant (Patents)
"This implementation" means the copyrightable works distributed by
Google as part of the Go project.
Google hereby grants to You a perpetual, worldwide, non-exclusive,
no-charge, royalty-free, irrevocable (except as stated in this section)
patent license to make, have made, use, offer to sell, sell, import,
transfer and otherwise run, modify and propagate the contents of this
implementation of Go, where such license applies only to those patent
claims, both currently owned or controlled by Google and acquired in
the future, licensable by Google that are necessarily infringed by this
implementation of Go. This grant does not include claims that would be
infringed only as a consequence of further modification of this
implementation. If you or your agent or exclusive licensee institute or
order or agree to the institution of patent litigation against any
entity (including a cross-claim or counterclaim in a lawsuit) alleging
that this implementation of Go or any code incorporated within this
implementation of Go constitutes direct or contributory patent
infringement, or inducement of patent infringement, then any patent
rights granted to you under this License for this implementation of Go
shall terminate as of the date such litigation is filed.

351
vendor/golang.org/x/text/internal/gen/code.go generated vendored Normal file
View file

@ -0,0 +1,351 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gen
import (
"bytes"
"encoding/gob"
"fmt"
"hash"
"hash/fnv"
"io"
"log"
"os"
"reflect"
"strings"
"unicode"
"unicode/utf8"
)
// This file contains utilities for generating code.
// TODO: other write methods like:
// - slices, maps, types, etc.
// CodeWriter is a utility for writing structured code. It computes the content
// hash and size of written content. It ensures there are newlines between
// written code blocks.
type CodeWriter struct {
buf bytes.Buffer
Size int
Hash hash.Hash32 // content hash
gob *gob.Encoder
// For comments we skip the usual one-line separator if they are followed by
// a code block.
skipSep bool
}
func (w *CodeWriter) Write(p []byte) (n int, err error) {
return w.buf.Write(p)
}
// NewCodeWriter returns a new CodeWriter.
func NewCodeWriter() *CodeWriter {
h := fnv.New32()
return &CodeWriter{Hash: h, gob: gob.NewEncoder(h)}
}
// WriteGoFile appends the buffer with the total size of all created structures
// and writes it as a Go file to the the given file with the given package name.
func (w *CodeWriter) WriteGoFile(filename, pkg string) {
f, err := os.Create(filename)
if err != nil {
log.Fatalf("Could not create file %s: %v", filename, err)
}
defer f.Close()
if _, err = w.WriteGo(f, pkg); err != nil {
log.Fatalf("Error writing file %s: %v", filename, err)
}
}
// WriteGo appends the buffer with the total size of all created structures and
// writes it as a Go file to the the given writer with the given package name.
func (w *CodeWriter) WriteGo(out io.Writer, pkg string) (n int, err error) {
sz := w.Size
w.WriteComment("Total table size %d bytes (%dKiB); checksum: %X\n", sz, sz/1024, w.Hash.Sum32())
defer w.buf.Reset()
return WriteGo(out, pkg, w.buf.Bytes())
}
func (w *CodeWriter) printf(f string, x ...interface{}) {
fmt.Fprintf(w, f, x...)
}
func (w *CodeWriter) insertSep() {
if w.skipSep {
w.skipSep = false
return
}
// Use at least two newlines to ensure a blank space between the previous
// block. WriteGoFile will remove extraneous newlines.
w.printf("\n\n")
}
// WriteComment writes a comment block. All line starts are prefixed with "//".
// Initial empty lines are gobbled. The indentation for the first line is
// stripped from consecutive lines.
func (w *CodeWriter) WriteComment(comment string, args ...interface{}) {
s := fmt.Sprintf(comment, args...)
s = strings.Trim(s, "\n")
// Use at least two newlines to ensure a blank space between the previous
// block. WriteGoFile will remove extraneous newlines.
w.printf("\n\n// ")
w.skipSep = true
// strip first indent level.
sep := "\n"
for ; len(s) > 0 && (s[0] == '\t' || s[0] == ' '); s = s[1:] {
sep += s[:1]
}
strings.NewReplacer(sep, "\n// ", "\n", "\n// ").WriteString(w, s)
w.printf("\n")
}
func (w *CodeWriter) writeSizeInfo(size int) {
w.printf("// Size: %d bytes\n", size)
}
// WriteConst writes a constant of the given name and value.
func (w *CodeWriter) WriteConst(name string, x interface{}) {
w.insertSep()
v := reflect.ValueOf(x)
switch v.Type().Kind() {
case reflect.String:
w.printf("const %s %s = ", name, typeName(x))
w.WriteString(v.String())
w.printf("\n")
default:
w.printf("const %s = %#v\n", name, x)
}
}
// WriteVar writes a variable of the given name and value.
func (w *CodeWriter) WriteVar(name string, x interface{}) {
w.insertSep()
v := reflect.ValueOf(x)
oldSize := w.Size
sz := int(v.Type().Size())
w.Size += sz
switch v.Type().Kind() {
case reflect.String:
w.printf("var %s %s = ", name, typeName(x))
w.WriteString(v.String())
case reflect.Struct:
w.gob.Encode(x)
fallthrough
case reflect.Slice, reflect.Array:
w.printf("var %s = ", name)
w.writeValue(v)
w.writeSizeInfo(w.Size - oldSize)
default:
w.printf("var %s %s = ", name, typeName(x))
w.gob.Encode(x)
w.writeValue(v)
w.writeSizeInfo(w.Size - oldSize)
}
w.printf("\n")
}
func (w *CodeWriter) writeValue(v reflect.Value) {
x := v.Interface()
switch v.Kind() {
case reflect.String:
w.WriteString(v.String())
case reflect.Array:
// Don't double count: callers of WriteArray count on the size being
// added, so we need to discount it here.
w.Size -= int(v.Type().Size())
w.writeSlice(x, true)
case reflect.Slice:
w.writeSlice(x, false)
case reflect.Struct:
w.printf("%s{\n", typeName(v.Interface()))
t := v.Type()
for i := 0; i < v.NumField(); i++ {
w.printf("%s: ", t.Field(i).Name)
w.writeValue(v.Field(i))
w.printf(",\n")
}
w.printf("}")
default:
w.printf("%#v", x)
}
}
// WriteString writes a string literal.
func (w *CodeWriter) WriteString(s string) {
s = strings.Replace(s, `\`, `\\`, -1)
io.WriteString(w.Hash, s) // content hash
w.Size += len(s)
const maxInline = 40
if len(s) <= maxInline {
w.printf("%q", s)
return
}
// We will render the string as a multi-line string.
const maxWidth = 80 - 4 - len(`"`) - len(`" +`)
// When starting on its own line, go fmt indents line 2+ an extra level.
n, max := maxWidth, maxWidth-4
// As per https://golang.org/issue/18078, the compiler has trouble
// compiling the concatenation of many strings, s0 + s1 + s2 + ... + sN,
// for large N. We insert redundant, explicit parentheses to work around
// that, lowering the N at any given step: (s0 + s1 + ... + s63) + (s64 +
// ... + s127) + etc + (etc + ... + sN).
explicitParens, extraComment := len(s) > 128*1024, ""
if explicitParens {
w.printf(`(`)
extraComment = "; the redundant, explicit parens are for https://golang.org/issue/18078"
}
// Print "" +\n, if a string does not start on its own line.
b := w.buf.Bytes()
if p := len(bytes.TrimRight(b, " \t")); p > 0 && b[p-1] != '\n' {
w.printf("\"\" + // Size: %d bytes%s\n", len(s), extraComment)
n, max = maxWidth, maxWidth
}
w.printf(`"`)
for sz, p, nLines := 0, 0, 0; p < len(s); {
var r rune
r, sz = utf8.DecodeRuneInString(s[p:])
out := s[p : p+sz]
chars := 1
if !unicode.IsPrint(r) || r == utf8.RuneError || r == '"' {
switch sz {
case 1:
out = fmt.Sprintf("\\x%02x", s[p])
case 2, 3:
out = fmt.Sprintf("\\u%04x", r)
case 4:
out = fmt.Sprintf("\\U%08x", r)
}
chars = len(out)
}
if n -= chars; n < 0 {
nLines++
if explicitParens && nLines&63 == 63 {
w.printf("\") + (\"")
}
w.printf("\" +\n\"")
n = max - len(out)
}
w.printf("%s", out)
p += sz
}
w.printf(`"`)
if explicitParens {
w.printf(`)`)
}
}
// WriteSlice writes a slice value.
func (w *CodeWriter) WriteSlice(x interface{}) {
w.writeSlice(x, false)
}
// WriteArray writes an array value.
func (w *CodeWriter) WriteArray(x interface{}) {
w.writeSlice(x, true)
}
func (w *CodeWriter) writeSlice(x interface{}, isArray bool) {
v := reflect.ValueOf(x)
w.gob.Encode(v.Len())
w.Size += v.Len() * int(v.Type().Elem().Size())
name := typeName(x)
if isArray {
name = fmt.Sprintf("[%d]%s", v.Len(), name[strings.Index(name, "]")+1:])
}
if isArray {
w.printf("%s{\n", name)
} else {
w.printf("%s{ // %d elements\n", name, v.Len())
}
switch kind := v.Type().Elem().Kind(); kind {
case reflect.String:
for _, s := range x.([]string) {
w.WriteString(s)
w.printf(",\n")
}
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
// nLine and nBlock are the number of elements per line and block.
nLine, nBlock, format := 8, 64, "%d,"
switch kind {
case reflect.Uint8:
format = "%#02x,"
case reflect.Uint16:
format = "%#04x,"
case reflect.Uint32:
nLine, nBlock, format = 4, 32, "%#08x,"
case reflect.Uint, reflect.Uint64:
nLine, nBlock, format = 4, 32, "%#016x,"
case reflect.Int8:
nLine = 16
}
n := nLine
for i := 0; i < v.Len(); i++ {
if i%nBlock == 0 && v.Len() > nBlock {
w.printf("// Entry %X - %X\n", i, i+nBlock-1)
}
x := v.Index(i).Interface()
w.gob.Encode(x)
w.printf(format, x)
if n--; n == 0 {
n = nLine
w.printf("\n")
}
}
w.printf("\n")
case reflect.Struct:
zero := reflect.Zero(v.Type().Elem()).Interface()
for i := 0; i < v.Len(); i++ {
x := v.Index(i).Interface()
w.gob.EncodeValue(v)
if !reflect.DeepEqual(zero, x) {
line := fmt.Sprintf("%#v,\n", x)
line = line[strings.IndexByte(line, '{'):]
w.printf("%d: ", i)
w.printf(line)
}
}
case reflect.Array:
for i := 0; i < v.Len(); i++ {
w.printf("%d: %#v,\n", i, v.Index(i).Interface())
}
default:
panic("gen: slice elem type not supported")
}
w.printf("}")
}
// WriteType writes a definition of the type of the given value and returns the
// type name.
func (w *CodeWriter) WriteType(x interface{}) string {
t := reflect.TypeOf(x)
w.printf("type %s struct {\n", t.Name())
for i := 0; i < t.NumField(); i++ {
w.printf("\t%s %s\n", t.Field(i).Name, t.Field(i).Type)
}
w.printf("}\n")
return t.Name()
}
// typeName returns the name of the go type of x.
func typeName(x interface{}) string {
t := reflect.ValueOf(x).Type()
return strings.Replace(fmt.Sprint(t), "main.", "", 1)
}

281
vendor/golang.org/x/text/internal/gen/gen.go generated vendored Normal file
View file

@ -0,0 +1,281 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package gen contains common code for the various code generation tools in the
// text repository. Its usage ensures consistency between tools.
//
// This package defines command line flags that are common to most generation
// tools. The flags allow for specifying specific Unicode and CLDR versions
// in the public Unicode data repository (http://www.unicode.org/Public).
//
// A local Unicode data mirror can be set through the flag -local or the
// environment variable UNICODE_DIR. The former takes precedence. The local
// directory should follow the same structure as the public repository.
//
// IANA data can also optionally be mirrored by putting it in the iana directory
// rooted at the top of the local mirror. Beware, though, that IANA data is not
// versioned. So it is up to the developer to use the right version.
package gen // import "golang.org/x/text/internal/gen"
import (
"bytes"
"flag"
"fmt"
"go/build"
"go/format"
"io"
"io/ioutil"
"log"
"net/http"
"os"
"path"
"path/filepath"
"sync"
"unicode"
"golang.org/x/text/unicode/cldr"
)
var (
url = flag.String("url",
"http://www.unicode.org/Public",
"URL of Unicode database directory")
iana = flag.String("iana",
"http://www.iana.org",
"URL of the IANA repository")
unicodeVersion = flag.String("unicode",
getEnv("UNICODE_VERSION", unicode.Version),
"unicode version to use")
cldrVersion = flag.String("cldr",
getEnv("CLDR_VERSION", cldr.Version),
"cldr version to use")
)
func getEnv(name, def string) string {
if v := os.Getenv(name); v != "" {
return v
}
return def
}
// Init performs common initialization for a gen command. It parses the flags
// and sets up the standard logging parameters.
func Init() {
log.SetPrefix("")
log.SetFlags(log.Lshortfile)
flag.Parse()
}
const header = `// This file was generated by go generate; DO NOT EDIT
package %s
`
// UnicodeVersion reports the requested Unicode version.
func UnicodeVersion() string {
return *unicodeVersion
}
// UnicodeVersion reports the requested CLDR version.
func CLDRVersion() string {
return *cldrVersion
}
// IsLocal reports whether data files are available locally.
func IsLocal() bool {
dir, err := localReadmeFile()
if err != nil {
return false
}
if _, err = os.Stat(dir); err != nil {
return false
}
return true
}
// OpenUCDFile opens the requested UCD file. The file is specified relative to
// the public Unicode root directory. It will call log.Fatal if there are any
// errors.
func OpenUCDFile(file string) io.ReadCloser {
return openUnicode(path.Join(*unicodeVersion, "ucd", file))
}
// OpenCLDRCoreZip opens the CLDR core zip file. It will call log.Fatal if there
// are any errors.
func OpenCLDRCoreZip() io.ReadCloser {
return OpenUnicodeFile("cldr", *cldrVersion, "core.zip")
}
// OpenUnicodeFile opens the requested file of the requested category from the
// root of the Unicode data archive. The file is specified relative to the
// public Unicode root directory. If version is "", it will use the default
// Unicode version. It will call log.Fatal if there are any errors.
func OpenUnicodeFile(category, version, file string) io.ReadCloser {
if version == "" {
version = UnicodeVersion()
}
return openUnicode(path.Join(category, version, file))
}
// OpenIANAFile opens the requested IANA file. The file is specified relative
// to the IANA root, which is typically either http://www.iana.org or the
// iana directory in the local mirror. It will call log.Fatal if there are any
// errors.
func OpenIANAFile(path string) io.ReadCloser {
return Open(*iana, "iana", path)
}
var (
dirMutex sync.Mutex
localDir string
)
const permissions = 0755
func localReadmeFile() (string, error) {
p, err := build.Import("golang.org/x/text", "", build.FindOnly)
if err != nil {
return "", fmt.Errorf("Could not locate package: %v", err)
}
return filepath.Join(p.Dir, "DATA", "README"), nil
}
func getLocalDir() string {
dirMutex.Lock()
defer dirMutex.Unlock()
readme, err := localReadmeFile()
if err != nil {
log.Fatal(err)
}
dir := filepath.Dir(readme)
if _, err := os.Stat(readme); err != nil {
if err := os.MkdirAll(dir, permissions); err != nil {
log.Fatalf("Could not create directory: %v", err)
}
ioutil.WriteFile(readme, []byte(readmeTxt), permissions)
}
return dir
}
const readmeTxt = `Generated by golang.org/x/text/internal/gen. DO NOT EDIT.
This directory contains downloaded files used to generate the various tables
in the golang.org/x/text subrepo.
Note that the language subtag repo (iana/assignments/language-subtag-registry)
and all other times in the iana subdirectory are not versioned and will need
to be periodically manually updated. The easiest way to do this is to remove
the entire iana directory. This is mostly of concern when updating the language
package.
`
// Open opens subdir/path if a local directory is specified and the file exists,
// where subdir is a directory relative to the local root, or fetches it from
// urlRoot/path otherwise. It will call log.Fatal if there are any errors.
func Open(urlRoot, subdir, path string) io.ReadCloser {
file := filepath.Join(getLocalDir(), subdir, filepath.FromSlash(path))
return open(file, urlRoot, path)
}
func openUnicode(path string) io.ReadCloser {
file := filepath.Join(getLocalDir(), filepath.FromSlash(path))
return open(file, *url, path)
}
// TODO: automatically periodically update non-versioned files.
func open(file, urlRoot, path string) io.ReadCloser {
if f, err := os.Open(file); err == nil {
return f
}
r := get(urlRoot, path)
defer r.Close()
b, err := ioutil.ReadAll(r)
if err != nil {
log.Fatalf("Could not download file: %v", err)
}
os.MkdirAll(filepath.Dir(file), permissions)
if err := ioutil.WriteFile(file, b, permissions); err != nil {
log.Fatalf("Could not create file: %v", err)
}
return ioutil.NopCloser(bytes.NewReader(b))
}
func get(root, path string) io.ReadCloser {
url := root + "/" + path
fmt.Printf("Fetching %s...", url)
defer fmt.Println(" done.")
resp, err := http.Get(url)
if err != nil {
log.Fatalf("HTTP GET: %v", err)
}
if resp.StatusCode != 200 {
log.Fatalf("Bad GET status for %q: %q", url, resp.Status)
}
return resp.Body
}
// TODO: use Write*Version in all applicable packages.
// WriteUnicodeVersion writes a constant for the Unicode version from which the
// tables are generated.
func WriteUnicodeVersion(w io.Writer) {
fmt.Fprintf(w, "// UnicodeVersion is the Unicode version from which the tables in this package are derived.\n")
fmt.Fprintf(w, "const UnicodeVersion = %q\n\n", UnicodeVersion())
}
// WriteCLDRVersion writes a constant for the CLDR version from which the
// tables are generated.
func WriteCLDRVersion(w io.Writer) {
fmt.Fprintf(w, "// CLDRVersion is the CLDR version from which the tables in this package are derived.\n")
fmt.Fprintf(w, "const CLDRVersion = %q\n\n", CLDRVersion())
}
// WriteGoFile prepends a standard file comment and package statement to the
// given bytes, applies gofmt, and writes them to a file with the given name.
// It will call log.Fatal if there are any errors.
func WriteGoFile(filename, pkg string, b []byte) {
w, err := os.Create(filename)
if err != nil {
log.Fatalf("Could not create file %s: %v", filename, err)
}
defer w.Close()
if _, err = WriteGo(w, pkg, b); err != nil {
log.Fatalf("Error writing file %s: %v", filename, err)
}
}
// WriteGo prepends a standard file comment and package statement to the given
// bytes, applies gofmt, and writes them to w.
func WriteGo(w io.Writer, pkg string, b []byte) (n int, err error) {
src := []byte(fmt.Sprintf(header, pkg))
src = append(src, b...)
formatted, err := format.Source(src)
if err != nil {
// Print the generated code even in case of an error so that the
// returned error can be meaningfully interpreted.
n, _ = w.Write(src)
return n, err
}
return w.Write(formatted)
}
// Repackage rewrites a Go file from belonging to package main to belonging to
// the given package.
func Repackage(inFile, outFile, pkg string) {
src, err := ioutil.ReadFile(inFile)
if err != nil {
log.Fatalf("reading %s: %v", inFile, err)
}
const toDelete = "package main\n\n"
i := bytes.Index(src, []byte(toDelete))
if i < 0 {
log.Fatalf("Could not find %q in %s.", toDelete, inFile)
}
w := &bytes.Buffer{}
w.Write(src[i+len(toDelete):])
WriteGoFile(outFile, pkg, w.Bytes())
}

58
vendor/golang.org/x/text/internal/triegen/compact.go generated vendored Normal file
View file

@ -0,0 +1,58 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package triegen
// This file defines Compacter and its implementations.
import "io"
// A Compacter generates an alternative, more space-efficient way to store a
// trie value block. A trie value block holds all possible values for the last
// byte of a UTF-8 encoded rune. Excluding ASCII characters, a trie value block
// always has 64 values, as a UTF-8 encoding ends with a byte in [0x80, 0xC0).
type Compacter interface {
// Size returns whether the Compacter could encode the given block as well
// as its size in case it can. len(v) is always 64.
Size(v []uint64) (sz int, ok bool)
// Store stores the block using the Compacter's compression method.
// It returns a handle with which the block can be retrieved.
// len(v) is always 64.
Store(v []uint64) uint32
// Print writes the data structures associated to the given store to w.
Print(w io.Writer) error
// Handler returns the name of a function that gets called during trie
// lookup for blocks generated by the Compacter. The function should be of
// the form func (n uint32, b byte) uint64, where n is the index returned by
// the Compacter's Store method and b is the last byte of the UTF-8
// encoding, where 0x80 <= b < 0xC0, for which to do the lookup in the
// block.
Handler() string
}
// simpleCompacter is the default Compacter used by builder. It implements a
// normal trie block.
type simpleCompacter builder
func (b *simpleCompacter) Size([]uint64) (sz int, ok bool) {
return blockSize * b.ValueSize, true
}
func (b *simpleCompacter) Store(v []uint64) uint32 {
h := uint32(len(b.ValueBlocks) - blockOffset)
b.ValueBlocks = append(b.ValueBlocks, v)
return h
}
func (b *simpleCompacter) Print(io.Writer) error {
// Structures are printed in print.go.
return nil
}
func (b *simpleCompacter) Handler() string {
panic("Handler should be special-cased for this Compacter")
}

251
vendor/golang.org/x/text/internal/triegen/print.go generated vendored Normal file
View file

@ -0,0 +1,251 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package triegen
import (
"bytes"
"fmt"
"io"
"strings"
"text/template"
)
// print writes all the data structures as well as the code necessary to use the
// trie to w.
func (b *builder) print(w io.Writer) error {
b.Stats.NValueEntries = len(b.ValueBlocks) * blockSize
b.Stats.NValueBytes = len(b.ValueBlocks) * blockSize * b.ValueSize
b.Stats.NIndexEntries = len(b.IndexBlocks) * blockSize
b.Stats.NIndexBytes = len(b.IndexBlocks) * blockSize * b.IndexSize
b.Stats.NHandleBytes = len(b.Trie) * 2 * b.IndexSize
// If we only have one root trie, all starter blocks are at position 0 and
// we can access the arrays directly.
if len(b.Trie) == 1 {
// At this point we cannot refer to the generated tables directly.
b.ASCIIBlock = b.Name + "Values"
b.StarterBlock = b.Name + "Index"
} else {
// Otherwise we need to have explicit starter indexes in the trie
// structure.
b.ASCIIBlock = "t.ascii"
b.StarterBlock = "t.utf8Start"
}
b.SourceType = "[]byte"
if err := lookupGen.Execute(w, b); err != nil {
return err
}
b.SourceType = "string"
if err := lookupGen.Execute(w, b); err != nil {
return err
}
if err := trieGen.Execute(w, b); err != nil {
return err
}
for _, c := range b.Compactions {
if err := c.c.Print(w); err != nil {
return err
}
}
return nil
}
func printValues(n int, values []uint64) string {
w := &bytes.Buffer{}
boff := n * blockSize
fmt.Fprintf(w, "\t// Block %#x, offset %#x", n, boff)
var newline bool
for i, v := range values {
if i%6 == 0 {
newline = true
}
if v != 0 {
if newline {
fmt.Fprintf(w, "\n")
newline = false
}
fmt.Fprintf(w, "\t%#02x:%#04x, ", boff+i, v)
}
}
return w.String()
}
func printIndex(b *builder, nr int, n *node) string {
w := &bytes.Buffer{}
boff := nr * blockSize
fmt.Fprintf(w, "\t// Block %#x, offset %#x", nr, boff)
var newline bool
for i, c := range n.children {
if i%8 == 0 {
newline = true
}
if c != nil {
v := b.Compactions[c.index.compaction].Offset + uint32(c.index.index)
if v != 0 {
if newline {
fmt.Fprintf(w, "\n")
newline = false
}
fmt.Fprintf(w, "\t%#02x:%#02x, ", boff+i, v)
}
}
}
return w.String()
}
var (
trieGen = template.Must(template.New("trie").Funcs(template.FuncMap{
"printValues": printValues,
"printIndex": printIndex,
"title": strings.Title,
"dec": func(x int) int { return x - 1 },
"psize": func(n int) string {
return fmt.Sprintf("%d bytes (%.2f KiB)", n, float64(n)/1024)
},
}).Parse(trieTemplate))
lookupGen = template.Must(template.New("lookup").Parse(lookupTemplate))
)
// TODO: consider the return type of lookup. It could be uint64, even if the
// internal value type is smaller. We will have to verify this with the
// performance of unicode/norm, which is very sensitive to such changes.
const trieTemplate = `{{$b := .}}{{$multi := gt (len .Trie) 1}}
// {{.Name}}Trie. Total size: {{psize .Size}}. Checksum: {{printf "%08x" .Checksum}}.
type {{.Name}}Trie struct { {{if $multi}}
ascii []{{.ValueType}} // index for ASCII bytes
utf8Start []{{.IndexType}} // index for UTF-8 bytes >= 0xC0
{{end}}}
func new{{title .Name}}Trie(i int) *{{.Name}}Trie { {{if $multi}}
h := {{.Name}}TrieHandles[i]
return &{{.Name}}Trie{ {{.Name}}Values[uint32(h.ascii)<<6:], {{.Name}}Index[uint32(h.multi)<<6:] }
}
type {{.Name}}TrieHandle struct {
ascii, multi {{.IndexType}}
}
// {{.Name}}TrieHandles: {{len .Trie}} handles, {{.Stats.NHandleBytes}} bytes
var {{.Name}}TrieHandles = [{{len .Trie}}]{{.Name}}TrieHandle{
{{range .Trie}} { {{.ASCIIIndex}}, {{.StarterIndex}} }, // {{printf "%08x" .Checksum}}: {{.Name}}
{{end}}}{{else}}
return &{{.Name}}Trie{}
}
{{end}}
// lookupValue determines the type of block n and looks up the value for b.
func (t *{{.Name}}Trie) lookupValue(n uint32, b byte) {{.ValueType}}{{$last := dec (len .Compactions)}} {
switch { {{range $i, $c := .Compactions}}
{{if eq $i $last}}default{{else}}case n < {{$c.Cutoff}}{{end}}:{{if ne $i 0}}
n -= {{$c.Offset}}{{end}}
return {{print $b.ValueType}}({{$c.Handler}}){{end}}
}
}
// {{.Name}}Values: {{len .ValueBlocks}} blocks, {{.Stats.NValueEntries}} entries, {{.Stats.NValueBytes}} bytes
// The third block is the zero block.
var {{.Name}}Values = [{{.Stats.NValueEntries}}]{{.ValueType}} {
{{range $i, $v := .ValueBlocks}}{{printValues $i $v}}
{{end}}}
// {{.Name}}Index: {{len .IndexBlocks}} blocks, {{.Stats.NIndexEntries}} entries, {{.Stats.NIndexBytes}} bytes
// Block 0 is the zero block.
var {{.Name}}Index = [{{.Stats.NIndexEntries}}]{{.IndexType}} {
{{range $i, $v := .IndexBlocks}}{{printIndex $b $i $v}}
{{end}}}
`
// TODO: consider allowing zero-length strings after evaluating performance with
// unicode/norm.
const lookupTemplate = `
// lookup{{if eq .SourceType "string"}}String{{end}} returns the trie value for the first UTF-8 encoding in s and
// the width in bytes of this encoding. The size will be 0 if s does not
// hold enough bytes to complete the encoding. len(s) must be greater than 0.
func (t *{{.Name}}Trie) lookup{{if eq .SourceType "string"}}String{{end}}(s {{.SourceType}}) (v {{.ValueType}}, sz int) {
c0 := s[0]
switch {
case c0 < 0x80: // is ASCII
return {{.ASCIIBlock}}[c0], 1
case c0 < 0xC2:
return 0, 1 // Illegal UTF-8: not a starter, not ASCII.
case c0 < 0xE0: // 2-byte UTF-8
if len(s) < 2 {
return 0, 0
}
i := {{.StarterBlock}}[c0]
c1 := s[1]
if c1 < 0x80 || 0xC0 <= c1 {
return 0, 1 // Illegal UTF-8: not a continuation byte.
}
return t.lookupValue(uint32(i), c1), 2
case c0 < 0xF0: // 3-byte UTF-8
if len(s) < 3 {
return 0, 0
}
i := {{.StarterBlock}}[c0]
c1 := s[1]
if c1 < 0x80 || 0xC0 <= c1 {
return 0, 1 // Illegal UTF-8: not a continuation byte.
}
o := uint32(i)<<6 + uint32(c1)
i = {{.Name}}Index[o]
c2 := s[2]
if c2 < 0x80 || 0xC0 <= c2 {
return 0, 2 // Illegal UTF-8: not a continuation byte.
}
return t.lookupValue(uint32(i), c2), 3
case c0 < 0xF8: // 4-byte UTF-8
if len(s) < 4 {
return 0, 0
}
i := {{.StarterBlock}}[c0]
c1 := s[1]
if c1 < 0x80 || 0xC0 <= c1 {
return 0, 1 // Illegal UTF-8: not a continuation byte.
}
o := uint32(i)<<6 + uint32(c1)
i = {{.Name}}Index[o]
c2 := s[2]
if c2 < 0x80 || 0xC0 <= c2 {
return 0, 2 // Illegal UTF-8: not a continuation byte.
}
o = uint32(i)<<6 + uint32(c2)
i = {{.Name}}Index[o]
c3 := s[3]
if c3 < 0x80 || 0xC0 <= c3 {
return 0, 3 // Illegal UTF-8: not a continuation byte.
}
return t.lookupValue(uint32(i), c3), 4
}
// Illegal rune
return 0, 1
}
// lookup{{if eq .SourceType "string"}}String{{end}}Unsafe returns the trie value for the first UTF-8 encoding in s.
// s must start with a full and valid UTF-8 encoded rune.
func (t *{{.Name}}Trie) lookup{{if eq .SourceType "string"}}String{{end}}Unsafe(s {{.SourceType}}) {{.ValueType}} {
c0 := s[0]
if c0 < 0x80 { // is ASCII
return {{.ASCIIBlock}}[c0]
}
i := {{.StarterBlock}}[c0]
if c0 < 0xE0 { // 2-byte UTF-8
return t.lookupValue(uint32(i), s[1])
}
i = {{.Name}}Index[uint32(i)<<6+uint32(s[1])]
if c0 < 0xF0 { // 3-byte UTF-8
return t.lookupValue(uint32(i), s[2])
}
i = {{.Name}}Index[uint32(i)<<6+uint32(s[2])]
if c0 < 0xF8 { // 4-byte UTF-8
return t.lookupValue(uint32(i), s[3])
}
return 0
}
`

494
vendor/golang.org/x/text/internal/triegen/triegen.go generated vendored Normal file
View file

@ -0,0 +1,494 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package triegen implements a code generator for a trie for associating
// unsigned integer values with UTF-8 encoded runes.
//
// Many of the go.text packages use tries for storing per-rune information. A
// trie is especially useful if many of the runes have the same value. If this
// is the case, many blocks can be expected to be shared allowing for
// information on many runes to be stored in little space.
//
// As most of the lookups are done directly on []byte slices, the tries use the
// UTF-8 bytes directly for the lookup. This saves a conversion from UTF-8 to
// runes and contributes a little bit to better performance. It also naturally
// provides a fast path for ASCII.
//
// Space is also an issue. There are many code points defined in Unicode and as
// a result tables can get quite large. So every byte counts. The triegen
// package automatically chooses the smallest integer values to represent the
// tables. Compacters allow further compression of the trie by allowing for
// alternative representations of individual trie blocks.
//
// triegen allows generating multiple tries as a single structure. This is
// useful when, for example, one wants to generate tries for several languages
// that have a lot of values in common. Some existing libraries for
// internationalization store all per-language data as a dynamically loadable
// chunk. The go.text packages are designed with the assumption that the user
// typically wants to compile in support for all supported languages, in line
// with the approach common to Go to create a single standalone binary. The
// multi-root trie approach can give significant storage savings in this
// scenario.
//
// triegen generates both tables and code. The code is optimized to use the
// automatically chosen data types. The following code is generated for a Trie
// or multiple Tries named "foo":
// - type fooTrie
// The trie type.
//
// - func newFooTrie(x int) *fooTrie
// Trie constructor, where x is the index of the trie passed to Gen.
//
// - func (t *fooTrie) lookup(s []byte) (v uintX, sz int)
// The lookup method, where uintX is automatically chosen.
//
// - func lookupString, lookupUnsafe and lookupStringUnsafe
// Variants of the above.
//
// - var fooValues and fooIndex and any tables generated by Compacters.
// The core trie data.
//
// - var fooTrieHandles
// Indexes of starter blocks in case of multiple trie roots.
//
// It is recommended that users test the generated trie by checking the returned
// value for every rune. Such exhaustive tests are possible as the the number of
// runes in Unicode is limited.
package triegen // import "golang.org/x/text/internal/triegen"
// TODO: Arguably, the internally optimized data types would not have to be
// exposed in the generated API. We could also investigate not generating the
// code, but using it through a package. We would have to investigate the impact
// on performance of making such change, though. For packages like unicode/norm,
// small changes like this could tank performance.
import (
"encoding/binary"
"fmt"
"hash/crc64"
"io"
"log"
"unicode/utf8"
)
// builder builds a set of tries for associating values with runes. The set of
// tries can share common index and value blocks.
type builder struct {
Name string
// ValueType is the type of the trie values looked up.
ValueType string
// ValueSize is the byte size of the ValueType.
ValueSize int
// IndexType is the type of trie index values used for all UTF-8 bytes of
// a rune except the last one.
IndexType string
// IndexSize is the byte size of the IndexType.
IndexSize int
// SourceType is used when generating the lookup functions. If the user
// requests StringSupport, all lookup functions will be generated for
// string input as well.
SourceType string
Trie []*Trie
IndexBlocks []*node
ValueBlocks [][]uint64
Compactions []compaction
Checksum uint64
ASCIIBlock string
StarterBlock string
indexBlockIdx map[uint64]int
valueBlockIdx map[uint64]nodeIndex
asciiBlockIdx map[uint64]int
// Stats are used to fill out the template.
Stats struct {
NValueEntries int
NValueBytes int
NIndexEntries int
NIndexBytes int
NHandleBytes int
}
err error
}
// A nodeIndex encodes the index of a node, which is defined by the compaction
// which stores it and an index within the compaction. For internal nodes, the
// compaction is always 0.
type nodeIndex struct {
compaction int
index int
}
// compaction keeps track of stats used for the compaction.
type compaction struct {
c Compacter
blocks []*node
maxHandle uint32
totalSize int
// Used by template-based generator and thus exported.
Cutoff uint32
Offset uint32
Handler string
}
func (b *builder) setError(err error) {
if b.err == nil {
b.err = err
}
}
// An Option can be passed to Gen.
type Option func(b *builder) error
// Compact configures the trie generator to use the given Compacter.
func Compact(c Compacter) Option {
return func(b *builder) error {
b.Compactions = append(b.Compactions, compaction{
c: c,
Handler: c.Handler() + "(n, b)"})
return nil
}
}
// Gen writes Go code for a shared trie lookup structure to w for the given
// Tries. The generated trie type will be called nameTrie. newNameTrie(x) will
// return the *nameTrie for tries[x]. A value can be looked up by using one of
// the various lookup methods defined on nameTrie. It returns the table size of
// the generated trie.
func Gen(w io.Writer, name string, tries []*Trie, opts ...Option) (sz int, err error) {
// The index contains two dummy blocks, followed by the zero block. The zero
// block is at offset 0x80, so that the offset for the zero block for
// continuation bytes is 0.
b := &builder{
Name: name,
Trie: tries,
IndexBlocks: []*node{{}, {}, {}},
Compactions: []compaction{{
Handler: name + "Values[n<<6+uint32(b)]",
}},
// The 0 key in indexBlockIdx and valueBlockIdx is the hash of the zero
// block.
indexBlockIdx: map[uint64]int{0: 0},
valueBlockIdx: map[uint64]nodeIndex{0: {}},
asciiBlockIdx: map[uint64]int{},
}
b.Compactions[0].c = (*simpleCompacter)(b)
for _, f := range opts {
if err := f(b); err != nil {
return 0, err
}
}
b.build()
if b.err != nil {
return 0, b.err
}
if err = b.print(w); err != nil {
return 0, err
}
return b.Size(), nil
}
// A Trie represents a single root node of a trie. A builder may build several
// overlapping tries at once.
type Trie struct {
root *node
hiddenTrie
}
// hiddenTrie contains values we want to be visible to the template generator,
// but hidden from the API documentation.
type hiddenTrie struct {
Name string
Checksum uint64
ASCIIIndex int
StarterIndex int
}
// NewTrie returns a new trie root.
func NewTrie(name string) *Trie {
return &Trie{
&node{
children: make([]*node, blockSize),
values: make([]uint64, utf8.RuneSelf),
},
hiddenTrie{Name: name},
}
}
// Gen is a convenience wrapper around the Gen func passing t as the only trie
// and uses the name passed to NewTrie. It returns the size of the generated
// tables.
func (t *Trie) Gen(w io.Writer, opts ...Option) (sz int, err error) {
return Gen(w, t.Name, []*Trie{t}, opts...)
}
// node is a node of the intermediate trie structure.
type node struct {
// children holds this node's children. It is always of length 64.
// A child node may be nil.
children []*node
// values contains the values of this node. If it is non-nil, this node is
// either a root or leaf node:
// For root nodes, len(values) == 128 and it maps the bytes in [0x00, 0x7F].
// For leaf nodes, len(values) == 64 and it maps the bytes in [0x80, 0xBF].
values []uint64
index nodeIndex
}
// Insert associates value with the given rune. Insert will panic if a non-zero
// value is passed for an invalid rune.
func (t *Trie) Insert(r rune, value uint64) {
if value == 0 {
return
}
s := string(r)
if []rune(s)[0] != r && value != 0 {
// Note: The UCD tables will always assign what amounts to a zero value
// to a surrogate. Allowing a zero value for an illegal rune allows
// users to iterate over [0..MaxRune] without having to explicitly
// exclude surrogates, which would be tedious.
panic(fmt.Sprintf("triegen: non-zero value for invalid rune %U", r))
}
if len(s) == 1 {
// It is a root node value (ASCII).
t.root.values[s[0]] = value
return
}
n := t.root
for ; len(s) > 1; s = s[1:] {
if n.children == nil {
n.children = make([]*node, blockSize)
}
p := s[0] % blockSize
c := n.children[p]
if c == nil {
c = &node{}
n.children[p] = c
}
if len(s) > 2 && c.values != nil {
log.Fatalf("triegen: insert(%U): found internal node with values", r)
}
n = c
}
if n.values == nil {
n.values = make([]uint64, blockSize)
}
if n.children != nil {
log.Fatalf("triegen: insert(%U): found leaf node that also has child nodes", r)
}
n.values[s[0]-0x80] = value
}
// Size returns the number of bytes the generated trie will take to store. It
// needs to be exported as it is used in the templates.
func (b *builder) Size() int {
// Index blocks.
sz := len(b.IndexBlocks) * blockSize * b.IndexSize
// Skip the first compaction, which represents the normal value blocks, as
// its totalSize does not account for the ASCII blocks, which are managed
// separately.
sz += len(b.ValueBlocks) * blockSize * b.ValueSize
for _, c := range b.Compactions[1:] {
sz += c.totalSize
}
// TODO: this computation does not account for the fixed overhead of a using
// a compaction, either code or data. As for data, though, the typical
// overhead of data is in the order of bytes (2 bytes for cases). Further,
// the savings of using a compaction should anyway be substantial for it to
// be worth it.
// For multi-root tries, we also need to account for the handles.
if len(b.Trie) > 1 {
sz += 2 * b.IndexSize * len(b.Trie)
}
return sz
}
func (b *builder) build() {
// Compute the sizes of the values.
var vmax uint64
for _, t := range b.Trie {
vmax = maxValue(t.root, vmax)
}
b.ValueType, b.ValueSize = getIntType(vmax)
// Compute all block allocations.
// TODO: first compute the ASCII blocks for all tries and then the other
// nodes. ASCII blocks are more restricted in placement, as they require two
// blocks to be placed consecutively. Processing them first may improve
// sharing (at least one zero block can be expected to be saved.)
for _, t := range b.Trie {
b.Checksum += b.buildTrie(t)
}
// Compute the offsets for all the Compacters.
offset := uint32(0)
for i := range b.Compactions {
c := &b.Compactions[i]
c.Offset = offset
offset += c.maxHandle + 1
c.Cutoff = offset
}
// Compute the sizes of indexes.
// TODO: different byte positions could have different sizes. So far we have
// not found a case where this is beneficial.
imax := uint64(b.Compactions[len(b.Compactions)-1].Cutoff)
for _, ib := range b.IndexBlocks {
if x := uint64(ib.index.index); x > imax {
imax = x
}
}
b.IndexType, b.IndexSize = getIntType(imax)
}
func maxValue(n *node, max uint64) uint64 {
if n == nil {
return max
}
for _, c := range n.children {
max = maxValue(c, max)
}
for _, v := range n.values {
if max < v {
max = v
}
}
return max
}
func getIntType(v uint64) (string, int) {
switch {
case v < 1<<8:
return "uint8", 1
case v < 1<<16:
return "uint16", 2
case v < 1<<32:
return "uint32", 4
}
return "uint64", 8
}
const (
blockSize = 64
// Subtract two blocks to offset 0x80, the first continuation byte.
blockOffset = 2
// Subtract three blocks to offset 0xC0, the first non-ASCII starter.
rootBlockOffset = 3
)
var crcTable = crc64.MakeTable(crc64.ISO)
func (b *builder) buildTrie(t *Trie) uint64 {
n := t.root
// Get the ASCII offset. For the first trie, the ASCII block will be at
// position 0.
hasher := crc64.New(crcTable)
binary.Write(hasher, binary.BigEndian, n.values)
hash := hasher.Sum64()
v, ok := b.asciiBlockIdx[hash]
if !ok {
v = len(b.ValueBlocks)
b.asciiBlockIdx[hash] = v
b.ValueBlocks = append(b.ValueBlocks, n.values[:blockSize], n.values[blockSize:])
if v == 0 {
// Add the zero block at position 2 so that it will be assigned a
// zero reference in the lookup blocks.
// TODO: always do this? This would allow us to remove a check from
// the trie lookup, but at the expense of extra space. Analyze
// performance for unicode/norm.
b.ValueBlocks = append(b.ValueBlocks, make([]uint64, blockSize))
}
}
t.ASCIIIndex = v
// Compute remaining offsets.
t.Checksum = b.computeOffsets(n, true)
// We already subtracted the normal blockOffset from the index. Subtract the
// difference for starter bytes.
t.StarterIndex = n.index.index - (rootBlockOffset - blockOffset)
return t.Checksum
}
func (b *builder) computeOffsets(n *node, root bool) uint64 {
// For the first trie, the root lookup block will be at position 3, which is
// the offset for UTF-8 non-ASCII starter bytes.
first := len(b.IndexBlocks) == rootBlockOffset
if first {
b.IndexBlocks = append(b.IndexBlocks, n)
}
// We special-case the cases where all values recursively are 0. This allows
// for the use of a zero block to which all such values can be directed.
hash := uint64(0)
if n.children != nil || n.values != nil {
hasher := crc64.New(crcTable)
for _, c := range n.children {
var v uint64
if c != nil {
v = b.computeOffsets(c, false)
}
binary.Write(hasher, binary.BigEndian, v)
}
binary.Write(hasher, binary.BigEndian, n.values)
hash = hasher.Sum64()
}
if first {
b.indexBlockIdx[hash] = rootBlockOffset - blockOffset
}
// Compacters don't apply to internal nodes.
if n.children != nil {
v, ok := b.indexBlockIdx[hash]
if !ok {
v = len(b.IndexBlocks) - blockOffset
b.IndexBlocks = append(b.IndexBlocks, n)
b.indexBlockIdx[hash] = v
}
n.index = nodeIndex{0, v}
} else {
h, ok := b.valueBlockIdx[hash]
if !ok {
bestI, bestSize := 0, blockSize*b.ValueSize
for i, c := range b.Compactions[1:] {
if sz, ok := c.c.Size(n.values); ok && bestSize > sz {
bestI, bestSize = i+1, sz
}
}
c := &b.Compactions[bestI]
c.totalSize += bestSize
v := c.c.Store(n.values)
if c.maxHandle < v {
c.maxHandle = v
}
h = nodeIndex{bestI, int(v)}
b.valueBlockIdx[hash] = h
}
n.index = h
}
return hash
}

376
vendor/golang.org/x/text/internal/ucd/ucd.go generated vendored Normal file
View file

@ -0,0 +1,376 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package ucd provides a parser for Unicode Character Database files, the
// format of which is defined in http://www.unicode.org/reports/tr44/. See
// http://www.unicode.org/Public/UCD/latest/ucd/ for example files.
//
// It currently does not support substitutions of missing fields.
package ucd // import "golang.org/x/text/internal/ucd"
import (
"bufio"
"bytes"
"errors"
"io"
"log"
"regexp"
"strconv"
"strings"
)
// UnicodeData.txt fields.
const (
CodePoint = iota
Name
GeneralCategory
CanonicalCombiningClass
BidiClass
DecompMapping
DecimalValue
DigitValue
NumericValue
BidiMirrored
Unicode1Name
ISOComment
SimpleUppercaseMapping
SimpleLowercaseMapping
SimpleTitlecaseMapping
)
// Parse calls f for each entry in the given reader of a UCD file. It will close
// the reader upon return. It will call log.Fatal if any error occurred.
//
// This implements the most common usage pattern of using Parser.
func Parse(r io.ReadCloser, f func(p *Parser)) {
defer r.Close()
p := New(r)
for p.Next() {
f(p)
}
if err := p.Err(); err != nil {
r.Close() // os.Exit will cause defers not to be called.
log.Fatal(err)
}
}
// An Option is used to configure a Parser.
type Option func(p *Parser)
func keepRanges(p *Parser) {
p.keepRanges = true
}
var (
// KeepRanges prevents the expansion of ranges. The raw ranges can be
// obtained by calling Range(0) on the parser.
KeepRanges Option = keepRanges
)
// The Part option register a handler for lines starting with a '@'. The text
// after a '@' is available as the first field. Comments are handled as usual.
func Part(f func(p *Parser)) Option {
return func(p *Parser) {
p.partHandler = f
}
}
// The CommentHandler option passes comments that are on a line by itself to
// a given handler.
func CommentHandler(f func(s string)) Option {
return func(p *Parser) {
p.commentHandler = f
}
}
// A Parser parses Unicode Character Database (UCD) files.
type Parser struct {
scanner *bufio.Scanner
keepRanges bool // Don't expand rune ranges in field 0.
err error
comment []byte
field [][]byte
// parsedRange is needed in case Range(0) is called more than once for one
// field. In some cases this requires scanning ahead.
parsedRange bool
rangeStart, rangeEnd rune
partHandler func(p *Parser)
commentHandler func(s string)
}
func (p *Parser) setError(err error) {
if p.err == nil {
p.err = err
}
}
func (p *Parser) getField(i int) []byte {
if i >= len(p.field) {
return nil
}
return p.field[i]
}
// Err returns a non-nil error if any error occurred during parsing.
func (p *Parser) Err() error {
return p.err
}
// New returns a Parser for the given Reader.
func New(r io.Reader, o ...Option) *Parser {
p := &Parser{
scanner: bufio.NewScanner(r),
}
for _, f := range o {
f(p)
}
return p
}
// Next parses the next line in the file. It returns true if a line was parsed
// and false if it reached the end of the file.
func (p *Parser) Next() bool {
if !p.keepRanges && p.rangeStart < p.rangeEnd {
p.rangeStart++
return true
}
p.comment = nil
p.field = p.field[:0]
p.parsedRange = false
for p.scanner.Scan() {
b := p.scanner.Bytes()
if len(b) == 0 {
continue
}
if b[0] == '#' {
if p.commentHandler != nil {
p.commentHandler(strings.TrimSpace(string(b[1:])))
}
continue
}
// Parse line
if i := bytes.IndexByte(b, '#'); i != -1 {
p.comment = bytes.TrimSpace(b[i+1:])
b = b[:i]
}
if b[0] == '@' {
if p.partHandler != nil {
p.field = append(p.field, bytes.TrimSpace(b[1:]))
p.partHandler(p)
p.field = p.field[:0]
}
p.comment = nil
continue
}
for {
i := bytes.IndexByte(b, ';')
if i == -1 {
p.field = append(p.field, bytes.TrimSpace(b))
break
}
p.field = append(p.field, bytes.TrimSpace(b[:i]))
b = b[i+1:]
}
if !p.keepRanges {
p.rangeStart, p.rangeEnd = p.getRange(0)
}
return true
}
p.setError(p.scanner.Err())
return false
}
func parseRune(b []byte) (rune, error) {
if len(b) > 2 && b[0] == 'U' && b[1] == '+' {
b = b[2:]
}
x, err := strconv.ParseUint(string(b), 16, 32)
return rune(x), err
}
func (p *Parser) parseRune(b []byte) rune {
x, err := parseRune(b)
p.setError(err)
return x
}
// Rune parses and returns field i as a rune.
func (p *Parser) Rune(i int) rune {
if i > 0 || p.keepRanges {
return p.parseRune(p.getField(i))
}
return p.rangeStart
}
// Runes interprets and returns field i as a sequence of runes.
func (p *Parser) Runes(i int) (runes []rune) {
add := func(b []byte) {
if b = bytes.TrimSpace(b); len(b) > 0 {
runes = append(runes, p.parseRune(b))
}
}
for b := p.getField(i); ; {
i := bytes.IndexByte(b, ' ')
if i == -1 {
add(b)
break
}
add(b[:i])
b = b[i+1:]
}
return
}
var (
errIncorrectLegacyRange = errors.New("ucd: unmatched <* First>")
// reRange matches one line of a legacy rune range.
reRange = regexp.MustCompile("^([0-9A-F]*);<([^,]*), ([^>]*)>(.*)$")
)
// Range parses and returns field i as a rune range. A range is inclusive at
// both ends. If the field only has one rune, first and last will be identical.
// It supports the legacy format for ranges used in UnicodeData.txt.
func (p *Parser) Range(i int) (first, last rune) {
if !p.keepRanges {
return p.rangeStart, p.rangeStart
}
return p.getRange(i)
}
func (p *Parser) getRange(i int) (first, last rune) {
b := p.getField(i)
if k := bytes.Index(b, []byte("..")); k != -1 {
return p.parseRune(b[:k]), p.parseRune(b[k+2:])
}
// The first field may not be a rune, in which case we may ignore any error
// and set the range as 0..0.
x, err := parseRune(b)
if err != nil {
// Disable range parsing henceforth. This ensures that an error will be
// returned if the user subsequently will try to parse this field as
// a Rune.
p.keepRanges = true
}
// Special case for UnicodeData that was retained for backwards compatibility.
if i == 0 && len(p.field) > 1 && bytes.HasSuffix(p.field[1], []byte("First>")) {
if p.parsedRange {
return p.rangeStart, p.rangeEnd
}
mf := reRange.FindStringSubmatch(p.scanner.Text())
if mf == nil || !p.scanner.Scan() {
p.setError(errIncorrectLegacyRange)
return x, x
}
// Using Bytes would be more efficient here, but Text is a lot easier
// and this is not a frequent case.
ml := reRange.FindStringSubmatch(p.scanner.Text())
if ml == nil || mf[2] != ml[2] || ml[3] != "Last" || mf[4] != ml[4] {
p.setError(errIncorrectLegacyRange)
return x, x
}
p.rangeStart, p.rangeEnd = x, p.parseRune(p.scanner.Bytes()[:len(ml[1])])
p.parsedRange = true
return p.rangeStart, p.rangeEnd
}
return x, x
}
// bools recognizes all valid UCD boolean values.
var bools = map[string]bool{
"": false,
"N": false,
"No": false,
"F": false,
"False": false,
"Y": true,
"Yes": true,
"T": true,
"True": true,
}
// Bool parses and returns field i as a boolean value.
func (p *Parser) Bool(i int) bool {
b := p.getField(i)
for s, v := range bools {
if bstrEq(b, s) {
return v
}
}
p.setError(strconv.ErrSyntax)
return false
}
// Int parses and returns field i as an integer value.
func (p *Parser) Int(i int) int {
x, err := strconv.ParseInt(string(p.getField(i)), 10, 64)
p.setError(err)
return int(x)
}
// Uint parses and returns field i as an unsigned integer value.
func (p *Parser) Uint(i int) uint {
x, err := strconv.ParseUint(string(p.getField(i)), 10, 64)
p.setError(err)
return uint(x)
}
// Float parses and returns field i as a decimal value.
func (p *Parser) Float(i int) float64 {
x, err := strconv.ParseFloat(string(p.getField(i)), 64)
p.setError(err)
return x
}
// String parses and returns field i as a string value.
func (p *Parser) String(i int) string {
return string(p.getField(i))
}
// Strings parses and returns field i as a space-separated list of strings.
func (p *Parser) Strings(i int) []string {
ss := strings.Split(string(p.getField(i)), " ")
for i, s := range ss {
ss[i] = strings.TrimSpace(s)
}
return ss
}
// Comment returns the comments for the current line.
func (p *Parser) Comment() string {
return string(p.comment)
}
var errUndefinedEnum = errors.New("ucd: undefined enum value")
// Enum interprets and returns field i as a value that must be one of the values
// in enum.
func (p *Parser) Enum(i int, enum ...string) string {
b := p.getField(i)
for _, s := range enum {
if bstrEq(b, s) {
return s
}
}
p.setError(errUndefinedEnum)
return ""
}
func bstrEq(b []byte, s string) bool {
if len(b) != len(s) {
return false
}
for i, c := range b {
if c != s[i] {
return false
}
}
return true
}

342
vendor/golang.org/x/text/secure/bidirule/bidirule.go generated vendored Normal file
View file

@ -0,0 +1,342 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package bidirule implements the Bidi Rule defined by RFC 5893.
//
// This package is under development. The API may change without notice and
// without preserving backward compatibility.
package bidirule
import (
"errors"
"unicode/utf8"
"golang.org/x/text/transform"
"golang.org/x/text/unicode/bidi"
)
// This file contains an implementation of RFC 5893: Right-to-Left Scripts for
// Internationalized Domain Names for Applications (IDNA)
//
// A label is an individual component of a domain name. Labels are usually
// shown separated by dots; for example, the domain name "www.example.com" is
// composed of three labels: "www", "example", and "com".
//
// An RTL label is a label that contains at least one character of class R, AL,
// or AN. An LTR label is any label that is not an RTL label.
//
// A "Bidi domain name" is a domain name that contains at least one RTL label.
//
// The following guarantees can be made based on the above:
//
// o In a domain name consisting of only labels that satisfy the rule,
// the requirements of Section 3 are satisfied. Note that even LTR
// labels and pure ASCII labels have to be tested.
//
// o In a domain name consisting of only LDH labels (as defined in the
// Definitions document [RFC5890]) and labels that satisfy the rule,
// the requirements of Section 3 are satisfied as long as a label
// that starts with an ASCII digit does not come after a
// right-to-left label.
//
// No guarantee is given for other combinations.
// ErrInvalid indicates a label is invalid according to the Bidi Rule.
var ErrInvalid = errors.New("bidirule: failed Bidi Rule")
type ruleState uint8
const (
ruleInitial ruleState = iota
ruleLTR
ruleLTRFinal
ruleRTL
ruleRTLFinal
ruleInvalid
)
type ruleTransition struct {
next ruleState
mask uint16
}
var transitions = [...][2]ruleTransition{
// [2.1] The first character must be a character with Bidi property L, R, or
// AL. If it has the R or AL property, it is an RTL label; if it has the L
// property, it is an LTR label.
ruleInitial: {
{ruleLTRFinal, 1 << bidi.L},
{ruleRTLFinal, 1<<bidi.R | 1<<bidi.AL},
},
ruleRTL: {
// [2.3] In an RTL label, the end of the label must be a character with
// Bidi property R, AL, EN, or AN, followed by zero or more characters
// with Bidi property NSM.
{ruleRTLFinal, 1<<bidi.R | 1<<bidi.AL | 1<<bidi.EN | 1<<bidi.AN},
// [2.2] In an RTL label, only characters with the Bidi properties R,
// AL, AN, EN, ES, CS, ET, ON, BN, or NSM are allowed.
// We exclude the entries from [2.3]
{ruleRTL, 1<<bidi.ES | 1<<bidi.CS | 1<<bidi.ET | 1<<bidi.ON | 1<<bidi.BN | 1<<bidi.NSM},
},
ruleRTLFinal: {
// [2.3] In an RTL label, the end of the label must be a character with
// Bidi property R, AL, EN, or AN, followed by zero or more characters
// with Bidi property NSM.
{ruleRTLFinal, 1<<bidi.R | 1<<bidi.AL | 1<<bidi.EN | 1<<bidi.AN | 1<<bidi.NSM},
// [2.2] In an RTL label, only characters with the Bidi properties R,
// AL, AN, EN, ES, CS, ET, ON, BN, or NSM are allowed.
// We exclude the entries from [2.3] and NSM.
{ruleRTL, 1<<bidi.ES | 1<<bidi.CS | 1<<bidi.ET | 1<<bidi.ON | 1<<bidi.BN},
},
ruleLTR: {
// [2.6] In an LTR label, the end of the label must be a character with
// Bidi property L or EN, followed by zero or more characters with Bidi
// property NSM.
{ruleLTRFinal, 1<<bidi.L | 1<<bidi.EN},
// [2.5] In an LTR label, only characters with the Bidi properties L,
// EN, ES, CS, ET, ON, BN, or NSM are allowed.
// We exclude the entries from [2.6].
{ruleLTR, 1<<bidi.ES | 1<<bidi.CS | 1<<bidi.ET | 1<<bidi.ON | 1<<bidi.BN | 1<<bidi.NSM},
},
ruleLTRFinal: {
// [2.6] In an LTR label, the end of the label must be a character with
// Bidi property L or EN, followed by zero or more characters with Bidi
// property NSM.
{ruleLTRFinal, 1<<bidi.L | 1<<bidi.EN | 1<<bidi.NSM},
// [2.5] In an LTR label, only characters with the Bidi properties L,
// EN, ES, CS, ET, ON, BN, or NSM are allowed.
// We exclude the entries from [2.6].
{ruleLTR, 1<<bidi.ES | 1<<bidi.CS | 1<<bidi.ET | 1<<bidi.ON | 1<<bidi.BN},
},
ruleInvalid: {
{ruleInvalid, 0},
{ruleInvalid, 0},
},
}
// [2.4] In an RTL label, if an EN is present, no AN may be present, and
// vice versa.
const exclusiveRTL = uint16(1<<bidi.EN | 1<<bidi.AN)
// From RFC 5893
// An RTL label is a label that contains at least one character of type
// R, AL, or AN.
//
// An LTR label is any label that is not an RTL label.
// Direction reports the direction of the given label as defined by RFC 5893.
// The Bidi Rule does not have to be applied to labels of the category
// LeftToRight.
func Direction(b []byte) bidi.Direction {
for i := 0; i < len(b); {
e, sz := bidi.Lookup(b[i:])
if sz == 0 {
i++
}
c := e.Class()
if c == bidi.R || c == bidi.AL || c == bidi.AN {
return bidi.RightToLeft
}
i += sz
}
return bidi.LeftToRight
}
// DirectionString reports the direction of the given label as defined by RFC
// 5893. The Bidi Rule does not have to be applied to labels of the category
// LeftToRight.
func DirectionString(s string) bidi.Direction {
for i := 0; i < len(s); {
e, sz := bidi.LookupString(s[i:])
if sz == 0 {
i++
}
c := e.Class()
if c == bidi.R || c == bidi.AL || c == bidi.AN {
return bidi.RightToLeft
}
i += sz
}
return bidi.LeftToRight
}
// Valid reports whether b conforms to the BiDi rule.
func Valid(b []byte) bool {
var t Transformer
if n, ok := t.advance(b); !ok || n < len(b) {
return false
}
return t.isFinal()
}
// ValidString reports whether s conforms to the BiDi rule.
func ValidString(s string) bool {
var t Transformer
if n, ok := t.advanceString(s); !ok || n < len(s) {
return false
}
return t.isFinal()
}
// New returns a Transformer that verifies that input adheres to the Bidi Rule.
func New() *Transformer {
return &Transformer{}
}
// Transformer implements transform.Transform.
type Transformer struct {
state ruleState
hasRTL bool
seen uint16
}
// A rule can only be violated for "Bidi Domain names", meaning if one of the
// following categories has been observed.
func (t *Transformer) isRTL() bool {
const isRTL = 1<<bidi.R | 1<<bidi.AL | 1<<bidi.AN
return t.seen&isRTL != 0
}
func (t *Transformer) isFinal() bool {
if !t.isRTL() {
return true
}
return t.state == ruleLTRFinal || t.state == ruleRTLFinal || t.state == ruleInitial
}
// Reset implements transform.Transformer.
func (t *Transformer) Reset() { *t = Transformer{} }
// Transform implements transform.Transformer. This Transformer has state and
// needs to be reset between uses.
func (t *Transformer) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
if len(dst) < len(src) {
src = src[:len(dst)]
atEOF = false
err = transform.ErrShortDst
}
n, err1 := t.Span(src, atEOF)
copy(dst, src[:n])
if err == nil || err1 != nil && err1 != transform.ErrShortSrc {
err = err1
}
return n, n, err
}
// Span returns the first n bytes of src that conform to the Bidi rule.
func (t *Transformer) Span(src []byte, atEOF bool) (n int, err error) {
if t.state == ruleInvalid && t.isRTL() {
return 0, ErrInvalid
}
n, ok := t.advance(src)
switch {
case !ok:
err = ErrInvalid
case n < len(src):
if !atEOF {
err = transform.ErrShortSrc
break
}
err = ErrInvalid
case !t.isFinal():
err = ErrInvalid
}
return n, err
}
// Precomputing the ASCII values decreases running time for the ASCII fast path
// by about 30%.
var asciiTable [128]bidi.Properties
func init() {
for i := range asciiTable {
p, _ := bidi.LookupRune(rune(i))
asciiTable[i] = p
}
}
func (t *Transformer) advance(s []byte) (n int, ok bool) {
var e bidi.Properties
var sz int
for n < len(s) {
if s[n] < utf8.RuneSelf {
e, sz = asciiTable[s[n]], 1
} else {
e, sz = bidi.Lookup(s[n:])
if sz <= 1 {
if sz == 1 {
// We always consider invalid UTF-8 to be invalid, even if
// the string has not yet been determined to be RTL.
// TODO: is this correct?
return n, false
}
return n, true // incomplete UTF-8 encoding
}
}
// TODO: using CompactClass would result in noticeable speedup.
// See unicode/bidi/prop.go:Properties.CompactClass.
c := uint16(1 << e.Class())
t.seen |= c
if t.seen&exclusiveRTL == exclusiveRTL {
t.state = ruleInvalid
return n, false
}
switch tr := transitions[t.state]; {
case tr[0].mask&c != 0:
t.state = tr[0].next
case tr[1].mask&c != 0:
t.state = tr[1].next
default:
t.state = ruleInvalid
if t.isRTL() {
return n, false
}
}
n += sz
}
return n, true
}
func (t *Transformer) advanceString(s string) (n int, ok bool) {
var e bidi.Properties
var sz int
for n < len(s) {
if s[n] < utf8.RuneSelf {
e, sz = asciiTable[s[n]], 1
} else {
e, sz = bidi.LookupString(s[n:])
if sz <= 1 {
if sz == 1 {
return n, false // invalid UTF-8
}
return n, true // incomplete UTF-8 encoding
}
}
// TODO: using CompactClass results in noticeable speedup.
// See unicode/bidi/prop.go:Properties.CompactClass.
c := uint16(1 << e.Class())
t.seen |= c
if t.seen&exclusiveRTL == exclusiveRTL {
t.state = ruleInvalid
return n, false
}
switch tr := transitions[t.state]; {
case tr[0].mask&c != 0:
t.state = tr[0].next
case tr[1].mask&c != 0:
t.state = tr[1].next
default:
t.state = ruleInvalid
if t.isRTL() {
return n, false
}
}
n += sz
}
return n, true
}

705
vendor/golang.org/x/text/transform/transform.go generated vendored Normal file
View file

@ -0,0 +1,705 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package transform provides reader and writer wrappers that transform the
// bytes passing through as well as various transformations. Example
// transformations provided by other packages include normalization and
// conversion between character sets.
package transform // import "golang.org/x/text/transform"
import (
"bytes"
"errors"
"io"
"unicode/utf8"
)
var (
// ErrShortDst means that the destination buffer was too short to
// receive all of the transformed bytes.
ErrShortDst = errors.New("transform: short destination buffer")
// ErrShortSrc means that the source buffer has insufficient data to
// complete the transformation.
ErrShortSrc = errors.New("transform: short source buffer")
// ErrEndOfSpan means that the input and output (the transformed input)
// are not identical.
ErrEndOfSpan = errors.New("transform: input and output are not identical")
// errInconsistentByteCount means that Transform returned success (nil
// error) but also returned nSrc inconsistent with the src argument.
errInconsistentByteCount = errors.New("transform: inconsistent byte count returned")
// errShortInternal means that an internal buffer is not large enough
// to make progress and the Transform operation must be aborted.
errShortInternal = errors.New("transform: short internal buffer")
)
// Transformer transforms bytes.
type Transformer interface {
// Transform writes to dst the transformed bytes read from src, and
// returns the number of dst bytes written and src bytes read. The
// atEOF argument tells whether src represents the last bytes of the
// input.
//
// Callers should always process the nDst bytes produced and account
// for the nSrc bytes consumed before considering the error err.
//
// A nil error means that all of the transformed bytes (whether freshly
// transformed from src or left over from previous Transform calls)
// were written to dst. A nil error can be returned regardless of
// whether atEOF is true. If err is nil then nSrc must equal len(src);
// the converse is not necessarily true.
//
// ErrShortDst means that dst was too short to receive all of the
// transformed bytes. ErrShortSrc means that src had insufficient data
// to complete the transformation. If both conditions apply, then
// either error may be returned. Other than the error conditions listed
// here, implementations are free to report other errors that arise.
Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error)
// Reset resets the state and allows a Transformer to be reused.
Reset()
}
// SpanningTransformer extends the Transformer interface with a Span method
// that determines how much of the input already conforms to the Transformer.
type SpanningTransformer interface {
Transformer
// Span returns a position in src such that transforming src[:n] results in
// identical output src[:n] for these bytes. It does not necessarily return
// the largest such n. The atEOF argument tells whether src represents the
// last bytes of the input.
//
// Callers should always account for the n bytes consumed before
// considering the error err.
//
// A nil error means that all input bytes are known to be identical to the
// output produced by the Transformer. A nil error can be be returned
// regardless of whether atEOF is true. If err is nil, then then n must
// equal len(src); the converse is not necessarily true.
//
// ErrEndOfSpan means that the Transformer output may differ from the
// input after n bytes. Note that n may be len(src), meaning that the output
// would contain additional bytes after otherwise identical output.
// ErrShortSrc means that src had insufficient data to determine whether the
// remaining bytes would change. Other than the error conditions listed
// here, implementations are free to report other errors that arise.
//
// Calling Span can modify the Transformer state as a side effect. In
// effect, it does the transformation just as calling Transform would, only
// without copying to a destination buffer and only up to a point it can
// determine the input and output bytes are the same. This is obviously more
// limited than calling Transform, but can be more efficient in terms of
// copying and allocating buffers. Calls to Span and Transform may be
// interleaved.
Span(src []byte, atEOF bool) (n int, err error)
}
// NopResetter can be embedded by implementations of Transformer to add a nop
// Reset method.
type NopResetter struct{}
// Reset implements the Reset method of the Transformer interface.
func (NopResetter) Reset() {}
// Reader wraps another io.Reader by transforming the bytes read.
type Reader struct {
r io.Reader
t Transformer
err error
// dst[dst0:dst1] contains bytes that have been transformed by t but
// not yet copied out via Read.
dst []byte
dst0, dst1 int
// src[src0:src1] contains bytes that have been read from r but not
// yet transformed through t.
src []byte
src0, src1 int
// transformComplete is whether the transformation is complete,
// regardless of whether or not it was successful.
transformComplete bool
}
const defaultBufSize = 4096
// NewReader returns a new Reader that wraps r by transforming the bytes read
// via t. It calls Reset on t.
func NewReader(r io.Reader, t Transformer) *Reader {
t.Reset()
return &Reader{
r: r,
t: t,
dst: make([]byte, defaultBufSize),
src: make([]byte, defaultBufSize),
}
}
// Read implements the io.Reader interface.
func (r *Reader) Read(p []byte) (int, error) {
n, err := 0, error(nil)
for {
// Copy out any transformed bytes and return the final error if we are done.
if r.dst0 != r.dst1 {
n = copy(p, r.dst[r.dst0:r.dst1])
r.dst0 += n
if r.dst0 == r.dst1 && r.transformComplete {
return n, r.err
}
return n, nil
} else if r.transformComplete {
return 0, r.err
}
// Try to transform some source bytes, or to flush the transformer if we
// are out of source bytes. We do this even if r.r.Read returned an error.
// As the io.Reader documentation says, "process the n > 0 bytes returned
// before considering the error".
if r.src0 != r.src1 || r.err != nil {
r.dst0 = 0
r.dst1, n, err = r.t.Transform(r.dst, r.src[r.src0:r.src1], r.err == io.EOF)
r.src0 += n
switch {
case err == nil:
if r.src0 != r.src1 {
r.err = errInconsistentByteCount
}
// The Transform call was successful; we are complete if we
// cannot read more bytes into src.
r.transformComplete = r.err != nil
continue
case err == ErrShortDst && (r.dst1 != 0 || n != 0):
// Make room in dst by copying out, and try again.
continue
case err == ErrShortSrc && r.src1-r.src0 != len(r.src) && r.err == nil:
// Read more bytes into src via the code below, and try again.
default:
r.transformComplete = true
// The reader error (r.err) takes precedence over the
// transformer error (err) unless r.err is nil or io.EOF.
if r.err == nil || r.err == io.EOF {
r.err = err
}
continue
}
}
// Move any untransformed source bytes to the start of the buffer
// and read more bytes.
if r.src0 != 0 {
r.src0, r.src1 = 0, copy(r.src, r.src[r.src0:r.src1])
}
n, r.err = r.r.Read(r.src[r.src1:])
r.src1 += n
}
}
// TODO: implement ReadByte (and ReadRune??).
// Writer wraps another io.Writer by transforming the bytes read.
// The user needs to call Close to flush unwritten bytes that may
// be buffered.
type Writer struct {
w io.Writer
t Transformer
dst []byte
// src[:n] contains bytes that have not yet passed through t.
src []byte
n int
}
// NewWriter returns a new Writer that wraps w by transforming the bytes written
// via t. It calls Reset on t.
func NewWriter(w io.Writer, t Transformer) *Writer {
t.Reset()
return &Writer{
w: w,
t: t,
dst: make([]byte, defaultBufSize),
src: make([]byte, defaultBufSize),
}
}
// Write implements the io.Writer interface. If there are not enough
// bytes available to complete a Transform, the bytes will be buffered
// for the next write. Call Close to convert the remaining bytes.
func (w *Writer) Write(data []byte) (n int, err error) {
src := data
if w.n > 0 {
// Append bytes from data to the last remainder.
// TODO: limit the amount copied on first try.
n = copy(w.src[w.n:], data)
w.n += n
src = w.src[:w.n]
}
for {
nDst, nSrc, err := w.t.Transform(w.dst, src, false)
if _, werr := w.w.Write(w.dst[:nDst]); werr != nil {
return n, werr
}
src = src[nSrc:]
if w.n == 0 {
n += nSrc
} else if len(src) <= n {
// Enough bytes from w.src have been consumed. We make src point
// to data instead to reduce the copying.
w.n = 0
n -= len(src)
src = data[n:]
if n < len(data) && (err == nil || err == ErrShortSrc) {
continue
}
}
switch err {
case ErrShortDst:
// This error is okay as long as we are making progress.
if nDst > 0 || nSrc > 0 {
continue
}
case ErrShortSrc:
if len(src) < len(w.src) {
m := copy(w.src, src)
// If w.n > 0, bytes from data were already copied to w.src and n
// was already set to the number of bytes consumed.
if w.n == 0 {
n += m
}
w.n = m
err = nil
} else if nDst > 0 || nSrc > 0 {
// Not enough buffer to store the remainder. Keep processing as
// long as there is progress. Without this case, transforms that
// require a lookahead larger than the buffer may result in an
// error. This is not something one may expect to be common in
// practice, but it may occur when buffers are set to small
// sizes during testing.
continue
}
case nil:
if w.n > 0 {
err = errInconsistentByteCount
}
}
return n, err
}
}
// Close implements the io.Closer interface.
func (w *Writer) Close() error {
src := w.src[:w.n]
for {
nDst, nSrc, err := w.t.Transform(w.dst, src, true)
if _, werr := w.w.Write(w.dst[:nDst]); werr != nil {
return werr
}
if err != ErrShortDst {
return err
}
src = src[nSrc:]
}
}
type nop struct{ NopResetter }
func (nop) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
n := copy(dst, src)
if n < len(src) {
err = ErrShortDst
}
return n, n, err
}
func (nop) Span(src []byte, atEOF bool) (n int, err error) {
return len(src), nil
}
type discard struct{ NopResetter }
func (discard) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
return 0, len(src), nil
}
var (
// Discard is a Transformer for which all Transform calls succeed
// by consuming all bytes and writing nothing.
Discard Transformer = discard{}
// Nop is a SpanningTransformer that copies src to dst.
Nop SpanningTransformer = nop{}
)
// chain is a sequence of links. A chain with N Transformers has N+1 links and
// N+1 buffers. Of those N+1 buffers, the first and last are the src and dst
// buffers given to chain.Transform and the middle N-1 buffers are intermediate
// buffers owned by the chain. The i'th link transforms bytes from the i'th
// buffer chain.link[i].b at read offset chain.link[i].p to the i+1'th buffer
// chain.link[i+1].b at write offset chain.link[i+1].n, for i in [0, N).
type chain struct {
link []link
err error
// errStart is the index at which the error occurred plus 1. Processing
// errStart at this level at the next call to Transform. As long as
// errStart > 0, chain will not consume any more source bytes.
errStart int
}
func (c *chain) fatalError(errIndex int, err error) {
if i := errIndex + 1; i > c.errStart {
c.errStart = i
c.err = err
}
}
type link struct {
t Transformer
// b[p:n] holds the bytes to be transformed by t.
b []byte
p int
n int
}
func (l *link) src() []byte {
return l.b[l.p:l.n]
}
func (l *link) dst() []byte {
return l.b[l.n:]
}
// Chain returns a Transformer that applies t in sequence.
func Chain(t ...Transformer) Transformer {
if len(t) == 0 {
return nop{}
}
c := &chain{link: make([]link, len(t)+1)}
for i, tt := range t {
c.link[i].t = tt
}
// Allocate intermediate buffers.
b := make([][defaultBufSize]byte, len(t)-1)
for i := range b {
c.link[i+1].b = b[i][:]
}
return c
}
// Reset resets the state of Chain. It calls Reset on all the Transformers.
func (c *chain) Reset() {
for i, l := range c.link {
if l.t != nil {
l.t.Reset()
}
c.link[i].p, c.link[i].n = 0, 0
}
}
// TODO: make chain use Span (is going to be fun to implement!)
// Transform applies the transformers of c in sequence.
func (c *chain) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
// Set up src and dst in the chain.
srcL := &c.link[0]
dstL := &c.link[len(c.link)-1]
srcL.b, srcL.p, srcL.n = src, 0, len(src)
dstL.b, dstL.n = dst, 0
var lastFull, needProgress bool // for detecting progress
// i is the index of the next Transformer to apply, for i in [low, high].
// low is the lowest index for which c.link[low] may still produce bytes.
// high is the highest index for which c.link[high] has a Transformer.
// The error returned by Transform determines whether to increase or
// decrease i. We try to completely fill a buffer before converting it.
for low, i, high := c.errStart, c.errStart, len(c.link)-2; low <= i && i <= high; {
in, out := &c.link[i], &c.link[i+1]
nDst, nSrc, err0 := in.t.Transform(out.dst(), in.src(), atEOF && low == i)
out.n += nDst
in.p += nSrc
if i > 0 && in.p == in.n {
in.p, in.n = 0, 0
}
needProgress, lastFull = lastFull, false
switch err0 {
case ErrShortDst:
// Process the destination buffer next. Return if we are already
// at the high index.
if i == high {
return dstL.n, srcL.p, ErrShortDst
}
if out.n != 0 {
i++
// If the Transformer at the next index is not able to process any
// source bytes there is nothing that can be done to make progress
// and the bytes will remain unprocessed. lastFull is used to
// detect this and break out of the loop with a fatal error.
lastFull = true
continue
}
// The destination buffer was too small, but is completely empty.
// Return a fatal error as this transformation can never complete.
c.fatalError(i, errShortInternal)
case ErrShortSrc:
if i == 0 {
// Save ErrShortSrc in err. All other errors take precedence.
err = ErrShortSrc
break
}
// Source bytes were depleted before filling up the destination buffer.
// Verify we made some progress, move the remaining bytes to the errStart
// and try to get more source bytes.
if needProgress && nSrc == 0 || in.n-in.p == len(in.b) {
// There were not enough source bytes to proceed while the source
// buffer cannot hold any more bytes. Return a fatal error as this
// transformation can never complete.
c.fatalError(i, errShortInternal)
break
}
// in.b is an internal buffer and we can make progress.
in.p, in.n = 0, copy(in.b, in.src())
fallthrough
case nil:
// if i == low, we have depleted the bytes at index i or any lower levels.
// In that case we increase low and i. In all other cases we decrease i to
// fetch more bytes before proceeding to the next index.
if i > low {
i--
continue
}
default:
c.fatalError(i, err0)
}
// Exhausted level low or fatal error: increase low and continue
// to process the bytes accepted so far.
i++
low = i
}
// If c.errStart > 0, this means we found a fatal error. We will clear
// all upstream buffers. At this point, no more progress can be made
// downstream, as Transform would have bailed while handling ErrShortDst.
if c.errStart > 0 {
for i := 1; i < c.errStart; i++ {
c.link[i].p, c.link[i].n = 0, 0
}
err, c.errStart, c.err = c.err, 0, nil
}
return dstL.n, srcL.p, err
}
// Deprecated: use runes.Remove instead.
func RemoveFunc(f func(r rune) bool) Transformer {
return removeF(f)
}
type removeF func(r rune) bool
func (removeF) Reset() {}
// Transform implements the Transformer interface.
func (t removeF) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
for r, sz := rune(0), 0; len(src) > 0; src = src[sz:] {
if r = rune(src[0]); r < utf8.RuneSelf {
sz = 1
} else {
r, sz = utf8.DecodeRune(src)
if sz == 1 {
// Invalid rune.
if !atEOF && !utf8.FullRune(src) {
err = ErrShortSrc
break
}
// We replace illegal bytes with RuneError. Not doing so might
// otherwise turn a sequence of invalid UTF-8 into valid UTF-8.
// The resulting byte sequence may subsequently contain runes
// for which t(r) is true that were passed unnoticed.
if !t(r) {
if nDst+3 > len(dst) {
err = ErrShortDst
break
}
nDst += copy(dst[nDst:], "\uFFFD")
}
nSrc++
continue
}
}
if !t(r) {
if nDst+sz > len(dst) {
err = ErrShortDst
break
}
nDst += copy(dst[nDst:], src[:sz])
}
nSrc += sz
}
return
}
// grow returns a new []byte that is longer than b, and copies the first n bytes
// of b to the start of the new slice.
func grow(b []byte, n int) []byte {
m := len(b)
if m <= 32 {
m = 64
} else if m <= 256 {
m *= 2
} else {
m += m >> 1
}
buf := make([]byte, m)
copy(buf, b[:n])
return buf
}
const initialBufSize = 128
// String returns a string with the result of converting s[:n] using t, where
// n <= len(s). If err == nil, n will be len(s). It calls Reset on t.
func String(t Transformer, s string) (result string, n int, err error) {
t.Reset()
if s == "" {
// Fast path for the common case for empty input. Results in about a
// 86% reduction of running time for BenchmarkStringLowerEmpty.
if _, _, err := t.Transform(nil, nil, true); err == nil {
return "", 0, nil
}
}
// Allocate only once. Note that both dst and src escape when passed to
// Transform.
buf := [2 * initialBufSize]byte{}
dst := buf[:initialBufSize:initialBufSize]
src := buf[initialBufSize : 2*initialBufSize]
// The input string s is transformed in multiple chunks (starting with a
// chunk size of initialBufSize). nDst and nSrc are per-chunk (or
// per-Transform-call) indexes, pDst and pSrc are overall indexes.
nDst, nSrc := 0, 0
pDst, pSrc := 0, 0
// pPrefix is the length of a common prefix: the first pPrefix bytes of the
// result will equal the first pPrefix bytes of s. It is not guaranteed to
// be the largest such value, but if pPrefix, len(result) and len(s) are
// all equal after the final transform (i.e. calling Transform with atEOF
// being true returned nil error) then we don't need to allocate a new
// result string.
pPrefix := 0
for {
// Invariant: pDst == pPrefix && pSrc == pPrefix.
n := copy(src, s[pSrc:])
nDst, nSrc, err = t.Transform(dst, src[:n], pSrc+n == len(s))
pDst += nDst
pSrc += nSrc
// TODO: let transformers implement an optional Spanner interface, akin
// to norm's QuickSpan. This would even allow us to avoid any allocation.
if !bytes.Equal(dst[:nDst], src[:nSrc]) {
break
}
pPrefix = pSrc
if err == ErrShortDst {
// A buffer can only be short if a transformer modifies its input.
break
} else if err == ErrShortSrc {
if nSrc == 0 {
// No progress was made.
break
}
// Equal so far and !atEOF, so continue checking.
} else if err != nil || pPrefix == len(s) {
return string(s[:pPrefix]), pPrefix, err
}
}
// Post-condition: pDst == pPrefix + nDst && pSrc == pPrefix + nSrc.
// We have transformed the first pSrc bytes of the input s to become pDst
// transformed bytes. Those transformed bytes are discontiguous: the first
// pPrefix of them equal s[:pPrefix] and the last nDst of them equal
// dst[:nDst]. We copy them around, into a new dst buffer if necessary, so
// that they become one contiguous slice: dst[:pDst].
if pPrefix != 0 {
newDst := dst
if pDst > len(newDst) {
newDst = make([]byte, len(s)+nDst-nSrc)
}
copy(newDst[pPrefix:pDst], dst[:nDst])
copy(newDst[:pPrefix], s[:pPrefix])
dst = newDst
}
// Prevent duplicate Transform calls with atEOF being true at the end of
// the input. Also return if we have an unrecoverable error.
if (err == nil && pSrc == len(s)) ||
(err != nil && err != ErrShortDst && err != ErrShortSrc) {
return string(dst[:pDst]), pSrc, err
}
// Transform the remaining input, growing dst and src buffers as necessary.
for {
n := copy(src, s[pSrc:])
nDst, nSrc, err := t.Transform(dst[pDst:], src[:n], pSrc+n == len(s))
pDst += nDst
pSrc += nSrc
// If we got ErrShortDst or ErrShortSrc, do not grow as long as we can
// make progress. This may avoid excessive allocations.
if err == ErrShortDst {
if nDst == 0 {
dst = grow(dst, pDst)
}
} else if err == ErrShortSrc {
if nSrc == 0 {
src = grow(src, 0)
}
} else if err != nil || pSrc == len(s) {
return string(dst[:pDst]), pSrc, err
}
}
}
// Bytes returns a new byte slice with the result of converting b[:n] using t,
// where n <= len(b). If err == nil, n will be len(b). It calls Reset on t.
func Bytes(t Transformer, b []byte) (result []byte, n int, err error) {
return doAppend(t, 0, make([]byte, len(b)), b)
}
// Append appends the result of converting src[:n] using t to dst, where
// n <= len(src), If err == nil, n will be len(src). It calls Reset on t.
func Append(t Transformer, dst, src []byte) (result []byte, n int, err error) {
if len(dst) == cap(dst) {
n := len(src) + len(dst) // It is okay for this to be 0.
b := make([]byte, n)
dst = b[:copy(b, dst)]
}
return doAppend(t, len(dst), dst[:cap(dst)], src)
}
func doAppend(t Transformer, pDst int, dst, src []byte) (result []byte, n int, err error) {
t.Reset()
pSrc := 0
for {
nDst, nSrc, err := t.Transform(dst[pDst:], src[pSrc:], true)
pDst += nDst
pSrc += nSrc
if err != ErrShortDst {
return dst[:pDst], pSrc, err
}
// Grow the destination buffer, but do not grow as long as we can make
// progress. This may avoid excessive allocations.
if nDst == 0 {
dst = grow(dst, pDst)
}
}
}

198
vendor/golang.org/x/text/unicode/bidi/bidi.go generated vendored Normal file
View file

@ -0,0 +1,198 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:generate go run gen.go gen_trieval.go gen_ranges.go
// Package bidi contains functionality for bidirectional text support.
//
// See http://www.unicode.org/reports/tr9.
//
// NOTE: UNDER CONSTRUCTION. This API may change in backwards incompatible ways
// and without notice.
package bidi // import "golang.org/x/text/unicode/bidi"
// TODO:
// The following functionality would not be hard to implement, but hinges on
// the definition of a Segmenter interface. For now this is up to the user.
// - Iterate over paragraphs
// - Segmenter to iterate over runs directly from a given text.
// Also:
// - Transformer for reordering?
// - Transformer (validator, really) for Bidi Rule.
// This API tries to avoid dealing with embedding levels for now. Under the hood
// these will be computed, but the question is to which extent the user should
// know they exist. We should at some point allow the user to specify an
// embedding hierarchy, though.
// A Direction indicates the overall flow of text.
type Direction int
const (
// LeftToRight indicates the text contains no right-to-left characters and
// that either there are some left-to-right characters or the option
// DefaultDirection(LeftToRight) was passed.
LeftToRight Direction = iota
// RightToLeft indicates the text contains no left-to-right characters and
// that either there are some right-to-left characters or the option
// DefaultDirection(RightToLeft) was passed.
RightToLeft
// Mixed indicates text contains both left-to-right and right-to-left
// characters.
Mixed
// Neutral means that text contains no left-to-right and right-to-left
// characters and that no default direction has been set.
Neutral
)
type options struct{}
// An Option is an option for Bidi processing.
type Option func(*options)
// ICU allows the user to define embedding levels. This may be used, for example,
// to use hierarchical structure of markup languages to define embeddings.
// The following option may be a way to expose this functionality in this API.
// // LevelFunc sets a function that associates nesting levels with the given text.
// // The levels function will be called with monotonically increasing values for p.
// func LevelFunc(levels func(p int) int) Option {
// panic("unimplemented")
// }
// DefaultDirection sets the default direction for a Paragraph. The direction is
// overridden if the text contains directional characters.
func DefaultDirection(d Direction) Option {
panic("unimplemented")
}
// A Paragraph holds a single Paragraph for Bidi processing.
type Paragraph struct {
// buffers
}
// SetBytes configures p for the given paragraph text. It replaces text
// previously set by SetBytes or SetString. If b contains a paragraph separator
// it will only process the first paragraph and report the number of bytes
// consumed from b including this separator. Error may be non-nil if options are
// given.
func (p *Paragraph) SetBytes(b []byte, opts ...Option) (n int, err error) {
panic("unimplemented")
}
// SetString configures p for the given paragraph text. It replaces text
// previously set by SetBytes or SetString. If b contains a paragraph separator
// it will only process the first paragraph and report the number of bytes
// consumed from b including this separator. Error may be non-nil if options are
// given.
func (p *Paragraph) SetString(s string, opts ...Option) (n int, err error) {
panic("unimplemented")
}
// IsLeftToRight reports whether the principle direction of rendering for this
// paragraphs is left-to-right. If this returns false, the principle direction
// of rendering is right-to-left.
func (p *Paragraph) IsLeftToRight() bool {
panic("unimplemented")
}
// Direction returns the direction of the text of this paragraph.
//
// The direction may be LeftToRight, RightToLeft, Mixed, or Neutral.
func (p *Paragraph) Direction() Direction {
panic("unimplemented")
}
// RunAt reports the Run at the given position of the input text.
//
// This method can be used for computing line breaks on paragraphs.
func (p *Paragraph) RunAt(pos int) Run {
panic("unimplemented")
}
// Order computes the visual ordering of all the runs in a Paragraph.
func (p *Paragraph) Order() (Ordering, error) {
panic("unimplemented")
}
// Line computes the visual ordering of runs for a single line starting and
// ending at the given positions in the original text.
func (p *Paragraph) Line(start, end int) (Ordering, error) {
panic("unimplemented")
}
// An Ordering holds the computed visual order of runs of a Paragraph. Calling
// SetBytes or SetString on the originating Paragraph invalidates an Ordering.
// The methods of an Ordering should only be called by one goroutine at a time.
type Ordering struct{}
// Direction reports the directionality of the runs.
//
// The direction may be LeftToRight, RightToLeft, Mixed, or Neutral.
func (o *Ordering) Direction() Direction {
panic("unimplemented")
}
// NumRuns returns the number of runs.
func (o *Ordering) NumRuns() int {
panic("unimplemented")
}
// Run returns the ith run within the ordering.
func (o *Ordering) Run(i int) Run {
panic("unimplemented")
}
// TODO: perhaps with options.
// // Reorder creates a reader that reads the runes in visual order per character.
// // Modifiers remain after the runes they modify.
// func (l *Runs) Reorder() io.Reader {
// panic("unimplemented")
// }
// A Run is a continuous sequence of characters of a single direction.
type Run struct {
}
// String returns the text of the run in its original order.
func (r *Run) String() string {
panic("unimplemented")
}
// Bytes returns the text of the run in its original order.
func (r *Run) Bytes() []byte {
panic("unimplemented")
}
// TODO: methods for
// - Display order
// - headers and footers
// - bracket replacement.
// Direction reports the direction of the run.
func (r *Run) Direction() Direction {
panic("unimplemented")
}
// Position of the Run within the text passed to SetBytes or SetString of the
// originating Paragraph value.
func (r *Run) Pos() (start, end int) {
panic("unimplemented")
}
// AppendReverse reverses the order of characters of in, appends them to out,
// and returns the result. Modifiers will still follow the runes they modify.
// Brackets are replaced with their counterparts.
func AppendReverse(out, in []byte) []byte {
panic("unimplemented")
}
// ReverseString reverses the order of characters in s and returns a new string.
// Modifiers will still follow the runes they modify. Brackets are replaced with
// their counterparts.
func ReverseString(s string) string {
panic("unimplemented")
}

335
vendor/golang.org/x/text/unicode/bidi/bracket.go generated vendored Normal file
View file

@ -0,0 +1,335 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bidi
import (
"container/list"
"fmt"
"sort"
)
// This file contains a port of the reference implementation of the
// Bidi Parentheses Algorithm:
// http://www.unicode.org/Public/PROGRAMS/BidiReferenceJava/BidiPBAReference.java
//
// The implementation in this file covers definitions BD14-BD16 and rule N0
// of UAX#9.
//
// Some preprocessing is done for each rune before data is passed to this
// algorithm:
// - opening and closing brackets are identified
// - a bracket pair type, like '(' and ')' is assigned a unique identifier that
// is identical for the opening and closing bracket. It is left to do these
// mappings.
// - The BPA algorithm requires that bracket characters that are canonical
// equivalents of each other be able to be substituted for each other.
// It is the responsibility of the caller to do this canonicalization.
//
// In implementing BD16, this implementation departs slightly from the "logical"
// algorithm defined in UAX#9. In particular, the stack referenced there
// supports operations that go beyond a "basic" stack. An equivalent
// implementation based on a linked list is used here.
// Bidi_Paired_Bracket_Type
// BD14. An opening paired bracket is a character whose
// Bidi_Paired_Bracket_Type property value is Open.
//
// BD15. A closing paired bracket is a character whose
// Bidi_Paired_Bracket_Type property value is Close.
type bracketType byte
const (
bpNone bracketType = iota
bpOpen
bpClose
)
// bracketPair holds a pair of index values for opening and closing bracket
// location of a bracket pair.
type bracketPair struct {
opener int
closer int
}
func (b *bracketPair) String() string {
return fmt.Sprintf("(%v, %v)", b.opener, b.closer)
}
// bracketPairs is a slice of bracketPairs with a sort.Interface implementation.
type bracketPairs []bracketPair
func (b bracketPairs) Len() int { return len(b) }
func (b bracketPairs) Swap(i, j int) { b[i], b[j] = b[j], b[i] }
func (b bracketPairs) Less(i, j int) bool { return b[i].opener < b[j].opener }
// resolvePairedBrackets runs the paired bracket part of the UBA algorithm.
//
// For each rune, it takes the indexes into the original string, the class the
// bracket type (in pairTypes) and the bracket identifier (pairValues). It also
// takes the direction type for the start-of-sentence and the embedding level.
//
// The identifiers for bracket types are the rune of the canonicalized opening
// bracket for brackets (open or close) or 0 for runes that are not brackets.
func resolvePairedBrackets(s *isolatingRunSequence) {
p := bracketPairer{
sos: s.sos,
openers: list.New(),
codesIsolatedRun: s.types,
indexes: s.indexes,
}
dirEmbed := L
if s.level&1 != 0 {
dirEmbed = R
}
p.locateBrackets(s.p.pairTypes, s.p.pairValues)
p.resolveBrackets(dirEmbed, s.p.initialTypes)
}
type bracketPairer struct {
sos Class // direction corresponding to start of sequence
// The following is a restatement of BD 16 using non-algorithmic language.
//
// A bracket pair is a pair of characters consisting of an opening
// paired bracket and a closing paired bracket such that the
// Bidi_Paired_Bracket property value of the former equals the latter,
// subject to the following constraints.
// - both characters of a pair occur in the same isolating run sequence
// - the closing character of a pair follows the opening character
// - any bracket character can belong at most to one pair, the earliest possible one
// - any bracket character not part of a pair is treated like an ordinary character
// - pairs may nest properly, but their spans may not overlap otherwise
// Bracket characters with canonical decompositions are supposed to be
// treated as if they had been normalized, to allow normalized and non-
// normalized text to give the same result. In this implementation that step
// is pushed out to the caller. The caller has to ensure that the pairValue
// slices contain the rune of the opening bracket after normalization for
// any opening or closing bracket.
openers *list.List // list of positions for opening brackets
// bracket pair positions sorted by location of opening bracket
pairPositions bracketPairs
codesIsolatedRun []Class // directional bidi codes for an isolated run
indexes []int // array of index values into the original string
}
// matchOpener reports whether characters at given positions form a matching
// bracket pair.
func (p *bracketPairer) matchOpener(pairValues []rune, opener, closer int) bool {
return pairValues[p.indexes[opener]] == pairValues[p.indexes[closer]]
}
const maxPairingDepth = 63
// locateBrackets locates matching bracket pairs according to BD16.
//
// This implementation uses a linked list instead of a stack, because, while
// elements are added at the front (like a push) they are not generally removed
// in atomic 'pop' operations, reducing the benefit of the stack archetype.
func (p *bracketPairer) locateBrackets(pairTypes []bracketType, pairValues []rune) {
// traverse the run
// do that explicitly (not in a for-each) so we can record position
for i, index := range p.indexes {
// look at the bracket type for each character
if pairTypes[index] == bpNone || p.codesIsolatedRun[i] != ON {
// continue scanning
continue
}
switch pairTypes[index] {
case bpOpen:
// check if maximum pairing depth reached
if p.openers.Len() == maxPairingDepth {
p.openers.Init()
return
}
// remember opener location, most recent first
p.openers.PushFront(i)
case bpClose:
// see if there is a match
count := 0
for elem := p.openers.Front(); elem != nil; elem = elem.Next() {
count++
opener := elem.Value.(int)
if p.matchOpener(pairValues, opener, i) {
// if the opener matches, add nested pair to the ordered list
p.pairPositions = append(p.pairPositions, bracketPair{opener, i})
// remove up to and including matched opener
for ; count > 0; count-- {
p.openers.Remove(p.openers.Front())
}
break
}
}
sort.Sort(p.pairPositions)
// if we get here, the closing bracket matched no openers
// and gets ignored
}
}
}
// Bracket pairs within an isolating run sequence are processed as units so
// that both the opening and the closing paired bracket in a pair resolve to
// the same direction.
//
// N0. Process bracket pairs in an isolating run sequence sequentially in
// the logical order of the text positions of the opening paired brackets
// using the logic given below. Within this scope, bidirectional types EN
// and AN are treated as R.
//
// Identify the bracket pairs in the current isolating run sequence
// according to BD16. For each bracket-pair element in the list of pairs of
// text positions:
//
// a Inspect the bidirectional types of the characters enclosed within the
// bracket pair.
//
// b If any strong type (either L or R) matching the embedding direction is
// found, set the type for both brackets in the pair to match the embedding
// direction.
//
// o [ e ] o -> o e e e o
//
// o [ o e ] -> o e o e e
//
// o [ NI e ] -> o e NI e e
//
// c Otherwise, if a strong type (opposite the embedding direction) is
// found, test for adjacent strong types as follows: 1 First, check
// backwards before the opening paired bracket until the first strong type
// (L, R, or sos) is found. If that first preceding strong type is opposite
// the embedding direction, then set the type for both brackets in the pair
// to that type. 2 Otherwise, set the type for both brackets in the pair to
// the embedding direction.
//
// o [ o ] e -> o o o o e
//
// o [ o NI ] o -> o o o NI o o
//
// e [ o ] o -> e e o e o
//
// e [ o ] e -> e e o e e
//
// e ( o [ o ] NI ) e -> e e o o o o NI e e
//
// d Otherwise, do not set the type for the current bracket pair. Note that
// if the enclosed text contains no strong types the paired brackets will
// both resolve to the same level when resolved individually using rules N1
// and N2.
//
// e ( NI ) o -> e ( NI ) o
// getStrongTypeN0 maps character's directional code to strong type as required
// by rule N0.
//
// TODO: have separate type for "strong" directionality.
func (p *bracketPairer) getStrongTypeN0(index int) Class {
switch p.codesIsolatedRun[index] {
// in the scope of N0, number types are treated as R
case EN, AN, AL, R:
return R
case L:
return L
default:
return ON
}
}
// classifyPairContent reports the strong types contained inside a Bracket Pair,
// assuming the given embedding direction.
//
// It returns ON if no strong type is found. If a single strong type is found,
// it returns this this type. Otherwise it returns the embedding direction.
//
// TODO: use separate type for "strong" directionality.
func (p *bracketPairer) classifyPairContent(loc bracketPair, dirEmbed Class) Class {
dirOpposite := ON
for i := loc.opener + 1; i < loc.closer; i++ {
dir := p.getStrongTypeN0(i)
if dir == ON {
continue
}
if dir == dirEmbed {
return dir // type matching embedding direction found
}
dirOpposite = dir
}
// return ON if no strong type found, or class opposite to dirEmbed
return dirOpposite
}
// classBeforePair determines which strong types are present before a Bracket
// Pair. Return R or L if strong type found, otherwise ON.
func (p *bracketPairer) classBeforePair(loc bracketPair) Class {
for i := loc.opener - 1; i >= 0; i-- {
if dir := p.getStrongTypeN0(i); dir != ON {
return dir
}
}
// no strong types found, return sos
return p.sos
}
// assignBracketType implements rule N0 for a single bracket pair.
func (p *bracketPairer) assignBracketType(loc bracketPair, dirEmbed Class, initialTypes []Class) {
// rule "N0, a", inspect contents of pair
dirPair := p.classifyPairContent(loc, dirEmbed)
// dirPair is now L, R, or N (no strong type found)
// the following logical tests are performed out of order compared to
// the statement of the rules but yield the same results
if dirPair == ON {
return // case "d" - nothing to do
}
if dirPair != dirEmbed {
// case "c": strong type found, opposite - check before (c.1)
dirPair = p.classBeforePair(loc)
if dirPair == dirEmbed || dirPair == ON {
// no strong opposite type found before - use embedding (c.2)
dirPair = dirEmbed
}
}
// else: case "b", strong type found matching embedding,
// no explicit action needed, as dirPair is already set to embedding
// direction
// set the bracket types to the type found
p.setBracketsToType(loc, dirPair, initialTypes)
}
func (p *bracketPairer) setBracketsToType(loc bracketPair, dirPair Class, initialTypes []Class) {
p.codesIsolatedRun[loc.opener] = dirPair
p.codesIsolatedRun[loc.closer] = dirPair
for i := loc.opener + 1; i < loc.closer; i++ {
index := p.indexes[i]
if initialTypes[index] != NSM {
break
}
p.codesIsolatedRun[i] = dirPair
}
for i := loc.closer + 1; i < len(p.indexes); i++ {
index := p.indexes[i]
if initialTypes[index] != NSM {
break
}
p.codesIsolatedRun[i] = dirPair
}
}
// resolveBrackets implements rule N0 for a list of pairs.
func (p *bracketPairer) resolveBrackets(dirEmbed Class, initialTypes []Class) {
for _, loc := range p.pairPositions {
p.assignBracketType(loc, dirEmbed, initialTypes)
}
}

1058
vendor/golang.org/x/text/unicode/bidi/core.go generated vendored Normal file

File diff suppressed because it is too large Load diff

133
vendor/golang.org/x/text/unicode/bidi/gen.go generated vendored Normal file
View file

@ -0,0 +1,133 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build ignore
package main
import (
"flag"
"log"
"golang.org/x/text/internal/gen"
"golang.org/x/text/internal/triegen"
"golang.org/x/text/internal/ucd"
)
var outputFile = flag.String("out", "tables.go", "output file")
func main() {
gen.Init()
gen.Repackage("gen_trieval.go", "trieval.go", "bidi")
gen.Repackage("gen_ranges.go", "ranges_test.go", "bidi")
genTables()
}
// bidiClass names and codes taken from class "bc" in
// http://www.unicode.org/Public/8.0.0/ucd/PropertyValueAliases.txt
var bidiClass = map[string]Class{
"AL": AL, // ArabicLetter
"AN": AN, // ArabicNumber
"B": B, // ParagraphSeparator
"BN": BN, // BoundaryNeutral
"CS": CS, // CommonSeparator
"EN": EN, // EuropeanNumber
"ES": ES, // EuropeanSeparator
"ET": ET, // EuropeanTerminator
"L": L, // LeftToRight
"NSM": NSM, // NonspacingMark
"ON": ON, // OtherNeutral
"R": R, // RightToLeft
"S": S, // SegmentSeparator
"WS": WS, // WhiteSpace
"FSI": Control,
"PDF": Control,
"PDI": Control,
"LRE": Control,
"LRI": Control,
"LRO": Control,
"RLE": Control,
"RLI": Control,
"RLO": Control,
}
func genTables() {
if numClass > 0x0F {
log.Fatalf("Too many Class constants (%#x > 0x0F).", numClass)
}
w := gen.NewCodeWriter()
defer w.WriteGoFile(*outputFile, "bidi")
gen.WriteUnicodeVersion(w)
t := triegen.NewTrie("bidi")
// Build data about bracket mapping. These bits need to be or-ed with
// any other bits.
orMask := map[rune]uint64{}
xorMap := map[rune]int{}
xorMasks := []rune{0} // First value is no-op.
ucd.Parse(gen.OpenUCDFile("BidiBrackets.txt"), func(p *ucd.Parser) {
r1 := p.Rune(0)
r2 := p.Rune(1)
xor := r1 ^ r2
if _, ok := xorMap[xor]; !ok {
xorMap[xor] = len(xorMasks)
xorMasks = append(xorMasks, xor)
}
entry := uint64(xorMap[xor]) << xorMaskShift
switch p.String(2) {
case "o":
entry |= openMask
case "c", "n":
default:
log.Fatalf("Unknown bracket class %q.", p.String(2))
}
orMask[r1] = entry
})
w.WriteComment(`
xorMasks contains masks to be xor-ed with brackets to get the reverse
version.`)
w.WriteVar("xorMasks", xorMasks)
done := map[rune]bool{}
insert := func(r rune, c Class) {
if !done[r] {
t.Insert(r, orMask[r]|uint64(c))
done[r] = true
}
}
// Insert the derived BiDi properties.
ucd.Parse(gen.OpenUCDFile("extracted/DerivedBidiClass.txt"), func(p *ucd.Parser) {
r := p.Rune(0)
class, ok := bidiClass[p.String(1)]
if !ok {
log.Fatalf("%U: Unknown BiDi class %q", r, p.String(1))
}
insert(r, class)
})
visitDefaults(insert)
// TODO: use sparse blocks. This would reduce table size considerably
// from the looks of it.
sz, err := t.Gen(w)
if err != nil {
log.Fatal(err)
}
w.Size += sz
}
// dummy values to make methods in gen_common compile. The real versions
// will be generated by this file to tables.go.
var (
xorMasks []rune
)

57
vendor/golang.org/x/text/unicode/bidi/gen_ranges.go generated vendored Normal file
View file

@ -0,0 +1,57 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build ignore
package main
import (
"unicode"
"golang.org/x/text/internal/gen"
"golang.org/x/text/internal/ucd"
"golang.org/x/text/unicode/rangetable"
)
// These tables are hand-extracted from:
// http://www.unicode.org/Public/8.0.0/ucd/extracted/DerivedBidiClass.txt
func visitDefaults(fn func(r rune, c Class)) {
// first write default values for ranges listed above.
visitRunes(fn, AL, []rune{
0x0600, 0x07BF, // Arabic
0x08A0, 0x08FF, // Arabic Extended-A
0xFB50, 0xFDCF, // Arabic Presentation Forms
0xFDF0, 0xFDFF,
0xFE70, 0xFEFF,
0x0001EE00, 0x0001EEFF, // Arabic Mathematical Alpha Symbols
})
visitRunes(fn, R, []rune{
0x0590, 0x05FF, // Hebrew
0x07C0, 0x089F, // Nko et al.
0xFB1D, 0xFB4F,
0x00010800, 0x00010FFF, // Cypriot Syllabary et. al.
0x0001E800, 0x0001EDFF,
0x0001EF00, 0x0001EFFF,
})
visitRunes(fn, ET, []rune{ // European Terminator
0x20A0, 0x20Cf, // Currency symbols
})
rangetable.Visit(unicode.Noncharacter_Code_Point, func(r rune) {
fn(r, BN) // Boundary Neutral
})
ucd.Parse(gen.OpenUCDFile("DerivedCoreProperties.txt"), func(p *ucd.Parser) {
if p.String(1) == "Default_Ignorable_Code_Point" {
fn(p.Rune(0), BN) // Boundary Neutral
}
})
}
func visitRunes(fn func(r rune, c Class), c Class, runes []rune) {
for i := 0; i < len(runes); i += 2 {
lo, hi := runes[i], runes[i+1]
for j := lo; j <= hi; j++ {
fn(j, c)
}
}
}

64
vendor/golang.org/x/text/unicode/bidi/gen_trieval.go generated vendored Normal file
View file

@ -0,0 +1,64 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build ignore
package main
// Class is the Unicode BiDi class. Each rune has a single class.
type Class uint
const (
L Class = iota // LeftToRight
R // RightToLeft
EN // EuropeanNumber
ES // EuropeanSeparator
ET // EuropeanTerminator
AN // ArabicNumber
CS // CommonSeparator
B // ParagraphSeparator
S // SegmentSeparator
WS // WhiteSpace
ON // OtherNeutral
BN // BoundaryNeutral
NSM // NonspacingMark
AL // ArabicLetter
Control // Control LRO - PDI
numClass
LRO // LeftToRightOverride
RLO // RightToLeftOverride
LRE // LeftToRightEmbedding
RLE // RightToLeftEmbedding
PDF // PopDirectionalFormat
LRI // LeftToRightIsolate
RLI // RightToLeftIsolate
FSI // FirstStrongIsolate
PDI // PopDirectionalIsolate
unknownClass = ^Class(0)
)
var controlToClass = map[rune]Class{
0x202D: LRO, // LeftToRightOverride,
0x202E: RLO, // RightToLeftOverride,
0x202A: LRE, // LeftToRightEmbedding,
0x202B: RLE, // RightToLeftEmbedding,
0x202C: PDF, // PopDirectionalFormat,
0x2066: LRI, // LeftToRightIsolate,
0x2067: RLI, // RightToLeftIsolate,
0x2068: FSI, // FirstStrongIsolate,
0x2069: PDI, // PopDirectionalIsolate,
}
// A trie entry has the following bits:
// 7..5 XOR mask for brackets
// 4 1: Bracket open, 0: Bracket close
// 3..0 Class type
const (
openMask = 0x10
xorMaskShift = 5
)

206
vendor/golang.org/x/text/unicode/bidi/prop.go generated vendored Normal file
View file

@ -0,0 +1,206 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bidi
import "unicode/utf8"
// Properties provides access to BiDi properties of runes.
type Properties struct {
entry uint8
last uint8
}
var trie = newBidiTrie(0)
// TODO: using this for bidirule reduces the running time by about 5%. Consider
// if this is worth exposing or if we can find a way to speed up the Class
// method.
//
// // CompactClass is like Class, but maps all of the BiDi control classes
// // (LRO, RLO, LRE, RLE, PDF, LRI, RLI, FSI, PDI) to the class Control.
// func (p Properties) CompactClass() Class {
// return Class(p.entry & 0x0F)
// }
// Class returns the Bidi class for p.
func (p Properties) Class() Class {
c := Class(p.entry & 0x0F)
if c == Control {
c = controlByteToClass[p.last&0xF]
}
return c
}
// IsBracket reports whether the rune is a bracket.
func (p Properties) IsBracket() bool { return p.entry&0xF0 != 0 }
// IsOpeningBracket reports whether the rune is an opening bracket.
// IsBracket must return true.
func (p Properties) IsOpeningBracket() bool { return p.entry&openMask != 0 }
// TODO: find a better API and expose.
func (p Properties) reverseBracket(r rune) rune {
return xorMasks[p.entry>>xorMaskShift] ^ r
}
var controlByteToClass = [16]Class{
0xD: LRO, // U+202D LeftToRightOverride,
0xE: RLO, // U+202E RightToLeftOverride,
0xA: LRE, // U+202A LeftToRightEmbedding,
0xB: RLE, // U+202B RightToLeftEmbedding,
0xC: PDF, // U+202C PopDirectionalFormat,
0x6: LRI, // U+2066 LeftToRightIsolate,
0x7: RLI, // U+2067 RightToLeftIsolate,
0x8: FSI, // U+2068 FirstStrongIsolate,
0x9: PDI, // U+2069 PopDirectionalIsolate,
}
// LookupRune returns properties for r.
func LookupRune(r rune) (p Properties, size int) {
var buf [4]byte
n := utf8.EncodeRune(buf[:], r)
return Lookup(buf[:n])
}
// TODO: these lookup methods are based on the generated trie code. The returned
// sizes have slightly different semantics from the generated code, in that it
// always returns size==1 for an illegal UTF-8 byte (instead of the length
// of the maximum invalid subsequence). Most Transformers, like unicode/norm,
// leave invalid UTF-8 untouched, in which case it has performance benefits to
// do so (without changing the semantics). Bidi requires the semantics used here
// for the bidirule implementation to be compatible with the Go semantics.
// They ultimately should perhaps be adopted by all trie implementations, for
// convenience sake.
// This unrolled code also boosts performance of the secure/bidirule package by
// about 30%.
// So, to remove this code:
// - add option to trie generator to define return type.
// - always return 1 byte size for ill-formed UTF-8 runes.
// Lookup returns properties for the first rune in s and the width in bytes of
// its encoding. The size will be 0 if s does not hold enough bytes to complete
// the encoding.
func Lookup(s []byte) (p Properties, sz int) {
c0 := s[0]
switch {
case c0 < 0x80: // is ASCII
return Properties{entry: bidiValues[c0]}, 1
case c0 < 0xC2:
return Properties{}, 1
case c0 < 0xE0: // 2-byte UTF-8
if len(s) < 2 {
return Properties{}, 0
}
i := bidiIndex[c0]
c1 := s[1]
if c1 < 0x80 || 0xC0 <= c1 {
return Properties{}, 1
}
return Properties{entry: trie.lookupValue(uint32(i), c1)}, 2
case c0 < 0xF0: // 3-byte UTF-8
if len(s) < 3 {
return Properties{}, 0
}
i := bidiIndex[c0]
c1 := s[1]
if c1 < 0x80 || 0xC0 <= c1 {
return Properties{}, 1
}
o := uint32(i)<<6 + uint32(c1)
i = bidiIndex[o]
c2 := s[2]
if c2 < 0x80 || 0xC0 <= c2 {
return Properties{}, 1
}
return Properties{entry: trie.lookupValue(uint32(i), c2), last: c2}, 3
case c0 < 0xF8: // 4-byte UTF-8
if len(s) < 4 {
return Properties{}, 0
}
i := bidiIndex[c0]
c1 := s[1]
if c1 < 0x80 || 0xC0 <= c1 {
return Properties{}, 1
}
o := uint32(i)<<6 + uint32(c1)
i = bidiIndex[o]
c2 := s[2]
if c2 < 0x80 || 0xC0 <= c2 {
return Properties{}, 1
}
o = uint32(i)<<6 + uint32(c2)
i = bidiIndex[o]
c3 := s[3]
if c3 < 0x80 || 0xC0 <= c3 {
return Properties{}, 1
}
return Properties{entry: trie.lookupValue(uint32(i), c3)}, 4
}
// Illegal rune
return Properties{}, 1
}
// LookupString returns properties for the first rune in s and the width in
// bytes of its encoding. The size will be 0 if s does not hold enough bytes to
// complete the encoding.
func LookupString(s string) (p Properties, sz int) {
c0 := s[0]
switch {
case c0 < 0x80: // is ASCII
return Properties{entry: bidiValues[c0]}, 1
case c0 < 0xC2:
return Properties{}, 1
case c0 < 0xE0: // 2-byte UTF-8
if len(s) < 2 {
return Properties{}, 0
}
i := bidiIndex[c0]
c1 := s[1]
if c1 < 0x80 || 0xC0 <= c1 {
return Properties{}, 1
}
return Properties{entry: trie.lookupValue(uint32(i), c1)}, 2
case c0 < 0xF0: // 3-byte UTF-8
if len(s) < 3 {
return Properties{}, 0
}
i := bidiIndex[c0]
c1 := s[1]
if c1 < 0x80 || 0xC0 <= c1 {
return Properties{}, 1
}
o := uint32(i)<<6 + uint32(c1)
i = bidiIndex[o]
c2 := s[2]
if c2 < 0x80 || 0xC0 <= c2 {
return Properties{}, 1
}
return Properties{entry: trie.lookupValue(uint32(i), c2), last: c2}, 3
case c0 < 0xF8: // 4-byte UTF-8
if len(s) < 4 {
return Properties{}, 0
}
i := bidiIndex[c0]
c1 := s[1]
if c1 < 0x80 || 0xC0 <= c1 {
return Properties{}, 1
}
o := uint32(i)<<6 + uint32(c1)
i = bidiIndex[o]
c2 := s[2]
if c2 < 0x80 || 0xC0 <= c2 {
return Properties{}, 1
}
o = uint32(i)<<6 + uint32(c2)
i = bidiIndex[o]
c3 := s[3]
if c3 < 0x80 || 0xC0 <= c3 {
return Properties{}, 1
}
return Properties{entry: trie.lookupValue(uint32(i), c3)}, 4
}
// Illegal rune
return Properties{}, 1
}

1779
vendor/golang.org/x/text/unicode/bidi/tables.go generated vendored Normal file

File diff suppressed because it is too large Load diff

60
vendor/golang.org/x/text/unicode/bidi/trieval.go generated vendored Normal file
View file

@ -0,0 +1,60 @@
// This file was generated by go generate; DO NOT EDIT
package bidi
// Class is the Unicode BiDi class. Each rune has a single class.
type Class uint
const (
L Class = iota // LeftToRight
R // RightToLeft
EN // EuropeanNumber
ES // EuropeanSeparator
ET // EuropeanTerminator
AN // ArabicNumber
CS // CommonSeparator
B // ParagraphSeparator
S // SegmentSeparator
WS // WhiteSpace
ON // OtherNeutral
BN // BoundaryNeutral
NSM // NonspacingMark
AL // ArabicLetter
Control // Control LRO - PDI
numClass
LRO // LeftToRightOverride
RLO // RightToLeftOverride
LRE // LeftToRightEmbedding
RLE // RightToLeftEmbedding
PDF // PopDirectionalFormat
LRI // LeftToRightIsolate
RLI // RightToLeftIsolate
FSI // FirstStrongIsolate
PDI // PopDirectionalIsolate
unknownClass = ^Class(0)
)
var controlToClass = map[rune]Class{
0x202D: LRO, // LeftToRightOverride,
0x202E: RLO, // RightToLeftOverride,
0x202A: LRE, // LeftToRightEmbedding,
0x202B: RLE, // RightToLeftEmbedding,
0x202C: PDF, // PopDirectionalFormat,
0x2066: LRI, // LeftToRightIsolate,
0x2067: RLI, // RightToLeftIsolate,
0x2068: FSI, // FirstStrongIsolate,
0x2069: PDI, // PopDirectionalIsolate,
}
// A trie entry has the following bits:
// 7..5 XOR mask for brackets
// 4 1: Bracket open, 0: Bracket close
// 3..0 Class type
const (
openMask = 0x10
xorMaskShift = 5
)

100
vendor/golang.org/x/text/unicode/cldr/base.go generated vendored Normal file
View file

@ -0,0 +1,100 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cldr
import (
"encoding/xml"
"regexp"
"strconv"
)
// Elem is implemented by every XML element.
type Elem interface {
setEnclosing(Elem)
setName(string)
enclosing() Elem
GetCommon() *Common
}
type hidden struct {
CharData string `xml:",chardata"`
Alias *struct {
Common
Source string `xml:"source,attr"`
Path string `xml:"path,attr"`
} `xml:"alias"`
Def *struct {
Common
Choice string `xml:"choice,attr,omitempty"`
Type string `xml:"type,attr,omitempty"`
} `xml:"default"`
}
// Common holds several of the most common attributes and sub elements
// of an XML element.
type Common struct {
XMLName xml.Name
name string
enclElem Elem
Type string `xml:"type,attr,omitempty"`
Reference string `xml:"reference,attr,omitempty"`
Alt string `xml:"alt,attr,omitempty"`
ValidSubLocales string `xml:"validSubLocales,attr,omitempty"`
Draft string `xml:"draft,attr,omitempty"`
hidden
}
// Default returns the default type to select from the enclosed list
// or "" if no default value is specified.
func (e *Common) Default() string {
if e.Def == nil {
return ""
}
if e.Def.Choice != "" {
return e.Def.Choice
} else if e.Def.Type != "" {
// Type is still used by the default element in collation.
return e.Def.Type
}
return ""
}
// GetCommon returns e. It is provided such that Common implements Elem.
func (e *Common) GetCommon() *Common {
return e
}
// Data returns the character data accumulated for this element.
func (e *Common) Data() string {
e.CharData = charRe.ReplaceAllStringFunc(e.CharData, replaceUnicode)
return e.CharData
}
func (e *Common) setName(s string) {
e.name = s
}
func (e *Common) enclosing() Elem {
return e.enclElem
}
func (e *Common) setEnclosing(en Elem) {
e.enclElem = en
}
// Escape characters that can be escaped without further escaping the string.
var charRe = regexp.MustCompile(`&#x[0-9a-fA-F]*;|\\u[0-9a-fA-F]{4}|\\U[0-9a-fA-F]{8}|\\x[0-9a-fA-F]{2}|\\[0-7]{3}|\\[abtnvfr]`)
// replaceUnicode converts hexadecimal Unicode codepoint notations to a one-rune string.
// It assumes the input string is correctly formatted.
func replaceUnicode(s string) string {
if s[1] == '#' {
r, _ := strconv.ParseInt(s[3:len(s)-1], 16, 32)
return string(r)
}
r, _, _, _ := strconv.UnquoteChar(s, 0)
return string(r)
}

130
vendor/golang.org/x/text/unicode/cldr/cldr.go generated vendored Normal file
View file

@ -0,0 +1,130 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:generate go run makexml.go -output xml.go
// Package cldr provides a parser for LDML and related XML formats.
// This package is intended to be used by the table generation tools
// for the various internationalization-related packages.
// As the XML types are generated from the CLDR DTD, and as the CLDR standard
// is periodically amended, this package may change considerably over time.
// This mostly means that data may appear and disappear between versions.
// That is, old code should keep compiling for newer versions, but data
// may have moved or changed.
// CLDR version 22 is the first version supported by this package.
// Older versions may not work.
package cldr // import "golang.org/x/text/unicode/cldr"
import (
"fmt"
"sort"
)
// CLDR provides access to parsed data of the Unicode Common Locale Data Repository.
type CLDR struct {
parent map[string][]string
locale map[string]*LDML
resolved map[string]*LDML
bcp47 *LDMLBCP47
supp *SupplementalData
}
func makeCLDR() *CLDR {
return &CLDR{
parent: make(map[string][]string),
locale: make(map[string]*LDML),
resolved: make(map[string]*LDML),
bcp47: &LDMLBCP47{},
supp: &SupplementalData{},
}
}
// BCP47 returns the parsed BCP47 LDML data. If no such data was parsed, nil is returned.
func (cldr *CLDR) BCP47() *LDMLBCP47 {
return nil
}
// Draft indicates the draft level of an element.
type Draft int
const (
Approved Draft = iota
Contributed
Provisional
Unconfirmed
)
var drafts = []string{"unconfirmed", "provisional", "contributed", "approved", ""}
// ParseDraft returns the Draft value corresponding to the given string. The
// empty string corresponds to Approved.
func ParseDraft(level string) (Draft, error) {
if level == "" {
return Approved, nil
}
for i, s := range drafts {
if level == s {
return Unconfirmed - Draft(i), nil
}
}
return Approved, fmt.Errorf("cldr: unknown draft level %q", level)
}
func (d Draft) String() string {
return drafts[len(drafts)-1-int(d)]
}
// SetDraftLevel sets which draft levels to include in the evaluated LDML.
// Any draft element for which the draft level is higher than lev will be excluded.
// If multiple draft levels are available for a single element, the one with the
// lowest draft level will be selected, unless preferDraft is true, in which case
// the highest draft will be chosen.
// It is assumed that the underlying LDML is canonicalized.
func (cldr *CLDR) SetDraftLevel(lev Draft, preferDraft bool) {
// TODO: implement
cldr.resolved = make(map[string]*LDML)
}
// RawLDML returns the LDML XML for id in unresolved form.
// id must be one of the strings returned by Locales.
func (cldr *CLDR) RawLDML(loc string) *LDML {
return cldr.locale[loc]
}
// LDML returns the fully resolved LDML XML for loc, which must be one of
// the strings returned by Locales.
func (cldr *CLDR) LDML(loc string) (*LDML, error) {
return cldr.resolve(loc)
}
// Supplemental returns the parsed supplemental data. If no such data was parsed,
// nil is returned.
func (cldr *CLDR) Supplemental() *SupplementalData {
return cldr.supp
}
// Locales returns the locales for which there exist files.
// Valid sublocales for which there is no file are not included.
// The root locale is always sorted first.
func (cldr *CLDR) Locales() []string {
loc := []string{"root"}
hasRoot := false
for l, _ := range cldr.locale {
if l == "root" {
hasRoot = true
continue
}
loc = append(loc, l)
}
sort.Strings(loc[1:])
if !hasRoot {
return loc[1:]
}
return loc
}
// Get fills in the fields of x based on the XPath path.
func Get(e Elem, path string) (res Elem, err error) {
return walkXPath(e, path)
}

359
vendor/golang.org/x/text/unicode/cldr/collate.go generated vendored Normal file
View file

@ -0,0 +1,359 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cldr
import (
"bufio"
"encoding/xml"
"errors"
"fmt"
"strconv"
"strings"
"unicode"
"unicode/utf8"
)
// RuleProcessor can be passed to Collator's Process method, which
// parses the rules and calls the respective method for each rule found.
type RuleProcessor interface {
Reset(anchor string, before int) error
Insert(level int, str, context, extend string) error
Index(id string)
}
const (
// cldrIndex is a Unicode-reserved sentinel value used to mark the start
// of a grouping within an index.
// We ignore any rule that starts with this rune.
// See http://unicode.org/reports/tr35/#Collation_Elements for details.
cldrIndex = "\uFDD0"
// specialAnchor is the format in which to represent logical reset positions,
// such as "first tertiary ignorable".
specialAnchor = "<%s/>"
)
// Process parses the rules for the tailorings of this collation
// and calls the respective methods of p for each rule found.
func (c Collation) Process(p RuleProcessor) (err error) {
if len(c.Cr) > 0 {
if len(c.Cr) > 1 {
return fmt.Errorf("multiple cr elements, want 0 or 1")
}
return processRules(p, c.Cr[0].Data())
}
if c.Rules.Any != nil {
return c.processXML(p)
}
return errors.New("no tailoring data")
}
// processRules parses rules in the Collation Rule Syntax defined in
// http://www.unicode.org/reports/tr35/tr35-collation.html#Collation_Tailorings.
func processRules(p RuleProcessor, s string) (err error) {
chk := func(s string, e error) string {
if err == nil {
err = e
}
return s
}
i := 0 // Save the line number for use after the loop.
scanner := bufio.NewScanner(strings.NewReader(s))
for ; scanner.Scan() && err == nil; i++ {
for s := skipSpace(scanner.Text()); s != "" && s[0] != '#'; s = skipSpace(s) {
level := 5
var ch byte
switch ch, s = s[0], s[1:]; ch {
case '&': // followed by <anchor> or '[' <key> ']'
if s = skipSpace(s); consume(&s, '[') {
s = chk(parseSpecialAnchor(p, s))
} else {
s = chk(parseAnchor(p, 0, s))
}
case '<': // sort relation '<'{1,4}, optionally followed by '*'.
for level = 1; consume(&s, '<'); level++ {
}
if level > 4 {
err = fmt.Errorf("level %d > 4", level)
}
fallthrough
case '=': // identity relation, optionally followed by *.
if consume(&s, '*') {
s = chk(parseSequence(p, level, s))
} else {
s = chk(parseOrder(p, level, s))
}
default:
chk("", fmt.Errorf("illegal operator %q", ch))
break
}
}
}
if chk("", scanner.Err()); err != nil {
return fmt.Errorf("%d: %v", i, err)
}
return nil
}
// parseSpecialAnchor parses the anchor syntax which is either of the form
// ['before' <level>] <anchor>
// or
// [<label>]
// The starting should already be consumed.
func parseSpecialAnchor(p RuleProcessor, s string) (tail string, err error) {
i := strings.IndexByte(s, ']')
if i == -1 {
return "", errors.New("unmatched bracket")
}
a := strings.TrimSpace(s[:i])
s = s[i+1:]
if strings.HasPrefix(a, "before ") {
l, err := strconv.ParseUint(skipSpace(a[len("before "):]), 10, 3)
if err != nil {
return s, err
}
return parseAnchor(p, int(l), s)
}
return s, p.Reset(fmt.Sprintf(specialAnchor, a), 0)
}
func parseAnchor(p RuleProcessor, level int, s string) (tail string, err error) {
anchor, s, err := scanString(s)
if err != nil {
return s, err
}
return s, p.Reset(anchor, level)
}
func parseOrder(p RuleProcessor, level int, s string) (tail string, err error) {
var value, context, extend string
if value, s, err = scanString(s); err != nil {
return s, err
}
if strings.HasPrefix(value, cldrIndex) {
p.Index(value[len(cldrIndex):])
return
}
if consume(&s, '|') {
if context, s, err = scanString(s); err != nil {
return s, errors.New("missing string after context")
}
}
if consume(&s, '/') {
if extend, s, err = scanString(s); err != nil {
return s, errors.New("missing string after extension")
}
}
return s, p.Insert(level, value, context, extend)
}
// scanString scans a single input string.
func scanString(s string) (str, tail string, err error) {
if s = skipSpace(s); s == "" {
return s, s, errors.New("missing string")
}
buf := [16]byte{} // small but enough to hold most cases.
value := buf[:0]
for s != "" {
if consume(&s, '\'') {
i := strings.IndexByte(s, '\'')
if i == -1 {
return "", "", errors.New(`unmatched single quote`)
}
if i == 0 {
value = append(value, '\'')
} else {
value = append(value, s[:i]...)
}
s = s[i+1:]
continue
}
r, sz := utf8.DecodeRuneInString(s)
if unicode.IsSpace(r) || strings.ContainsRune("&<=#", r) {
break
}
value = append(value, s[:sz]...)
s = s[sz:]
}
return string(value), skipSpace(s), nil
}
func parseSequence(p RuleProcessor, level int, s string) (tail string, err error) {
if s = skipSpace(s); s == "" {
return s, errors.New("empty sequence")
}
last := rune(0)
for s != "" {
r, sz := utf8.DecodeRuneInString(s)
s = s[sz:]
if r == '-' {
// We have a range. The first element was already written.
if last == 0 {
return s, errors.New("range without starter value")
}
r, sz = utf8.DecodeRuneInString(s)
s = s[sz:]
if r == utf8.RuneError || r < last {
return s, fmt.Errorf("invalid range %q-%q", last, r)
}
for i := last + 1; i <= r; i++ {
if err := p.Insert(level, string(i), "", ""); err != nil {
return s, err
}
}
last = 0
continue
}
if unicode.IsSpace(r) || unicode.IsPunct(r) {
break
}
// normal case
if err := p.Insert(level, string(r), "", ""); err != nil {
return s, err
}
last = r
}
return s, nil
}
func skipSpace(s string) string {
return strings.TrimLeftFunc(s, unicode.IsSpace)
}
// consumes returns whether the next byte is ch. If so, it gobbles it by
// updating s.
func consume(s *string, ch byte) (ok bool) {
if *s == "" || (*s)[0] != ch {
return false
}
*s = (*s)[1:]
return true
}
// The following code parses Collation rules of CLDR version 24 and before.
var lmap = map[byte]int{
'p': 1,
's': 2,
't': 3,
'i': 5,
}
type rulesElem struct {
Rules struct {
Common
Any []*struct {
XMLName xml.Name
rule
} `xml:",any"`
} `xml:"rules"`
}
type rule struct {
Value string `xml:",chardata"`
Before string `xml:"before,attr"`
Any []*struct {
XMLName xml.Name
rule
} `xml:",any"`
}
var emptyValueError = errors.New("cldr: empty rule value")
func (r *rule) value() (string, error) {
// Convert hexadecimal Unicode codepoint notation to a string.
s := charRe.ReplaceAllStringFunc(r.Value, replaceUnicode)
r.Value = s
if s == "" {
if len(r.Any) != 1 {
return "", emptyValueError
}
r.Value = fmt.Sprintf(specialAnchor, r.Any[0].XMLName.Local)
r.Any = nil
} else if len(r.Any) != 0 {
return "", fmt.Errorf("cldr: XML elements found in collation rule: %v", r.Any)
}
return r.Value, nil
}
func (r rule) process(p RuleProcessor, name, context, extend string) error {
v, err := r.value()
if err != nil {
return err
}
switch name {
case "p", "s", "t", "i":
if strings.HasPrefix(v, cldrIndex) {
p.Index(v[len(cldrIndex):])
return nil
}
if err := p.Insert(lmap[name[0]], v, context, extend); err != nil {
return err
}
case "pc", "sc", "tc", "ic":
level := lmap[name[0]]
for _, s := range v {
if err := p.Insert(level, string(s), context, extend); err != nil {
return err
}
}
default:
return fmt.Errorf("cldr: unsupported tag: %q", name)
}
return nil
}
// processXML parses the format of CLDR versions 24 and older.
func (c Collation) processXML(p RuleProcessor) (err error) {
// Collation is generated and defined in xml.go.
var v string
for _, r := range c.Rules.Any {
switch r.XMLName.Local {
case "reset":
level := 0
switch r.Before {
case "primary", "1":
level = 1
case "secondary", "2":
level = 2
case "tertiary", "3":
level = 3
case "":
default:
return fmt.Errorf("cldr: unknown level %q", r.Before)
}
v, err = r.value()
if err == nil {
err = p.Reset(v, level)
}
case "x":
var context, extend string
for _, r1 := range r.Any {
v, err = r1.value()
switch r1.XMLName.Local {
case "context":
context = v
case "extend":
extend = v
}
}
for _, r1 := range r.Any {
if t := r1.XMLName.Local; t == "context" || t == "extend" {
continue
}
r1.rule.process(p, r1.XMLName.Local, context, extend)
}
default:
err = r.rule.process(p, r.XMLName.Local, "", "")
}
if err != nil {
return err
}
}
return nil
}

171
vendor/golang.org/x/text/unicode/cldr/decode.go generated vendored Normal file
View file

@ -0,0 +1,171 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cldr
import (
"archive/zip"
"bytes"
"encoding/xml"
"fmt"
"io"
"io/ioutil"
"log"
"os"
"path/filepath"
"regexp"
)
// A Decoder loads an archive of CLDR data.
type Decoder struct {
dirFilter []string
sectionFilter []string
loader Loader
cldr *CLDR
curLocale string
}
// SetSectionFilter takes a list top-level LDML element names to which
// evaluation of LDML should be limited. It automatically calls SetDirFilter.
func (d *Decoder) SetSectionFilter(filter ...string) {
d.sectionFilter = filter
// TODO: automatically set dir filter
}
// SetDirFilter limits the loading of LDML XML files of the specied directories.
// Note that sections may be split across directories differently for different CLDR versions.
// For more robust code, use SetSectionFilter.
func (d *Decoder) SetDirFilter(dir ...string) {
d.dirFilter = dir
}
// A Loader provides access to the files of a CLDR archive.
type Loader interface {
Len() int
Path(i int) string
Reader(i int) (io.ReadCloser, error)
}
var fileRe = regexp.MustCompile(".*/(.*)/(.*)\\.xml")
// Decode loads and decodes the files represented by l.
func (d *Decoder) Decode(l Loader) (cldr *CLDR, err error) {
d.cldr = makeCLDR()
for i := 0; i < l.Len(); i++ {
fname := l.Path(i)
if m := fileRe.FindStringSubmatch(fname); m != nil {
if len(d.dirFilter) > 0 && !in(d.dirFilter, m[1]) {
continue
}
var r io.Reader
if r, err = l.Reader(i); err == nil {
err = d.decode(m[1], m[2], r)
}
if err != nil {
return nil, err
}
}
}
d.cldr.finalize(d.sectionFilter)
return d.cldr, nil
}
func (d *Decoder) decode(dir, id string, r io.Reader) error {
var v interface{}
var l *LDML
cldr := d.cldr
switch {
case dir == "supplemental":
v = cldr.supp
case dir == "transforms":
return nil
case dir == "bcp47":
v = cldr.bcp47
case dir == "validity":
return nil
default:
ok := false
if v, ok = cldr.locale[id]; !ok {
l = &LDML{}
v, cldr.locale[id] = l, l
}
}
x := xml.NewDecoder(r)
if err := x.Decode(v); err != nil {
log.Printf("%s/%s: %v", dir, id, err)
return err
}
if l != nil {
if l.Identity == nil {
return fmt.Errorf("%s/%s: missing identity element", dir, id)
}
// TODO: verify when CLDR bug http://unicode.org/cldr/trac/ticket/8970
// is resolved.
// path := strings.Split(id, "_")
// if lang := l.Identity.Language.Type; lang != path[0] {
// return fmt.Errorf("%s/%s: language was %s; want %s", dir, id, lang, path[0])
// }
}
return nil
}
type pathLoader []string
func makePathLoader(path string) (pl pathLoader, err error) {
err = filepath.Walk(path, func(path string, _ os.FileInfo, err error) error {
pl = append(pl, path)
return err
})
return pl, err
}
func (pl pathLoader) Len() int {
return len(pl)
}
func (pl pathLoader) Path(i int) string {
return pl[i]
}
func (pl pathLoader) Reader(i int) (io.ReadCloser, error) {
return os.Open(pl[i])
}
// DecodePath loads CLDR data from the given path.
func (d *Decoder) DecodePath(path string) (cldr *CLDR, err error) {
loader, err := makePathLoader(path)
if err != nil {
return nil, err
}
return d.Decode(loader)
}
type zipLoader struct {
r *zip.Reader
}
func (zl zipLoader) Len() int {
return len(zl.r.File)
}
func (zl zipLoader) Path(i int) string {
return zl.r.File[i].Name
}
func (zl zipLoader) Reader(i int) (io.ReadCloser, error) {
return zl.r.File[i].Open()
}
// DecodeZip loads CLDR data from the zip archive for which r is the source.
func (d *Decoder) DecodeZip(r io.Reader) (cldr *CLDR, err error) {
buffer, err := ioutil.ReadAll(r)
if err != nil {
return nil, err
}
archive, err := zip.NewReader(bytes.NewReader(buffer), int64(len(buffer)))
if err != nil {
return nil, err
}
return d.Decode(zipLoader{archive})
}

400
vendor/golang.org/x/text/unicode/cldr/makexml.go generated vendored Normal file
View file

@ -0,0 +1,400 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build ignore
// This tool generates types for the various XML formats of CLDR.
package main
import (
"archive/zip"
"bytes"
"encoding/xml"
"flag"
"fmt"
"io"
"io/ioutil"
"log"
"os"
"regexp"
"strings"
"golang.org/x/text/internal/gen"
)
var outputFile = flag.String("output", "xml.go", "output file name")
func main() {
flag.Parse()
r := gen.OpenCLDRCoreZip()
buffer, err := ioutil.ReadAll(r)
if err != nil {
log.Fatal("Could not read zip file")
}
r.Close()
z, err := zip.NewReader(bytes.NewReader(buffer), int64(len(buffer)))
if err != nil {
log.Fatalf("Could not read zip archive: %v", err)
}
var buf bytes.Buffer
version := gen.CLDRVersion()
for _, dtd := range files {
for _, f := range z.File {
if strings.HasSuffix(f.Name, dtd.file+".dtd") {
r, err := f.Open()
failOnError(err)
b := makeBuilder(&buf, dtd)
b.parseDTD(r)
b.resolve(b.index[dtd.top[0]])
b.write()
if b.version != "" && version != b.version {
println(f.Name)
log.Fatalf("main: inconsistent versions: found %s; want %s", b.version, version)
}
break
}
}
}
fmt.Fprintln(&buf, "// Version is the version of CLDR from which the XML definitions are generated.")
fmt.Fprintf(&buf, "const Version = %q\n", version)
gen.WriteGoFile(*outputFile, "cldr", buf.Bytes())
}
func failOnError(err error) {
if err != nil {
log.New(os.Stderr, "", log.Lshortfile).Output(2, err.Error())
os.Exit(1)
}
}
// configuration data per DTD type
type dtd struct {
file string // base file name
root string // Go name of the root XML element
top []string // create a different type for this section
skipElem []string // hard-coded or deprecated elements
skipAttr []string // attributes to exclude
predefined []string // hard-coded elements exist of the form <name>Elem
forceRepeat []string // elements to make slices despite DTD
}
var files = []dtd{
{
file: "ldmlBCP47",
root: "LDMLBCP47",
top: []string{"ldmlBCP47"},
skipElem: []string{
"cldrVersion", // deprecated, not used
},
},
{
file: "ldmlSupplemental",
root: "SupplementalData",
top: []string{"supplementalData"},
skipElem: []string{
"cldrVersion", // deprecated, not used
},
forceRepeat: []string{
"plurals", // data defined in plurals.xml and ordinals.xml
},
},
{
file: "ldml",
root: "LDML",
top: []string{
"ldml", "collation", "calendar", "timeZoneNames", "localeDisplayNames", "numbers",
},
skipElem: []string{
"cp", // not used anywhere
"special", // not used anywhere
"fallback", // deprecated, not used
"alias", // in Common
"default", // in Common
},
skipAttr: []string{
"hiraganaQuarternary", // typo in DTD, correct version included as well
},
predefined: []string{"rules"},
},
}
var comments = map[string]string{
"ldmlBCP47": `
// LDMLBCP47 holds information on allowable values for various variables in LDML.
`,
"supplementalData": `
// SupplementalData holds information relevant for internationalization
// and proper use of CLDR, but that is not contained in the locale hierarchy.
`,
"ldml": `
// LDML is the top-level type for locale-specific data.
`,
"collation": `
// Collation contains rules that specify a certain sort-order,
// as a tailoring of the root order.
// The parsed rules are obtained by passing a RuleProcessor to Collation's
// Process method.
`,
"calendar": `
// Calendar specifies the fields used for formatting and parsing dates and times.
// The month and quarter names are identified numerically, starting at 1.
// The day (of the week) names are identified with short strings, since there is
// no universally-accepted numeric designation.
`,
"dates": `
// Dates contains information regarding the format and parsing of dates and times.
`,
"localeDisplayNames": `
// LocaleDisplayNames specifies localized display names for for scripts, languages,
// countries, currencies, and variants.
`,
"numbers": `
// Numbers supplies information for formatting and parsing numbers and currencies.
`,
}
type element struct {
name string // XML element name
category string // elements contained by this element
signature string // category + attrKey*
attr []*attribute // attributes supported by this element.
sub []struct { // parsed and evaluated sub elements of this element.
e *element
repeat bool // true if the element needs to be a slice
}
resolved bool // prevent multiple resolutions of this element.
}
type attribute struct {
name string
key string
list []string
tag string // Go tag
}
var (
reHead = regexp.MustCompile(` *(\w+) +([\w\-]+)`)
reAttr = regexp.MustCompile(` *(\w+) *(?:(\w+)|\(([\w\- \|]+)\)) *(?:#([A-Z]*) *(?:\"([\.\d+])\")?)? *("[\w\-:]*")?`)
reElem = regexp.MustCompile(`^ *(EMPTY|ANY|\(.*\)[\*\+\?]?) *$`)
reToken = regexp.MustCompile(`\w\-`)
)
// builder is used to read in the DTD files from CLDR and generate Go code
// to be used with the encoding/xml package.
type builder struct {
w io.Writer
index map[string]*element
elem []*element
info dtd
version string
}
func makeBuilder(w io.Writer, d dtd) builder {
return builder{
w: w,
index: make(map[string]*element),
elem: []*element{},
info: d,
}
}
// parseDTD parses a DTD file.
func (b *builder) parseDTD(r io.Reader) {
for d := xml.NewDecoder(r); ; {
t, err := d.Token()
if t == nil {
break
}
failOnError(err)
dir, ok := t.(xml.Directive)
if !ok {
continue
}
m := reHead.FindSubmatch(dir)
dir = dir[len(m[0]):]
ename := string(m[2])
el, elementFound := b.index[ename]
switch string(m[1]) {
case "ELEMENT":
if elementFound {
log.Fatal("parseDTD: duplicate entry for element %q", ename)
}
m := reElem.FindSubmatch(dir)
if m == nil {
log.Fatalf("parseDTD: invalid element %q", string(dir))
}
if len(m[0]) != len(dir) {
log.Fatal("parseDTD: invalid element %q", string(dir), len(dir), len(m[0]), string(m[0]))
}
s := string(m[1])
el = &element{
name: ename,
category: s,
}
b.index[ename] = el
case "ATTLIST":
if !elementFound {
log.Fatalf("parseDTD: unknown element %q", ename)
}
s := string(dir)
m := reAttr.FindStringSubmatch(s)
if m == nil {
log.Fatal(fmt.Errorf("parseDTD: invalid attribute %q", string(dir)))
}
if m[4] == "FIXED" {
b.version = m[5]
} else {
switch m[1] {
case "draft", "references", "alt", "validSubLocales", "standard" /* in Common */ :
case "type", "choice":
default:
el.attr = append(el.attr, &attribute{
name: m[1],
key: s,
list: reToken.FindAllString(m[3], -1),
})
el.signature = fmt.Sprintf("%s=%s+%s", el.signature, m[1], m[2])
}
}
}
}
}
var reCat = regexp.MustCompile(`[ ,\|]*(?:(\(|\)|\#?[\w_-]+)([\*\+\?]?))?`)
// resolve takes a parsed element and converts it into structured data
// that can be used to generate the XML code.
func (b *builder) resolve(e *element) {
if e.resolved {
return
}
b.elem = append(b.elem, e)
e.resolved = true
s := e.category
found := make(map[string]bool)
sequenceStart := []int{}
for len(s) > 0 {
m := reCat.FindStringSubmatch(s)
if m == nil {
log.Fatalf("%s: invalid category string %q", e.name, s)
}
repeat := m[2] == "*" || m[2] == "+" || in(b.info.forceRepeat, m[1])
switch m[1] {
case "":
case "(":
sequenceStart = append(sequenceStart, len(e.sub))
case ")":
if len(sequenceStart) == 0 {
log.Fatalf("%s: unmatched closing parenthesis", e.name)
}
for i := sequenceStart[len(sequenceStart)-1]; i < len(e.sub); i++ {
e.sub[i].repeat = e.sub[i].repeat || repeat
}
sequenceStart = sequenceStart[:len(sequenceStart)-1]
default:
if in(b.info.skipElem, m[1]) {
} else if sub, ok := b.index[m[1]]; ok {
if !found[sub.name] {
e.sub = append(e.sub, struct {
e *element
repeat bool
}{sub, repeat})
found[sub.name] = true
b.resolve(sub)
}
} else if m[1] == "#PCDATA" || m[1] == "ANY" {
} else if m[1] != "EMPTY" {
log.Fatalf("resolve:%s: element %q not found", e.name, m[1])
}
}
s = s[len(m[0]):]
}
}
// return true if s is contained in set.
func in(set []string, s string) bool {
for _, v := range set {
if v == s {
return true
}
}
return false
}
var repl = strings.NewReplacer("-", " ", "_", " ")
// title puts the first character or each character following '_' in title case and
// removes all occurrences of '_'.
func title(s string) string {
return strings.Replace(strings.Title(repl.Replace(s)), " ", "", -1)
}
// writeElem generates Go code for a single element, recursively.
func (b *builder) writeElem(tab int, e *element) {
p := func(f string, x ...interface{}) {
f = strings.Replace(f, "\n", "\n"+strings.Repeat("\t", tab), -1)
fmt.Fprintf(b.w, f, x...)
}
if len(e.sub) == 0 && len(e.attr) == 0 {
p("Common")
return
}
p("struct {")
tab++
p("\nCommon")
for _, attr := range e.attr {
if !in(b.info.skipAttr, attr.name) {
p("\n%s string `xml:\"%s,attr\"`", title(attr.name), attr.name)
}
}
for _, sub := range e.sub {
if in(b.info.predefined, sub.e.name) {
p("\n%sElem", sub.e.name)
continue
}
if in(b.info.skipElem, sub.e.name) {
continue
}
p("\n%s ", title(sub.e.name))
if sub.repeat {
p("[]")
}
p("*")
if in(b.info.top, sub.e.name) {
p(title(sub.e.name))
} else {
b.writeElem(tab, sub.e)
}
p(" `xml:\"%s\"`", sub.e.name)
}
tab--
p("\n}")
}
// write generates the Go XML code.
func (b *builder) write() {
for i, name := range b.info.top {
e := b.index[name]
if e != nil {
fmt.Fprintf(b.w, comments[name])
name := title(e.name)
if i == 0 {
name = b.info.root
}
fmt.Fprintf(b.w, "type %s ", name)
b.writeElem(0, e)
fmt.Fprint(b.w, "\n")
}
}
}

602
vendor/golang.org/x/text/unicode/cldr/resolve.go generated vendored Normal file
View file

@ -0,0 +1,602 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cldr
// This file implements the various inheritance constructs defined by LDML.
// See http://www.unicode.org/reports/tr35/#Inheritance_and_Validity
// for more details.
import (
"fmt"
"log"
"reflect"
"regexp"
"sort"
"strings"
)
// fieldIter iterates over fields in a struct. It includes
// fields of embedded structs.
type fieldIter struct {
v reflect.Value
index, n []int
}
func iter(v reflect.Value) fieldIter {
if v.Kind() != reflect.Struct {
log.Panicf("value %v must be a struct", v)
}
i := fieldIter{
v: v,
index: []int{0},
n: []int{v.NumField()},
}
i.descent()
return i
}
func (i *fieldIter) descent() {
for f := i.field(); f.Anonymous && f.Type.NumField() > 0; f = i.field() {
i.index = append(i.index, 0)
i.n = append(i.n, f.Type.NumField())
}
}
func (i *fieldIter) done() bool {
return len(i.index) == 1 && i.index[0] >= i.n[0]
}
func skip(f reflect.StructField) bool {
return !f.Anonymous && (f.Name[0] < 'A' || f.Name[0] > 'Z')
}
func (i *fieldIter) next() {
for {
k := len(i.index) - 1
i.index[k]++
if i.index[k] < i.n[k] {
if !skip(i.field()) {
break
}
} else {
if k == 0 {
return
}
i.index = i.index[:k]
i.n = i.n[:k]
}
}
i.descent()
}
func (i *fieldIter) value() reflect.Value {
return i.v.FieldByIndex(i.index)
}
func (i *fieldIter) field() reflect.StructField {
return i.v.Type().FieldByIndex(i.index)
}
type visitor func(v reflect.Value) error
var stopDescent = fmt.Errorf("do not recurse")
func (f visitor) visit(x interface{}) error {
return f.visitRec(reflect.ValueOf(x))
}
// visit recursively calls f on all nodes in v.
func (f visitor) visitRec(v reflect.Value) error {
if v.Kind() == reflect.Ptr {
if v.IsNil() {
return nil
}
return f.visitRec(v.Elem())
}
if err := f(v); err != nil {
if err == stopDescent {
return nil
}
return err
}
switch v.Kind() {
case reflect.Struct:
for i := iter(v); !i.done(); i.next() {
if err := f.visitRec(i.value()); err != nil {
return err
}
}
case reflect.Slice:
for i := 0; i < v.Len(); i++ {
if err := f.visitRec(v.Index(i)); err != nil {
return err
}
}
}
return nil
}
// getPath is used for error reporting purposes only.
func getPath(e Elem) string {
if e == nil {
return "<nil>"
}
if e.enclosing() == nil {
return e.GetCommon().name
}
if e.GetCommon().Type == "" {
return fmt.Sprintf("%s.%s", getPath(e.enclosing()), e.GetCommon().name)
}
return fmt.Sprintf("%s.%s[type=%s]", getPath(e.enclosing()), e.GetCommon().name, e.GetCommon().Type)
}
// xmlName returns the xml name of the element or attribute
func xmlName(f reflect.StructField) (name string, attr bool) {
tags := strings.Split(f.Tag.Get("xml"), ",")
for _, s := range tags {
attr = attr || s == "attr"
}
return tags[0], attr
}
func findField(v reflect.Value, key string) (reflect.Value, error) {
v = reflect.Indirect(v)
for i := iter(v); !i.done(); i.next() {
if n, _ := xmlName(i.field()); n == key {
return i.value(), nil
}
}
return reflect.Value{}, fmt.Errorf("cldr: no field %q in element %#v", key, v.Interface())
}
var xpathPart = regexp.MustCompile(`(\pL+)(?:\[@(\pL+)='([\w-]+)'\])?`)
func walkXPath(e Elem, path string) (res Elem, err error) {
for _, c := range strings.Split(path, "/") {
if c == ".." {
if e = e.enclosing(); e == nil {
panic("path ..")
return nil, fmt.Errorf(`cldr: ".." moves past root in path %q`, path)
}
continue
} else if c == "" {
continue
}
m := xpathPart.FindStringSubmatch(c)
if len(m) == 0 || len(m[0]) != len(c) {
return nil, fmt.Errorf("cldr: syntax error in path component %q", c)
}
v, err := findField(reflect.ValueOf(e), m[1])
if err != nil {
return nil, err
}
switch v.Kind() {
case reflect.Slice:
i := 0
if m[2] != "" || v.Len() > 1 {
if m[2] == "" {
m[2] = "type"
if m[3] = e.GetCommon().Default(); m[3] == "" {
return nil, fmt.Errorf("cldr: type selector or default value needed for element %s", m[1])
}
}
for ; i < v.Len(); i++ {
vi := v.Index(i)
key, err := findField(vi.Elem(), m[2])
if err != nil {
return nil, err
}
key = reflect.Indirect(key)
if key.Kind() == reflect.String && key.String() == m[3] {
break
}
}
}
if i == v.Len() || v.Index(i).IsNil() {
return nil, fmt.Errorf("no %s found with %s==%s", m[1], m[2], m[3])
}
e = v.Index(i).Interface().(Elem)
case reflect.Ptr:
if v.IsNil() {
return nil, fmt.Errorf("cldr: element %q not found within element %q", m[1], e.GetCommon().name)
}
var ok bool
if e, ok = v.Interface().(Elem); !ok {
return nil, fmt.Errorf("cldr: %q is not an XML element", m[1])
} else if m[2] != "" || m[3] != "" {
return nil, fmt.Errorf("cldr: no type selector allowed for element %s", m[1])
}
default:
return nil, fmt.Errorf("cldr: %q is not an XML element", m[1])
}
}
return e, nil
}
const absPrefix = "//ldml/"
func (cldr *CLDR) resolveAlias(e Elem, src, path string) (res Elem, err error) {
if src != "locale" {
if !strings.HasPrefix(path, absPrefix) {
return nil, fmt.Errorf("cldr: expected absolute path, found %q", path)
}
path = path[len(absPrefix):]
if e, err = cldr.resolve(src); err != nil {
return nil, err
}
}
return walkXPath(e, path)
}
func (cldr *CLDR) resolveAndMergeAlias(e Elem) error {
alias := e.GetCommon().Alias
if alias == nil {
return nil
}
a, err := cldr.resolveAlias(e, alias.Source, alias.Path)
if err != nil {
return fmt.Errorf("%v: error evaluating path %q: %v", getPath(e), alias.Path, err)
}
// Ensure alias node was already evaluated. TODO: avoid double evaluation.
err = cldr.resolveAndMergeAlias(a)
v := reflect.ValueOf(e).Elem()
for i := iter(reflect.ValueOf(a).Elem()); !i.done(); i.next() {
if vv := i.value(); vv.Kind() != reflect.Ptr || !vv.IsNil() {
if _, attr := xmlName(i.field()); !attr {
v.FieldByIndex(i.index).Set(vv)
}
}
}
return err
}
func (cldr *CLDR) aliasResolver() visitor {
return func(v reflect.Value) (err error) {
if e, ok := v.Addr().Interface().(Elem); ok {
err = cldr.resolveAndMergeAlias(e)
if err == nil && blocking[e.GetCommon().name] {
return stopDescent
}
}
return err
}
}
// elements within blocking elements do not inherit.
// Taken from CLDR's supplementalMetaData.xml.
var blocking = map[string]bool{
"identity": true,
"supplementalData": true,
"cldrTest": true,
"collation": true,
"transform": true,
}
// Distinguishing attributes affect inheritance; two elements with different
// distinguishing attributes are treated as different for purposes of inheritance,
// except when such attributes occur in the indicated elements.
// Taken from CLDR's supplementalMetaData.xml.
var distinguishing = map[string][]string{
"key": nil,
"request_id": nil,
"id": nil,
"registry": nil,
"alt": nil,
"iso4217": nil,
"iso3166": nil,
"mzone": nil,
"from": nil,
"to": nil,
"type": []string{
"abbreviationFallback",
"default",
"mapping",
"measurementSystem",
"preferenceOrdering",
},
"numberSystem": nil,
}
func in(set []string, s string) bool {
for _, v := range set {
if v == s {
return true
}
}
return false
}
// attrKey computes a key based on the distinguishable attributes of
// an element and it's values.
func attrKey(v reflect.Value, exclude ...string) string {
parts := []string{}
ename := v.Interface().(Elem).GetCommon().name
v = v.Elem()
for i := iter(v); !i.done(); i.next() {
if name, attr := xmlName(i.field()); attr {
if except, ok := distinguishing[name]; ok && !in(exclude, name) && !in(except, ename) {
v := i.value()
if v.Kind() == reflect.Ptr {
v = v.Elem()
}
if v.IsValid() {
parts = append(parts, fmt.Sprintf("%s=%s", name, v.String()))
}
}
}
}
sort.Strings(parts)
return strings.Join(parts, ";")
}
// Key returns a key for e derived from all distinguishing attributes
// except those specified by exclude.
func Key(e Elem, exclude ...string) string {
return attrKey(reflect.ValueOf(e), exclude...)
}
// linkEnclosing sets the enclosing element as well as the name
// for all sub-elements of child, recursively.
func linkEnclosing(parent, child Elem) {
child.setEnclosing(parent)
v := reflect.ValueOf(child).Elem()
for i := iter(v); !i.done(); i.next() {
vf := i.value()
if vf.Kind() == reflect.Slice {
for j := 0; j < vf.Len(); j++ {
linkEnclosing(child, vf.Index(j).Interface().(Elem))
}
} else if vf.Kind() == reflect.Ptr && !vf.IsNil() && vf.Elem().Kind() == reflect.Struct {
linkEnclosing(child, vf.Interface().(Elem))
}
}
}
func setNames(e Elem, name string) {
e.setName(name)
v := reflect.ValueOf(e).Elem()
for i := iter(v); !i.done(); i.next() {
vf := i.value()
name, _ = xmlName(i.field())
if vf.Kind() == reflect.Slice {
for j := 0; j < vf.Len(); j++ {
setNames(vf.Index(j).Interface().(Elem), name)
}
} else if vf.Kind() == reflect.Ptr && !vf.IsNil() && vf.Elem().Kind() == reflect.Struct {
setNames(vf.Interface().(Elem), name)
}
}
}
// deepCopy copies elements of v recursively. All elements of v that may
// be modified by inheritance are explicitly copied.
func deepCopy(v reflect.Value) reflect.Value {
switch v.Kind() {
case reflect.Ptr:
if v.IsNil() || v.Elem().Kind() != reflect.Struct {
return v
}
nv := reflect.New(v.Elem().Type())
nv.Elem().Set(v.Elem())
deepCopyRec(nv.Elem(), v.Elem())
return nv
case reflect.Slice:
nv := reflect.MakeSlice(v.Type(), v.Len(), v.Len())
for i := 0; i < v.Len(); i++ {
deepCopyRec(nv.Index(i), v.Index(i))
}
return nv
}
panic("deepCopy: must be called with pointer or slice")
}
// deepCopyRec is only called by deepCopy.
func deepCopyRec(nv, v reflect.Value) {
if v.Kind() == reflect.Struct {
t := v.Type()
for i := 0; i < v.NumField(); i++ {
if name, attr := xmlName(t.Field(i)); name != "" && !attr {
deepCopyRec(nv.Field(i), v.Field(i))
}
}
} else {
nv.Set(deepCopy(v))
}
}
// newNode is used to insert a missing node during inheritance.
func (cldr *CLDR) newNode(v, enc reflect.Value) reflect.Value {
n := reflect.New(v.Type())
for i := iter(v); !i.done(); i.next() {
if name, attr := xmlName(i.field()); name == "" || attr {
n.Elem().FieldByIndex(i.index).Set(i.value())
}
}
n.Interface().(Elem).GetCommon().setEnclosing(enc.Addr().Interface().(Elem))
return n
}
// v, parent must be pointers to struct
func (cldr *CLDR) inheritFields(v, parent reflect.Value) (res reflect.Value, err error) {
t := v.Type()
nv := reflect.New(t)
nv.Elem().Set(v)
for i := iter(v); !i.done(); i.next() {
vf := i.value()
f := i.field()
name, attr := xmlName(f)
if name == "" || attr {
continue
}
pf := parent.FieldByIndex(i.index)
if blocking[name] {
if vf.IsNil() {
vf = pf
}
nv.Elem().FieldByIndex(i.index).Set(deepCopy(vf))
continue
}
switch f.Type.Kind() {
case reflect.Ptr:
if f.Type.Elem().Kind() == reflect.Struct {
if !vf.IsNil() {
if vf, err = cldr.inheritStructPtr(vf, pf); err != nil {
return reflect.Value{}, err
}
vf.Interface().(Elem).setEnclosing(nv.Interface().(Elem))
nv.Elem().FieldByIndex(i.index).Set(vf)
} else if !pf.IsNil() {
n := cldr.newNode(pf.Elem(), v)
if vf, err = cldr.inheritStructPtr(n, pf); err != nil {
return reflect.Value{}, err
}
vf.Interface().(Elem).setEnclosing(nv.Interface().(Elem))
nv.Elem().FieldByIndex(i.index).Set(vf)
}
}
case reflect.Slice:
vf, err := cldr.inheritSlice(nv.Elem(), vf, pf)
if err != nil {
return reflect.Zero(t), err
}
nv.Elem().FieldByIndex(i.index).Set(vf)
}
}
return nv, nil
}
func root(e Elem) *LDML {
for ; e.enclosing() != nil; e = e.enclosing() {
}
return e.(*LDML)
}
// inheritStructPtr first merges possible aliases in with v and then inherits
// any underspecified elements from parent.
func (cldr *CLDR) inheritStructPtr(v, parent reflect.Value) (r reflect.Value, err error) {
if !v.IsNil() {
e := v.Interface().(Elem).GetCommon()
alias := e.Alias
if alias == nil && !parent.IsNil() {
alias = parent.Interface().(Elem).GetCommon().Alias
}
if alias != nil {
a, err := cldr.resolveAlias(v.Interface().(Elem), alias.Source, alias.Path)
if a != nil {
if v, err = cldr.inheritFields(v.Elem(), reflect.ValueOf(a).Elem()); err != nil {
return reflect.Value{}, err
}
}
}
if !parent.IsNil() {
return cldr.inheritFields(v.Elem(), parent.Elem())
}
} else if parent.IsNil() {
panic("should not reach here")
}
return v, nil
}
// Must be slice of struct pointers.
func (cldr *CLDR) inheritSlice(enc, v, parent reflect.Value) (res reflect.Value, err error) {
t := v.Type()
index := make(map[string]reflect.Value)
if !v.IsNil() {
for i := 0; i < v.Len(); i++ {
vi := v.Index(i)
key := attrKey(vi)
index[key] = vi
}
}
if !parent.IsNil() {
for i := 0; i < parent.Len(); i++ {
vi := parent.Index(i)
key := attrKey(vi)
if w, ok := index[key]; ok {
index[key], err = cldr.inheritStructPtr(w, vi)
} else {
n := cldr.newNode(vi.Elem(), enc)
index[key], err = cldr.inheritStructPtr(n, vi)
}
index[key].Interface().(Elem).setEnclosing(enc.Addr().Interface().(Elem))
if err != nil {
return v, err
}
}
}
keys := make([]string, 0, len(index))
for k, _ := range index {
keys = append(keys, k)
}
sort.Strings(keys)
sl := reflect.MakeSlice(t, len(index), len(index))
for i, k := range keys {
sl.Index(i).Set(index[k])
}
return sl, nil
}
func parentLocale(loc string) string {
parts := strings.Split(loc, "_")
if len(parts) == 1 {
return "root"
}
parts = parts[:len(parts)-1]
key := strings.Join(parts, "_")
return key
}
func (cldr *CLDR) resolve(loc string) (res *LDML, err error) {
if r := cldr.resolved[loc]; r != nil {
return r, nil
}
x := cldr.RawLDML(loc)
if x == nil {
return nil, fmt.Errorf("cldr: unknown locale %q", loc)
}
var v reflect.Value
if loc == "root" {
x = deepCopy(reflect.ValueOf(x)).Interface().(*LDML)
linkEnclosing(nil, x)
err = cldr.aliasResolver().visit(x)
} else {
key := parentLocale(loc)
var parent *LDML
for ; cldr.locale[key] == nil; key = parentLocale(key) {
}
if parent, err = cldr.resolve(key); err != nil {
return nil, err
}
v, err = cldr.inheritFields(reflect.ValueOf(x).Elem(), reflect.ValueOf(parent).Elem())
x = v.Interface().(*LDML)
linkEnclosing(nil, x)
}
if err != nil {
return nil, err
}
cldr.resolved[loc] = x
return x, err
}
// finalize finalizes the initialization of the raw LDML structs. It also
// removed unwanted fields, as specified by filter, so that they will not
// be unnecessarily evaluated.
func (cldr *CLDR) finalize(filter []string) {
for _, x := range cldr.locale {
if filter != nil {
v := reflect.ValueOf(x).Elem()
t := v.Type()
for i := 0; i < v.NumField(); i++ {
f := t.Field(i)
name, _ := xmlName(f)
if name != "" && name != "identity" && !in(filter, name) {
v.Field(i).Set(reflect.Zero(f.Type))
}
}
}
linkEnclosing(nil, x) // for resolving aliases and paths
setNames(x, "ldml")
}
}

144
vendor/golang.org/x/text/unicode/cldr/slice.go generated vendored Normal file
View file

@ -0,0 +1,144 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cldr
import (
"fmt"
"reflect"
"sort"
)
// Slice provides utilities for modifying slices of elements.
// It can be wrapped around any slice of which the element type implements
// interface Elem.
type Slice struct {
ptr reflect.Value
typ reflect.Type
}
// Value returns the reflect.Value of the underlying slice.
func (s *Slice) Value() reflect.Value {
return s.ptr.Elem()
}
// MakeSlice wraps a pointer to a slice of Elems.
// It replaces the array pointed to by the slice so that subsequent modifications
// do not alter the data in a CLDR type.
// It panics if an incorrect type is passed.
func MakeSlice(slicePtr interface{}) Slice {
ptr := reflect.ValueOf(slicePtr)
if ptr.Kind() != reflect.Ptr {
panic(fmt.Sprintf("MakeSlice: argument must be pointer to slice, found %v", ptr.Type()))
}
sl := ptr.Elem()
if sl.Kind() != reflect.Slice {
panic(fmt.Sprintf("MakeSlice: argument must point to a slice, found %v", sl.Type()))
}
intf := reflect.TypeOf((*Elem)(nil)).Elem()
if !sl.Type().Elem().Implements(intf) {
panic(fmt.Sprintf("MakeSlice: element type of slice (%v) does not implement Elem", sl.Type().Elem()))
}
nsl := reflect.MakeSlice(sl.Type(), sl.Len(), sl.Len())
reflect.Copy(nsl, sl)
sl.Set(nsl)
return Slice{
ptr: ptr,
typ: sl.Type().Elem().Elem(),
}
}
func (s Slice) indexForAttr(a string) []int {
for i := iter(reflect.Zero(s.typ)); !i.done(); i.next() {
if n, _ := xmlName(i.field()); n == a {
return i.index
}
}
panic(fmt.Sprintf("MakeSlice: no attribute %q for type %v", a, s.typ))
}
// Filter filters s to only include elements for which fn returns true.
func (s Slice) Filter(fn func(e Elem) bool) {
k := 0
sl := s.Value()
for i := 0; i < sl.Len(); i++ {
vi := sl.Index(i)
if fn(vi.Interface().(Elem)) {
sl.Index(k).Set(vi)
k++
}
}
sl.Set(sl.Slice(0, k))
}
// Group finds elements in s for which fn returns the same value and groups
// them in a new Slice.
func (s Slice) Group(fn func(e Elem) string) []Slice {
m := make(map[string][]reflect.Value)
sl := s.Value()
for i := 0; i < sl.Len(); i++ {
vi := sl.Index(i)
key := fn(vi.Interface().(Elem))
m[key] = append(m[key], vi)
}
keys := []string{}
for k, _ := range m {
keys = append(keys, k)
}
sort.Strings(keys)
res := []Slice{}
for _, k := range keys {
nsl := reflect.New(sl.Type())
nsl.Elem().Set(reflect.Append(nsl.Elem(), m[k]...))
res = append(res, MakeSlice(nsl.Interface()))
}
return res
}
// SelectAnyOf filters s to contain only elements for which attr matches
// any of the values.
func (s Slice) SelectAnyOf(attr string, values ...string) {
index := s.indexForAttr(attr)
s.Filter(func(e Elem) bool {
vf := reflect.ValueOf(e).Elem().FieldByIndex(index)
return in(values, vf.String())
})
}
// SelectOnePerGroup filters s to include at most one element e per group of
// elements matching Key(attr), where e has an attribute a that matches any
// the values in v.
// If more than one element in a group matches a value in v preference
// is given to the element that matches the first value in v.
func (s Slice) SelectOnePerGroup(a string, v []string) {
index := s.indexForAttr(a)
grouped := s.Group(func(e Elem) string { return Key(e, a) })
sl := s.Value()
sl.Set(sl.Slice(0, 0))
for _, g := range grouped {
e := reflect.Value{}
found := len(v)
gsl := g.Value()
for i := 0; i < gsl.Len(); i++ {
vi := gsl.Index(i).Elem().FieldByIndex(index)
j := 0
for ; j < len(v) && v[j] != vi.String(); j++ {
}
if j < found {
found = j
e = gsl.Index(i)
}
}
if found < len(v) {
sl.Set(reflect.Append(sl, e))
}
}
}
// SelectDraft drops all elements from the list with a draft level smaller than d
// and selects the highest draft level of the remaining.
// This method assumes that the input CLDR is canonicalized.
func (s Slice) SelectDraft(d Draft) {
s.SelectOnePerGroup("draft", drafts[len(drafts)-2-int(d):])
}

1456
vendor/golang.org/x/text/unicode/cldr/xml.go generated vendored Normal file

File diff suppressed because it is too large Load diff

514
vendor/golang.org/x/text/unicode/norm/composition.go generated vendored Normal file
View file

@ -0,0 +1,514 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
import "unicode/utf8"
const (
maxNonStarters = 30
// The maximum number of characters needed for a buffer is
// maxNonStarters + 1 for the starter + 1 for the GCJ
maxBufferSize = maxNonStarters + 2
maxNFCExpansion = 3 // NFC(0x1D160)
maxNFKCExpansion = 18 // NFKC(0xFDFA)
maxByteBufferSize = utf8.UTFMax * maxBufferSize // 128
)
// ssState is used for reporting the segment state after inserting a rune.
// It is returned by streamSafe.next.
type ssState int
const (
// Indicates a rune was successfully added to the segment.
ssSuccess ssState = iota
// Indicates a rune starts a new segment and should not be added.
ssStarter
// Indicates a rune caused a segment overflow and a CGJ should be inserted.
ssOverflow
)
// streamSafe implements the policy of when a CGJ should be inserted.
type streamSafe uint8
// mkStreamSafe is a shorthand for declaring a streamSafe var and calling
// first on it.
func mkStreamSafe(p Properties) streamSafe {
return streamSafe(p.nTrailingNonStarters())
}
// first inserts the first rune of a segment.
func (ss *streamSafe) first(p Properties) {
if *ss != 0 {
panic("!= 0")
}
*ss = streamSafe(p.nTrailingNonStarters())
}
// insert returns a ssState value to indicate whether a rune represented by p
// can be inserted.
func (ss *streamSafe) next(p Properties) ssState {
if *ss > maxNonStarters {
panic("streamSafe was not reset")
}
n := p.nLeadingNonStarters()
if *ss += streamSafe(n); *ss > maxNonStarters {
*ss = 0
return ssOverflow
}
// The Stream-Safe Text Processing prescribes that the counting can stop
// as soon as a starter is encountered. However, there are some starters,
// like Jamo V and T, that can combine with other runes, leaving their
// successive non-starters appended to the previous, possibly causing an
// overflow. We will therefore consider any rune with a non-zero nLead to
// be a non-starter. Note that it always hold that if nLead > 0 then
// nLead == nTrail.
if n == 0 {
*ss = 0
return ssStarter
}
return ssSuccess
}
// backwards is used for checking for overflow and segment starts
// when traversing a string backwards. Users do not need to call first
// for the first rune. The state of the streamSafe retains the count of
// the non-starters loaded.
func (ss *streamSafe) backwards(p Properties) ssState {
if *ss > maxNonStarters {
panic("streamSafe was not reset")
}
c := *ss + streamSafe(p.nTrailingNonStarters())
if c > maxNonStarters {
return ssOverflow
}
*ss = c
if p.nLeadingNonStarters() == 0 {
return ssStarter
}
return ssSuccess
}
func (ss streamSafe) isMax() bool {
return ss == maxNonStarters
}
// GraphemeJoiner is inserted after maxNonStarters non-starter runes.
const GraphemeJoiner = "\u034F"
// reorderBuffer is used to normalize a single segment. Characters inserted with
// insert are decomposed and reordered based on CCC. The compose method can
// be used to recombine characters. Note that the byte buffer does not hold
// the UTF-8 characters in order. Only the rune array is maintained in sorted
// order. flush writes the resulting segment to a byte array.
type reorderBuffer struct {
rune [maxBufferSize]Properties // Per character info.
byte [maxByteBufferSize]byte // UTF-8 buffer. Referenced by runeInfo.pos.
nbyte uint8 // Number or bytes.
ss streamSafe // For limiting length of non-starter sequence.
nrune int // Number of runeInfos.
f formInfo
src input
nsrc int
tmpBytes input
out []byte
flushF func(*reorderBuffer) bool
}
func (rb *reorderBuffer) init(f Form, src []byte) {
rb.f = *formTable[f]
rb.src.setBytes(src)
rb.nsrc = len(src)
rb.ss = 0
}
func (rb *reorderBuffer) initString(f Form, src string) {
rb.f = *formTable[f]
rb.src.setString(src)
rb.nsrc = len(src)
rb.ss = 0
}
func (rb *reorderBuffer) setFlusher(out []byte, f func(*reorderBuffer) bool) {
rb.out = out
rb.flushF = f
}
// reset discards all characters from the buffer.
func (rb *reorderBuffer) reset() {
rb.nrune = 0
rb.nbyte = 0
rb.ss = 0
}
func (rb *reorderBuffer) doFlush() bool {
if rb.f.composing {
rb.compose()
}
res := rb.flushF(rb)
rb.reset()
return res
}
// appendFlush appends the normalized segment to rb.out.
func appendFlush(rb *reorderBuffer) bool {
for i := 0; i < rb.nrune; i++ {
start := rb.rune[i].pos
end := start + rb.rune[i].size
rb.out = append(rb.out, rb.byte[start:end]...)
}
return true
}
// flush appends the normalized segment to out and resets rb.
func (rb *reorderBuffer) flush(out []byte) []byte {
for i := 0; i < rb.nrune; i++ {
start := rb.rune[i].pos
end := start + rb.rune[i].size
out = append(out, rb.byte[start:end]...)
}
rb.reset()
return out
}
// flushCopy copies the normalized segment to buf and resets rb.
// It returns the number of bytes written to buf.
func (rb *reorderBuffer) flushCopy(buf []byte) int {
p := 0
for i := 0; i < rb.nrune; i++ {
runep := rb.rune[i]
p += copy(buf[p:], rb.byte[runep.pos:runep.pos+runep.size])
}
rb.reset()
return p
}
// insertOrdered inserts a rune in the buffer, ordered by Canonical Combining Class.
// It returns false if the buffer is not large enough to hold the rune.
// It is used internally by insert and insertString only.
func (rb *reorderBuffer) insertOrdered(info Properties) {
n := rb.nrune
b := rb.rune[:]
cc := info.ccc
if cc > 0 {
// Find insertion position + move elements to make room.
for ; n > 0; n-- {
if b[n-1].ccc <= cc {
break
}
b[n] = b[n-1]
}
}
rb.nrune += 1
pos := uint8(rb.nbyte)
rb.nbyte += utf8.UTFMax
info.pos = pos
b[n] = info
}
// insertErr is an error code returned by insert. Using this type instead
// of error improves performance up to 20% for many of the benchmarks.
type insertErr int
const (
iSuccess insertErr = -iota
iShortDst
iShortSrc
)
// insertFlush inserts the given rune in the buffer ordered by CCC.
// If a decomposition with multiple segments are encountered, they leading
// ones are flushed.
// It returns a non-zero error code if the rune was not inserted.
func (rb *reorderBuffer) insertFlush(src input, i int, info Properties) insertErr {
if rune := src.hangul(i); rune != 0 {
rb.decomposeHangul(rune)
return iSuccess
}
if info.hasDecomposition() {
return rb.insertDecomposed(info.Decomposition())
}
rb.insertSingle(src, i, info)
return iSuccess
}
// insertUnsafe inserts the given rune in the buffer ordered by CCC.
// It is assumed there is sufficient space to hold the runes. It is the
// responsibility of the caller to ensure this. This can be done by checking
// the state returned by the streamSafe type.
func (rb *reorderBuffer) insertUnsafe(src input, i int, info Properties) {
if rune := src.hangul(i); rune != 0 {
rb.decomposeHangul(rune)
}
if info.hasDecomposition() {
// TODO: inline.
rb.insertDecomposed(info.Decomposition())
} else {
rb.insertSingle(src, i, info)
}
}
// insertDecomposed inserts an entry in to the reorderBuffer for each rune
// in dcomp. dcomp must be a sequence of decomposed UTF-8-encoded runes.
// It flushes the buffer on each new segment start.
func (rb *reorderBuffer) insertDecomposed(dcomp []byte) insertErr {
rb.tmpBytes.setBytes(dcomp)
for i := 0; i < len(dcomp); {
info := rb.f.info(rb.tmpBytes, i)
if info.BoundaryBefore() && rb.nrune > 0 && !rb.doFlush() {
return iShortDst
}
i += copy(rb.byte[rb.nbyte:], dcomp[i:i+int(info.size)])
rb.insertOrdered(info)
}
return iSuccess
}
// insertSingle inserts an entry in the reorderBuffer for the rune at
// position i. info is the runeInfo for the rune at position i.
func (rb *reorderBuffer) insertSingle(src input, i int, info Properties) {
src.copySlice(rb.byte[rb.nbyte:], i, i+int(info.size))
rb.insertOrdered(info)
}
// insertCGJ inserts a Combining Grapheme Joiner (0x034f) into rb.
func (rb *reorderBuffer) insertCGJ() {
rb.insertSingle(input{str: GraphemeJoiner}, 0, Properties{size: uint8(len(GraphemeJoiner))})
}
// appendRune inserts a rune at the end of the buffer. It is used for Hangul.
func (rb *reorderBuffer) appendRune(r rune) {
bn := rb.nbyte
sz := utf8.EncodeRune(rb.byte[bn:], rune(r))
rb.nbyte += utf8.UTFMax
rb.rune[rb.nrune] = Properties{pos: bn, size: uint8(sz)}
rb.nrune++
}
// assignRune sets a rune at position pos. It is used for Hangul and recomposition.
func (rb *reorderBuffer) assignRune(pos int, r rune) {
bn := rb.rune[pos].pos
sz := utf8.EncodeRune(rb.byte[bn:], rune(r))
rb.rune[pos] = Properties{pos: bn, size: uint8(sz)}
}
// runeAt returns the rune at position n. It is used for Hangul and recomposition.
func (rb *reorderBuffer) runeAt(n int) rune {
inf := rb.rune[n]
r, _ := utf8.DecodeRune(rb.byte[inf.pos : inf.pos+inf.size])
return r
}
// bytesAt returns the UTF-8 encoding of the rune at position n.
// It is used for Hangul and recomposition.
func (rb *reorderBuffer) bytesAt(n int) []byte {
inf := rb.rune[n]
return rb.byte[inf.pos : int(inf.pos)+int(inf.size)]
}
// For Hangul we combine algorithmically, instead of using tables.
const (
hangulBase = 0xAC00 // UTF-8(hangulBase) -> EA B0 80
hangulBase0 = 0xEA
hangulBase1 = 0xB0
hangulBase2 = 0x80
hangulEnd = hangulBase + jamoLVTCount // UTF-8(0xD7A4) -> ED 9E A4
hangulEnd0 = 0xED
hangulEnd1 = 0x9E
hangulEnd2 = 0xA4
jamoLBase = 0x1100 // UTF-8(jamoLBase) -> E1 84 00
jamoLBase0 = 0xE1
jamoLBase1 = 0x84
jamoLEnd = 0x1113
jamoVBase = 0x1161
jamoVEnd = 0x1176
jamoTBase = 0x11A7
jamoTEnd = 0x11C3
jamoTCount = 28
jamoVCount = 21
jamoVTCount = 21 * 28
jamoLVTCount = 19 * 21 * 28
)
const hangulUTF8Size = 3
func isHangul(b []byte) bool {
if len(b) < hangulUTF8Size {
return false
}
b0 := b[0]
if b0 < hangulBase0 {
return false
}
b1 := b[1]
switch {
case b0 == hangulBase0:
return b1 >= hangulBase1
case b0 < hangulEnd0:
return true
case b0 > hangulEnd0:
return false
case b1 < hangulEnd1:
return true
}
return b1 == hangulEnd1 && b[2] < hangulEnd2
}
func isHangulString(b string) bool {
if len(b) < hangulUTF8Size {
return false
}
b0 := b[0]
if b0 < hangulBase0 {
return false
}
b1 := b[1]
switch {
case b0 == hangulBase0:
return b1 >= hangulBase1
case b0 < hangulEnd0:
return true
case b0 > hangulEnd0:
return false
case b1 < hangulEnd1:
return true
}
return b1 == hangulEnd1 && b[2] < hangulEnd2
}
// Caller must ensure len(b) >= 2.
func isJamoVT(b []byte) bool {
// True if (rune & 0xff00) == jamoLBase
return b[0] == jamoLBase0 && (b[1]&0xFC) == jamoLBase1
}
func isHangulWithoutJamoT(b []byte) bool {
c, _ := utf8.DecodeRune(b)
c -= hangulBase
return c < jamoLVTCount && c%jamoTCount == 0
}
// decomposeHangul writes the decomposed Hangul to buf and returns the number
// of bytes written. len(buf) should be at least 9.
func decomposeHangul(buf []byte, r rune) int {
const JamoUTF8Len = 3
r -= hangulBase
x := r % jamoTCount
r /= jamoTCount
utf8.EncodeRune(buf, jamoLBase+r/jamoVCount)
utf8.EncodeRune(buf[JamoUTF8Len:], jamoVBase+r%jamoVCount)
if x != 0 {
utf8.EncodeRune(buf[2*JamoUTF8Len:], jamoTBase+x)
return 3 * JamoUTF8Len
}
return 2 * JamoUTF8Len
}
// decomposeHangul algorithmically decomposes a Hangul rune into
// its Jamo components.
// See http://unicode.org/reports/tr15/#Hangul for details on decomposing Hangul.
func (rb *reorderBuffer) decomposeHangul(r rune) {
r -= hangulBase
x := r % jamoTCount
r /= jamoTCount
rb.appendRune(jamoLBase + r/jamoVCount)
rb.appendRune(jamoVBase + r%jamoVCount)
if x != 0 {
rb.appendRune(jamoTBase + x)
}
}
// combineHangul algorithmically combines Jamo character components into Hangul.
// See http://unicode.org/reports/tr15/#Hangul for details on combining Hangul.
func (rb *reorderBuffer) combineHangul(s, i, k int) {
b := rb.rune[:]
bn := rb.nrune
for ; i < bn; i++ {
cccB := b[k-1].ccc
cccC := b[i].ccc
if cccB == 0 {
s = k - 1
}
if s != k-1 && cccB >= cccC {
// b[i] is blocked by greater-equal cccX below it
b[k] = b[i]
k++
} else {
l := rb.runeAt(s) // also used to compare to hangulBase
v := rb.runeAt(i) // also used to compare to jamoT
switch {
case jamoLBase <= l && l < jamoLEnd &&
jamoVBase <= v && v < jamoVEnd:
// 11xx plus 116x to LV
rb.assignRune(s, hangulBase+
(l-jamoLBase)*jamoVTCount+(v-jamoVBase)*jamoTCount)
case hangulBase <= l && l < hangulEnd &&
jamoTBase < v && v < jamoTEnd &&
((l-hangulBase)%jamoTCount) == 0:
// ACxx plus 11Ax to LVT
rb.assignRune(s, l+v-jamoTBase)
default:
b[k] = b[i]
k++
}
}
}
rb.nrune = k
}
// compose recombines the runes in the buffer.
// It should only be used to recompose a single segment, as it will not
// handle alternations between Hangul and non-Hangul characters correctly.
func (rb *reorderBuffer) compose() {
// UAX #15, section X5 , including Corrigendum #5
// "In any character sequence beginning with starter S, a character C is
// blocked from S if and only if there is some character B between S
// and C, and either B is a starter or it has the same or higher
// combining class as C."
bn := rb.nrune
if bn == 0 {
return
}
k := 1
b := rb.rune[:]
for s, i := 0, 1; i < bn; i++ {
if isJamoVT(rb.bytesAt(i)) {
// Redo from start in Hangul mode. Necessary to support
// U+320E..U+321E in NFKC mode.
rb.combineHangul(s, i, k)
return
}
ii := b[i]
// We can only use combineForward as a filter if we later
// get the info for the combined character. This is more
// expensive than using the filter. Using combinesBackward()
// is safe.
if ii.combinesBackward() {
cccB := b[k-1].ccc
cccC := ii.ccc
blocked := false // b[i] blocked by starter or greater or equal CCC?
if cccB == 0 {
s = k - 1
} else {
blocked = s != k-1 && cccB >= cccC
}
if !blocked {
combined := combine(rb.runeAt(s), rb.runeAt(i))
if combined != 0 {
rb.assignRune(s, combined)
continue
}
}
}
b[k] = b[i]
k++
}
rb.nrune = k
}

256
vendor/golang.org/x/text/unicode/norm/forminfo.go generated vendored Normal file
View file

@ -0,0 +1,256 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
// This file contains Form-specific logic and wrappers for data in tables.go.
// Rune info is stored in a separate trie per composing form. A composing form
// and its corresponding decomposing form share the same trie. Each trie maps
// a rune to a uint16. The values take two forms. For v >= 0x8000:
// bits
// 15: 1 (inverse of NFD_QD bit of qcInfo)
// 13..7: qcInfo (see below). isYesD is always true (no decompostion).
// 6..0: ccc (compressed CCC value).
// For v < 0x8000, the respective rune has a decomposition and v is an index
// into a byte array of UTF-8 decomposition sequences and additional info and
// has the form:
// <header> <decomp_byte>* [<tccc> [<lccc>]]
// The header contains the number of bytes in the decomposition (excluding this
// length byte). The two most significant bits of this length byte correspond
// to bit 5 and 4 of qcInfo (see below). The byte sequence itself starts at v+1.
// The byte sequence is followed by a trailing and leading CCC if the values
// for these are not zero. The value of v determines which ccc are appended
// to the sequences. For v < firstCCC, there are none, for v >= firstCCC,
// the sequence is followed by a trailing ccc, and for v >= firstLeadingCC
// there is an additional leading ccc. The value of tccc itself is the
// trailing CCC shifted left 2 bits. The two least-significant bits of tccc
// are the number of trailing non-starters.
const (
qcInfoMask = 0x3F // to clear all but the relevant bits in a qcInfo
headerLenMask = 0x3F // extract the length value from the header byte
headerFlagsMask = 0xC0 // extract the qcInfo bits from the header byte
)
// Properties provides access to normalization properties of a rune.
type Properties struct {
pos uint8 // start position in reorderBuffer; used in composition.go
size uint8 // length of UTF-8 encoding of this rune
ccc uint8 // leading canonical combining class (ccc if not decomposition)
tccc uint8 // trailing canonical combining class (ccc if not decomposition)
nLead uint8 // number of leading non-starters.
flags qcInfo // quick check flags
index uint16
}
// functions dispatchable per form
type lookupFunc func(b input, i int) Properties
// formInfo holds Form-specific functions and tables.
type formInfo struct {
form Form
composing, compatibility bool // form type
info lookupFunc
nextMain iterFunc
}
var formTable []*formInfo
func init() {
formTable = make([]*formInfo, 4)
for i := range formTable {
f := &formInfo{}
formTable[i] = f
f.form = Form(i)
if Form(i) == NFKD || Form(i) == NFKC {
f.compatibility = true
f.info = lookupInfoNFKC
} else {
f.info = lookupInfoNFC
}
f.nextMain = nextDecomposed
if Form(i) == NFC || Form(i) == NFKC {
f.nextMain = nextComposed
f.composing = true
}
}
}
// We do not distinguish between boundaries for NFC, NFD, etc. to avoid
// unexpected behavior for the user. For example, in NFD, there is a boundary
// after 'a'. However, 'a' might combine with modifiers, so from the application's
// perspective it is not a good boundary. We will therefore always use the
// boundaries for the combining variants.
// BoundaryBefore returns true if this rune starts a new segment and
// cannot combine with any rune on the left.
func (p Properties) BoundaryBefore() bool {
if p.ccc == 0 && !p.combinesBackward() {
return true
}
// We assume that the CCC of the first character in a decomposition
// is always non-zero if different from info.ccc and that we can return
// false at this point. This is verified by maketables.
return false
}
// BoundaryAfter returns true if runes cannot combine with or otherwise
// interact with this or previous runes.
func (p Properties) BoundaryAfter() bool {
// TODO: loosen these conditions.
return p.isInert()
}
// We pack quick check data in 4 bits:
// 5: Combines forward (0 == false, 1 == true)
// 4..3: NFC_QC Yes(00), No (10), or Maybe (11)
// 2: NFD_QC Yes (0) or No (1). No also means there is a decomposition.
// 1..0: Number of trailing non-starters.
//
// When all 4 bits are zero, the character is inert, meaning it is never
// influenced by normalization.
type qcInfo uint8
func (p Properties) isYesC() bool { return p.flags&0x10 == 0 }
func (p Properties) isYesD() bool { return p.flags&0x4 == 0 }
func (p Properties) combinesForward() bool { return p.flags&0x20 != 0 }
func (p Properties) combinesBackward() bool { return p.flags&0x8 != 0 } // == isMaybe
func (p Properties) hasDecomposition() bool { return p.flags&0x4 != 0 } // == isNoD
func (p Properties) isInert() bool {
return p.flags&qcInfoMask == 0 && p.ccc == 0
}
func (p Properties) multiSegment() bool {
return p.index >= firstMulti && p.index < endMulti
}
func (p Properties) nLeadingNonStarters() uint8 {
return p.nLead
}
func (p Properties) nTrailingNonStarters() uint8 {
return uint8(p.flags & 0x03)
}
// Decomposition returns the decomposition for the underlying rune
// or nil if there is none.
func (p Properties) Decomposition() []byte {
// TODO: create the decomposition for Hangul?
if p.index == 0 {
return nil
}
i := p.index
n := decomps[i] & headerLenMask
i++
return decomps[i : i+uint16(n)]
}
// Size returns the length of UTF-8 encoding of the rune.
func (p Properties) Size() int {
return int(p.size)
}
// CCC returns the canonical combining class of the underlying rune.
func (p Properties) CCC() uint8 {
if p.index >= firstCCCZeroExcept {
return 0
}
return ccc[p.ccc]
}
// LeadCCC returns the CCC of the first rune in the decomposition.
// If there is no decomposition, LeadCCC equals CCC.
func (p Properties) LeadCCC() uint8 {
return ccc[p.ccc]
}
// TrailCCC returns the CCC of the last rune in the decomposition.
// If there is no decomposition, TrailCCC equals CCC.
func (p Properties) TrailCCC() uint8 {
return ccc[p.tccc]
}
// Recomposition
// We use 32-bit keys instead of 64-bit for the two codepoint keys.
// This clips off the bits of three entries, but we know this will not
// result in a collision. In the unlikely event that changes to
// UnicodeData.txt introduce collisions, the compiler will catch it.
// Note that the recomposition map for NFC and NFKC are identical.
// combine returns the combined rune or 0 if it doesn't exist.
func combine(a, b rune) rune {
key := uint32(uint16(a))<<16 + uint32(uint16(b))
return recompMap[key]
}
func lookupInfoNFC(b input, i int) Properties {
v, sz := b.charinfoNFC(i)
return compInfo(v, sz)
}
func lookupInfoNFKC(b input, i int) Properties {
v, sz := b.charinfoNFKC(i)
return compInfo(v, sz)
}
// Properties returns properties for the first rune in s.
func (f Form) Properties(s []byte) Properties {
if f == NFC || f == NFD {
return compInfo(nfcData.lookup(s))
}
return compInfo(nfkcData.lookup(s))
}
// PropertiesString returns properties for the first rune in s.
func (f Form) PropertiesString(s string) Properties {
if f == NFC || f == NFD {
return compInfo(nfcData.lookupString(s))
}
return compInfo(nfkcData.lookupString(s))
}
// compInfo converts the information contained in v and sz
// to a Properties. See the comment at the top of the file
// for more information on the format.
func compInfo(v uint16, sz int) Properties {
if v == 0 {
return Properties{size: uint8(sz)}
} else if v >= 0x8000 {
p := Properties{
size: uint8(sz),
ccc: uint8(v),
tccc: uint8(v),
flags: qcInfo(v >> 8),
}
if p.ccc > 0 || p.combinesBackward() {
p.nLead = uint8(p.flags & 0x3)
}
return p
}
// has decomposition
h := decomps[v]
f := (qcInfo(h&headerFlagsMask) >> 2) | 0x4
p := Properties{size: uint8(sz), flags: f, index: v}
if v >= firstCCC {
v += uint16(h&headerLenMask) + 1
c := decomps[v]
p.tccc = c >> 2
p.flags |= qcInfo(c & 0x3)
if v >= firstLeadingCCC {
p.nLead = c & 0x3
if v >= firstStarterWithNLead {
// We were tricked. Remove the decomposition.
p.flags &= 0x03
p.index = 0
return p
}
p.ccc = decomps[v+1]
}
}
return p
}

105
vendor/golang.org/x/text/unicode/norm/input.go generated vendored Normal file
View file

@ -0,0 +1,105 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
import "unicode/utf8"
type input struct {
str string
bytes []byte
}
func inputBytes(str []byte) input {
return input{bytes: str}
}
func inputString(str string) input {
return input{str: str}
}
func (in *input) setBytes(str []byte) {
in.str = ""
in.bytes = str
}
func (in *input) setString(str string) {
in.str = str
in.bytes = nil
}
func (in *input) _byte(p int) byte {
if in.bytes == nil {
return in.str[p]
}
return in.bytes[p]
}
func (in *input) skipASCII(p, max int) int {
if in.bytes == nil {
for ; p < max && in.str[p] < utf8.RuneSelf; p++ {
}
} else {
for ; p < max && in.bytes[p] < utf8.RuneSelf; p++ {
}
}
return p
}
func (in *input) skipContinuationBytes(p int) int {
if in.bytes == nil {
for ; p < len(in.str) && !utf8.RuneStart(in.str[p]); p++ {
}
} else {
for ; p < len(in.bytes) && !utf8.RuneStart(in.bytes[p]); p++ {
}
}
return p
}
func (in *input) appendSlice(buf []byte, b, e int) []byte {
if in.bytes != nil {
return append(buf, in.bytes[b:e]...)
}
for i := b; i < e; i++ {
buf = append(buf, in.str[i])
}
return buf
}
func (in *input) copySlice(buf []byte, b, e int) int {
if in.bytes == nil {
return copy(buf, in.str[b:e])
}
return copy(buf, in.bytes[b:e])
}
func (in *input) charinfoNFC(p int) (uint16, int) {
if in.bytes == nil {
return nfcData.lookupString(in.str[p:])
}
return nfcData.lookup(in.bytes[p:])
}
func (in *input) charinfoNFKC(p int) (uint16, int) {
if in.bytes == nil {
return nfkcData.lookupString(in.str[p:])
}
return nfkcData.lookup(in.bytes[p:])
}
func (in *input) hangul(p int) (r rune) {
if in.bytes == nil {
if !isHangulString(in.str[p:]) {
return 0
}
r, _ = utf8.DecodeRuneInString(in.str[p:])
} else {
if !isHangul(in.bytes[p:]) {
return 0
}
r, _ = utf8.DecodeRune(in.bytes[p:])
}
return r
}

450
vendor/golang.org/x/text/unicode/norm/iter.go generated vendored Normal file
View file

@ -0,0 +1,450 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
import (
"fmt"
"unicode/utf8"
)
// MaxSegmentSize is the maximum size of a byte buffer needed to consider any
// sequence of starter and non-starter runes for the purpose of normalization.
const MaxSegmentSize = maxByteBufferSize
// An Iter iterates over a string or byte slice, while normalizing it
// to a given Form.
type Iter struct {
rb reorderBuffer
buf [maxByteBufferSize]byte
info Properties // first character saved from previous iteration
next iterFunc // implementation of next depends on form
asciiF iterFunc
p int // current position in input source
multiSeg []byte // remainder of multi-segment decomposition
}
type iterFunc func(*Iter) []byte
// Init initializes i to iterate over src after normalizing it to Form f.
func (i *Iter) Init(f Form, src []byte) {
i.p = 0
if len(src) == 0 {
i.setDone()
i.rb.nsrc = 0
return
}
i.multiSeg = nil
i.rb.init(f, src)
i.next = i.rb.f.nextMain
i.asciiF = nextASCIIBytes
i.info = i.rb.f.info(i.rb.src, i.p)
}
// InitString initializes i to iterate over src after normalizing it to Form f.
func (i *Iter) InitString(f Form, src string) {
i.p = 0
if len(src) == 0 {
i.setDone()
i.rb.nsrc = 0
return
}
i.multiSeg = nil
i.rb.initString(f, src)
i.next = i.rb.f.nextMain
i.asciiF = nextASCIIString
i.info = i.rb.f.info(i.rb.src, i.p)
}
// Seek sets the segment to be returned by the next call to Next to start
// at position p. It is the responsibility of the caller to set p to the
// start of a UTF8 rune.
func (i *Iter) Seek(offset int64, whence int) (int64, error) {
var abs int64
switch whence {
case 0:
abs = offset
case 1:
abs = int64(i.p) + offset
case 2:
abs = int64(i.rb.nsrc) + offset
default:
return 0, fmt.Errorf("norm: invalid whence")
}
if abs < 0 {
return 0, fmt.Errorf("norm: negative position")
}
if int(abs) >= i.rb.nsrc {
i.setDone()
return int64(i.p), nil
}
i.p = int(abs)
i.multiSeg = nil
i.next = i.rb.f.nextMain
i.info = i.rb.f.info(i.rb.src, i.p)
return abs, nil
}
// returnSlice returns a slice of the underlying input type as a byte slice.
// If the underlying is of type []byte, it will simply return a slice.
// If the underlying is of type string, it will copy the slice to the buffer
// and return that.
func (i *Iter) returnSlice(a, b int) []byte {
if i.rb.src.bytes == nil {
return i.buf[:copy(i.buf[:], i.rb.src.str[a:b])]
}
return i.rb.src.bytes[a:b]
}
// Pos returns the byte position at which the next call to Next will commence processing.
func (i *Iter) Pos() int {
return i.p
}
func (i *Iter) setDone() {
i.next = nextDone
i.p = i.rb.nsrc
}
// Done returns true if there is no more input to process.
func (i *Iter) Done() bool {
return i.p >= i.rb.nsrc
}
// Next returns f(i.input[i.Pos():n]), where n is a boundary of i.input.
// For any input a and b for which f(a) == f(b), subsequent calls
// to Next will return the same segments.
// Modifying runes are grouped together with the preceding starter, if such a starter exists.
// Although not guaranteed, n will typically be the smallest possible n.
func (i *Iter) Next() []byte {
return i.next(i)
}
func nextASCIIBytes(i *Iter) []byte {
p := i.p + 1
if p >= i.rb.nsrc {
i.setDone()
return i.rb.src.bytes[i.p:p]
}
if i.rb.src.bytes[p] < utf8.RuneSelf {
p0 := i.p
i.p = p
return i.rb.src.bytes[p0:p]
}
i.info = i.rb.f.info(i.rb.src, i.p)
i.next = i.rb.f.nextMain
return i.next(i)
}
func nextASCIIString(i *Iter) []byte {
p := i.p + 1
if p >= i.rb.nsrc {
i.buf[0] = i.rb.src.str[i.p]
i.setDone()
return i.buf[:1]
}
if i.rb.src.str[p] < utf8.RuneSelf {
i.buf[0] = i.rb.src.str[i.p]
i.p = p
return i.buf[:1]
}
i.info = i.rb.f.info(i.rb.src, i.p)
i.next = i.rb.f.nextMain
return i.next(i)
}
func nextHangul(i *Iter) []byte {
p := i.p
next := p + hangulUTF8Size
if next >= i.rb.nsrc {
i.setDone()
} else if i.rb.src.hangul(next) == 0 {
i.info = i.rb.f.info(i.rb.src, i.p)
i.next = i.rb.f.nextMain
return i.next(i)
}
i.p = next
return i.buf[:decomposeHangul(i.buf[:], i.rb.src.hangul(p))]
}
func nextDone(i *Iter) []byte {
return nil
}
// nextMulti is used for iterating over multi-segment decompositions
// for decomposing normal forms.
func nextMulti(i *Iter) []byte {
j := 0
d := i.multiSeg
// skip first rune
for j = 1; j < len(d) && !utf8.RuneStart(d[j]); j++ {
}
for j < len(d) {
info := i.rb.f.info(input{bytes: d}, j)
if info.BoundaryBefore() {
i.multiSeg = d[j:]
return d[:j]
}
j += int(info.size)
}
// treat last segment as normal decomposition
i.next = i.rb.f.nextMain
return i.next(i)
}
// nextMultiNorm is used for iterating over multi-segment decompositions
// for composing normal forms.
func nextMultiNorm(i *Iter) []byte {
j := 0
d := i.multiSeg
for j < len(d) {
info := i.rb.f.info(input{bytes: d}, j)
if info.BoundaryBefore() {
i.rb.compose()
seg := i.buf[:i.rb.flushCopy(i.buf[:])]
i.rb.ss.first(info)
i.rb.insertUnsafe(input{bytes: d}, j, info)
i.multiSeg = d[j+int(info.size):]
return seg
}
i.rb.ss.next(info)
i.rb.insertUnsafe(input{bytes: d}, j, info)
j += int(info.size)
}
i.multiSeg = nil
i.next = nextComposed
return doNormComposed(i)
}
// nextDecomposed is the implementation of Next for forms NFD and NFKD.
func nextDecomposed(i *Iter) (next []byte) {
outp := 0
inCopyStart, outCopyStart := i.p, 0
ss := mkStreamSafe(i.info)
for {
if sz := int(i.info.size); sz <= 1 {
p := i.p
i.p++ // ASCII or illegal byte. Either way, advance by 1.
if i.p >= i.rb.nsrc {
i.setDone()
return i.returnSlice(p, i.p)
} else if i.rb.src._byte(i.p) < utf8.RuneSelf {
i.next = i.asciiF
return i.returnSlice(p, i.p)
}
outp++
} else if d := i.info.Decomposition(); d != nil {
// Note: If leading CCC != 0, then len(d) == 2 and last is also non-zero.
// Case 1: there is a leftover to copy. In this case the decomposition
// must begin with a modifier and should always be appended.
// Case 2: no leftover. Simply return d if followed by a ccc == 0 value.
p := outp + len(d)
if outp > 0 {
i.rb.src.copySlice(i.buf[outCopyStart:], inCopyStart, i.p)
if p > len(i.buf) {
return i.buf[:outp]
}
} else if i.info.multiSegment() {
// outp must be 0 as multi-segment decompositions always
// start a new segment.
if i.multiSeg == nil {
i.multiSeg = d
i.next = nextMulti
return nextMulti(i)
}
// We are in the last segment. Treat as normal decomposition.
d = i.multiSeg
i.multiSeg = nil
p = len(d)
}
prevCC := i.info.tccc
if i.p += sz; i.p >= i.rb.nsrc {
i.setDone()
i.info = Properties{} // Force BoundaryBefore to succeed.
} else {
i.info = i.rb.f.info(i.rb.src, i.p)
}
switch ss.next(i.info) {
case ssOverflow:
i.next = nextCGJDecompose
fallthrough
case ssStarter:
if outp > 0 {
copy(i.buf[outp:], d)
return i.buf[:p]
}
return d
}
copy(i.buf[outp:], d)
outp = p
inCopyStart, outCopyStart = i.p, outp
if i.info.ccc < prevCC {
goto doNorm
}
continue
} else if r := i.rb.src.hangul(i.p); r != 0 {
outp = decomposeHangul(i.buf[:], r)
i.p += hangulUTF8Size
inCopyStart, outCopyStart = i.p, outp
if i.p >= i.rb.nsrc {
i.setDone()
break
} else if i.rb.src.hangul(i.p) != 0 {
i.next = nextHangul
return i.buf[:outp]
}
} else {
p := outp + sz
if p > len(i.buf) {
break
}
outp = p
i.p += sz
}
if i.p >= i.rb.nsrc {
i.setDone()
break
}
prevCC := i.info.tccc
i.info = i.rb.f.info(i.rb.src, i.p)
if v := ss.next(i.info); v == ssStarter {
break
} else if v == ssOverflow {
i.next = nextCGJDecompose
break
}
if i.info.ccc < prevCC {
goto doNorm
}
}
if outCopyStart == 0 {
return i.returnSlice(inCopyStart, i.p)
} else if inCopyStart < i.p {
i.rb.src.copySlice(i.buf[outCopyStart:], inCopyStart, i.p)
}
return i.buf[:outp]
doNorm:
// Insert what we have decomposed so far in the reorderBuffer.
// As we will only reorder, there will always be enough room.
i.rb.src.copySlice(i.buf[outCopyStart:], inCopyStart, i.p)
i.rb.insertDecomposed(i.buf[0:outp])
return doNormDecomposed(i)
}
func doNormDecomposed(i *Iter) []byte {
for {
if s := i.rb.ss.next(i.info); s == ssOverflow {
i.next = nextCGJDecompose
break
}
i.rb.insertUnsafe(i.rb.src, i.p, i.info)
if i.p += int(i.info.size); i.p >= i.rb.nsrc {
i.setDone()
break
}
i.info = i.rb.f.info(i.rb.src, i.p)
if i.info.ccc == 0 {
break
}
}
// new segment or too many combining characters: exit normalization
return i.buf[:i.rb.flushCopy(i.buf[:])]
}
func nextCGJDecompose(i *Iter) []byte {
i.rb.ss = 0
i.rb.insertCGJ()
i.next = nextDecomposed
buf := doNormDecomposed(i)
return buf
}
// nextComposed is the implementation of Next for forms NFC and NFKC.
func nextComposed(i *Iter) []byte {
outp, startp := 0, i.p
var prevCC uint8
ss := mkStreamSafe(i.info)
for {
if !i.info.isYesC() {
goto doNorm
}
prevCC = i.info.tccc
sz := int(i.info.size)
if sz == 0 {
sz = 1 // illegal rune: copy byte-by-byte
}
p := outp + sz
if p > len(i.buf) {
break
}
outp = p
i.p += sz
if i.p >= i.rb.nsrc {
i.setDone()
break
} else if i.rb.src._byte(i.p) < utf8.RuneSelf {
i.next = i.asciiF
break
}
i.info = i.rb.f.info(i.rb.src, i.p)
if v := ss.next(i.info); v == ssStarter {
break
} else if v == ssOverflow {
i.next = nextCGJCompose
break
}
if i.info.ccc < prevCC {
goto doNorm
}
}
return i.returnSlice(startp, i.p)
doNorm:
i.p = startp
i.info = i.rb.f.info(i.rb.src, i.p)
if i.info.multiSegment() {
d := i.info.Decomposition()
info := i.rb.f.info(input{bytes: d}, 0)
i.rb.insertUnsafe(input{bytes: d}, 0, info)
i.multiSeg = d[int(info.size):]
i.next = nextMultiNorm
return nextMultiNorm(i)
}
i.rb.ss.first(i.info)
i.rb.insertUnsafe(i.rb.src, i.p, i.info)
return doNormComposed(i)
}
func doNormComposed(i *Iter) []byte {
// First rune should already be inserted.
for {
if i.p += int(i.info.size); i.p >= i.rb.nsrc {
i.setDone()
break
}
i.info = i.rb.f.info(i.rb.src, i.p)
if s := i.rb.ss.next(i.info); s == ssStarter {
break
} else if s == ssOverflow {
i.next = nextCGJCompose
break
}
i.rb.insertUnsafe(i.rb.src, i.p, i.info)
}
i.rb.compose()
seg := i.buf[:i.rb.flushCopy(i.buf[:])]
return seg
}
func nextCGJCompose(i *Iter) []byte {
i.rb.ss = 0 // instead of first
i.rb.insertCGJ()
i.next = nextComposed
// Note that we treat any rune with nLeadingNonStarters > 0 as a non-starter,
// even if they are not. This is particularly dubious for U+FF9E and UFF9A.
// If we ever change that, insert a check here.
i.rb.ss.first(i.info)
i.rb.insertUnsafe(i.rb.src, i.p, i.info)
return doNormComposed(i)
}

978
vendor/golang.org/x/text/unicode/norm/maketables.go generated vendored Normal file
View file

@ -0,0 +1,978 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build ignore
// Normalization table generator.
// Data read from the web.
// See forminfo.go for a description of the trie values associated with each rune.
package main
import (
"bytes"
"flag"
"fmt"
"io"
"log"
"sort"
"strconv"
"strings"
"golang.org/x/text/internal/gen"
"golang.org/x/text/internal/triegen"
"golang.org/x/text/internal/ucd"
)
func main() {
gen.Init()
loadUnicodeData()
compactCCC()
loadCompositionExclusions()
completeCharFields(FCanonical)
completeCharFields(FCompatibility)
computeNonStarterCounts()
verifyComputed()
printChars()
if *test {
testDerived()
printTestdata()
} else {
makeTables()
}
}
var (
tablelist = flag.String("tables",
"all",
"comma-separated list of which tables to generate; "+
"can be 'decomp', 'recomp', 'info' and 'all'")
test = flag.Bool("test",
false,
"test existing tables against DerivedNormalizationProps and generate test data for regression testing")
verbose = flag.Bool("verbose",
false,
"write data to stdout as it is parsed")
)
const MaxChar = 0x10FFFF // anything above this shouldn't exist
// Quick Check properties of runes allow us to quickly
// determine whether a rune may occur in a normal form.
// For a given normal form, a rune may be guaranteed to occur
// verbatim (QC=Yes), may or may not combine with another
// rune (QC=Maybe), or may not occur (QC=No).
type QCResult int
const (
QCUnknown QCResult = iota
QCYes
QCNo
QCMaybe
)
func (r QCResult) String() string {
switch r {
case QCYes:
return "Yes"
case QCNo:
return "No"
case QCMaybe:
return "Maybe"
}
return "***UNKNOWN***"
}
const (
FCanonical = iota // NFC or NFD
FCompatibility // NFKC or NFKD
FNumberOfFormTypes
)
const (
MComposed = iota // NFC or NFKC
MDecomposed // NFD or NFKD
MNumberOfModes
)
// This contains only the properties we're interested in.
type Char struct {
name string
codePoint rune // if zero, this index is not a valid code point.
ccc uint8 // canonical combining class
origCCC uint8
excludeInComp bool // from CompositionExclusions.txt
compatDecomp bool // it has a compatibility expansion
nTrailingNonStarters uint8
nLeadingNonStarters uint8 // must be equal to trailing if non-zero
forms [FNumberOfFormTypes]FormInfo // For FCanonical and FCompatibility
state State
}
var chars = make([]Char, MaxChar+1)
var cccMap = make(map[uint8]uint8)
func (c Char) String() string {
buf := new(bytes.Buffer)
fmt.Fprintf(buf, "%U [%s]:\n", c.codePoint, c.name)
fmt.Fprintf(buf, " ccc: %v\n", c.ccc)
fmt.Fprintf(buf, " excludeInComp: %v\n", c.excludeInComp)
fmt.Fprintf(buf, " compatDecomp: %v\n", c.compatDecomp)
fmt.Fprintf(buf, " state: %v\n", c.state)
fmt.Fprintf(buf, " NFC:\n")
fmt.Fprint(buf, c.forms[FCanonical])
fmt.Fprintf(buf, " NFKC:\n")
fmt.Fprint(buf, c.forms[FCompatibility])
return buf.String()
}
// In UnicodeData.txt, some ranges are marked like this:
// 3400;<CJK Ideograph Extension A, First>;Lo;0;L;;;;;N;;;;;
// 4DB5;<CJK Ideograph Extension A, Last>;Lo;0;L;;;;;N;;;;;
// parseCharacter keeps a state variable indicating the weirdness.
type State int
const (
SNormal State = iota // known to be zero for the type
SFirst
SLast
SMissing
)
var lastChar = rune('\u0000')
func (c Char) isValid() bool {
return c.codePoint != 0 && c.state != SMissing
}
type FormInfo struct {
quickCheck [MNumberOfModes]QCResult // index: MComposed or MDecomposed
verified [MNumberOfModes]bool // index: MComposed or MDecomposed
combinesForward bool // May combine with rune on the right
combinesBackward bool // May combine with rune on the left
isOneWay bool // Never appears in result
inDecomp bool // Some decompositions result in this char.
decomp Decomposition
expandedDecomp Decomposition
}
func (f FormInfo) String() string {
buf := bytes.NewBuffer(make([]byte, 0))
fmt.Fprintf(buf, " quickCheck[C]: %v\n", f.quickCheck[MComposed])
fmt.Fprintf(buf, " quickCheck[D]: %v\n", f.quickCheck[MDecomposed])
fmt.Fprintf(buf, " cmbForward: %v\n", f.combinesForward)
fmt.Fprintf(buf, " cmbBackward: %v\n", f.combinesBackward)
fmt.Fprintf(buf, " isOneWay: %v\n", f.isOneWay)
fmt.Fprintf(buf, " inDecomp: %v\n", f.inDecomp)
fmt.Fprintf(buf, " decomposition: %X\n", f.decomp)
fmt.Fprintf(buf, " expandedDecomp: %X\n", f.expandedDecomp)
return buf.String()
}
type Decomposition []rune
func parseDecomposition(s string, skipfirst bool) (a []rune, err error) {
decomp := strings.Split(s, " ")
if len(decomp) > 0 && skipfirst {
decomp = decomp[1:]
}
for _, d := range decomp {
point, err := strconv.ParseUint(d, 16, 64)
if err != nil {
return a, err
}
a = append(a, rune(point))
}
return a, nil
}
func loadUnicodeData() {
f := gen.OpenUCDFile("UnicodeData.txt")
defer f.Close()
p := ucd.New(f)
for p.Next() {
r := p.Rune(ucd.CodePoint)
char := &chars[r]
char.ccc = uint8(p.Uint(ucd.CanonicalCombiningClass))
decmap := p.String(ucd.DecompMapping)
exp, err := parseDecomposition(decmap, false)
isCompat := false
if err != nil {
if len(decmap) > 0 {
exp, err = parseDecomposition(decmap, true)
if err != nil {
log.Fatalf(`%U: bad decomp |%v|: "%s"`, r, decmap, err)
}
isCompat = true
}
}
char.name = p.String(ucd.Name)
char.codePoint = r
char.forms[FCompatibility].decomp = exp
if !isCompat {
char.forms[FCanonical].decomp = exp
} else {
char.compatDecomp = true
}
if len(decmap) > 0 {
char.forms[FCompatibility].decomp = exp
}
}
if err := p.Err(); err != nil {
log.Fatal(err)
}
}
// compactCCC converts the sparse set of CCC values to a continguous one,
// reducing the number of bits needed from 8 to 6.
func compactCCC() {
m := make(map[uint8]uint8)
for i := range chars {
c := &chars[i]
m[c.ccc] = 0
}
cccs := []int{}
for v, _ := range m {
cccs = append(cccs, int(v))
}
sort.Ints(cccs)
for i, c := range cccs {
cccMap[uint8(i)] = uint8(c)
m[uint8(c)] = uint8(i)
}
for i := range chars {
c := &chars[i]
c.origCCC = c.ccc
c.ccc = m[c.ccc]
}
if len(m) >= 1<<6 {
log.Fatalf("too many difference CCC values: %d >= 64", len(m))
}
}
// CompositionExclusions.txt has form:
// 0958 # ...
// See http://unicode.org/reports/tr44/ for full explanation
func loadCompositionExclusions() {
f := gen.OpenUCDFile("CompositionExclusions.txt")
defer f.Close()
p := ucd.New(f)
for p.Next() {
c := &chars[p.Rune(0)]
if c.excludeInComp {
log.Fatalf("%U: Duplicate entry in exclusions.", c.codePoint)
}
c.excludeInComp = true
}
if e := p.Err(); e != nil {
log.Fatal(e)
}
}
// hasCompatDecomp returns true if any of the recursive
// decompositions contains a compatibility expansion.
// In this case, the character may not occur in NFK*.
func hasCompatDecomp(r rune) bool {
c := &chars[r]
if c.compatDecomp {
return true
}
for _, d := range c.forms[FCompatibility].decomp {
if hasCompatDecomp(d) {
return true
}
}
return false
}
// Hangul related constants.
const (
HangulBase = 0xAC00
HangulEnd = 0xD7A4 // hangulBase + Jamo combinations (19 * 21 * 28)
JamoLBase = 0x1100
JamoLEnd = 0x1113
JamoVBase = 0x1161
JamoVEnd = 0x1176
JamoTBase = 0x11A8
JamoTEnd = 0x11C3
JamoLVTCount = 19 * 21 * 28
JamoTCount = 28
)
func isHangul(r rune) bool {
return HangulBase <= r && r < HangulEnd
}
func isHangulWithoutJamoT(r rune) bool {
if !isHangul(r) {
return false
}
r -= HangulBase
return r < JamoLVTCount && r%JamoTCount == 0
}
func ccc(r rune) uint8 {
return chars[r].ccc
}
// Insert a rune in a buffer, ordered by Canonical Combining Class.
func insertOrdered(b Decomposition, r rune) Decomposition {
n := len(b)
b = append(b, 0)
cc := ccc(r)
if cc > 0 {
// Use bubble sort.
for ; n > 0; n-- {
if ccc(b[n-1]) <= cc {
break
}
b[n] = b[n-1]
}
}
b[n] = r
return b
}
// Recursively decompose.
func decomposeRecursive(form int, r rune, d Decomposition) Decomposition {
dcomp := chars[r].forms[form].decomp
if len(dcomp) == 0 {
return insertOrdered(d, r)
}
for _, c := range dcomp {
d = decomposeRecursive(form, c, d)
}
return d
}
func completeCharFields(form int) {
// Phase 0: pre-expand decomposition.
for i := range chars {
f := &chars[i].forms[form]
if len(f.decomp) == 0 {
continue
}
exp := make(Decomposition, 0)
for _, c := range f.decomp {
exp = decomposeRecursive(form, c, exp)
}
f.expandedDecomp = exp
}
// Phase 1: composition exclusion, mark decomposition.
for i := range chars {
c := &chars[i]
f := &c.forms[form]
// Marks script-specific exclusions and version restricted.
f.isOneWay = c.excludeInComp
// Singletons
f.isOneWay = f.isOneWay || len(f.decomp) == 1
// Non-starter decompositions
if len(f.decomp) > 1 {
chk := c.ccc != 0 || chars[f.decomp[0]].ccc != 0
f.isOneWay = f.isOneWay || chk
}
// Runes that decompose into more than two runes.
f.isOneWay = f.isOneWay || len(f.decomp) > 2
if form == FCompatibility {
f.isOneWay = f.isOneWay || hasCompatDecomp(c.codePoint)
}
for _, r := range f.decomp {
chars[r].forms[form].inDecomp = true
}
}
// Phase 2: forward and backward combining.
for i := range chars {
c := &chars[i]
f := &c.forms[form]
if !f.isOneWay && len(f.decomp) == 2 {
f0 := &chars[f.decomp[0]].forms[form]
f1 := &chars[f.decomp[1]].forms[form]
if !f0.isOneWay {
f0.combinesForward = true
}
if !f1.isOneWay {
f1.combinesBackward = true
}
}
if isHangulWithoutJamoT(rune(i)) {
f.combinesForward = true
}
}
// Phase 3: quick check values.
for i := range chars {
c := &chars[i]
f := &c.forms[form]
switch {
case len(f.decomp) > 0:
f.quickCheck[MDecomposed] = QCNo
case isHangul(rune(i)):
f.quickCheck[MDecomposed] = QCNo
default:
f.quickCheck[MDecomposed] = QCYes
}
switch {
case f.isOneWay:
f.quickCheck[MComposed] = QCNo
case (i & 0xffff00) == JamoLBase:
f.quickCheck[MComposed] = QCYes
if JamoLBase <= i && i < JamoLEnd {
f.combinesForward = true
}
if JamoVBase <= i && i < JamoVEnd {
f.quickCheck[MComposed] = QCMaybe
f.combinesBackward = true
f.combinesForward = true
}
if JamoTBase <= i && i < JamoTEnd {
f.quickCheck[MComposed] = QCMaybe
f.combinesBackward = true
}
case !f.combinesBackward:
f.quickCheck[MComposed] = QCYes
default:
f.quickCheck[MComposed] = QCMaybe
}
}
}
func computeNonStarterCounts() {
// Phase 4: leading and trailing non-starter count
for i := range chars {
c := &chars[i]
runes := []rune{rune(i)}
// We always use FCompatibility so that the CGJ insertion points do not
// change for repeated normalizations with different forms.
if exp := c.forms[FCompatibility].expandedDecomp; len(exp) > 0 {
runes = exp
}
// We consider runes that combine backwards to be non-starters for the
// purpose of Stream-Safe Text Processing.
for _, r := range runes {
if cr := &chars[r]; cr.ccc == 0 && !cr.forms[FCompatibility].combinesBackward {
break
}
c.nLeadingNonStarters++
}
for i := len(runes) - 1; i >= 0; i-- {
if cr := &chars[runes[i]]; cr.ccc == 0 && !cr.forms[FCompatibility].combinesBackward {
break
}
c.nTrailingNonStarters++
}
if c.nTrailingNonStarters > 3 {
log.Fatalf("%U: Decomposition with more than 3 (%d) trailing modifiers (%U)", i, c.nTrailingNonStarters, runes)
}
if isHangul(rune(i)) {
c.nTrailingNonStarters = 2
if isHangulWithoutJamoT(rune(i)) {
c.nTrailingNonStarters = 1
}
}
if l, t := c.nLeadingNonStarters, c.nTrailingNonStarters; l > 0 && l != t {
log.Fatalf("%U: number of leading and trailing non-starters should be equal (%d vs %d)", i, l, t)
}
if t := c.nTrailingNonStarters; t > 3 {
log.Fatalf("%U: number of trailing non-starters is %d > 3", t)
}
}
}
func printBytes(w io.Writer, b []byte, name string) {
fmt.Fprintf(w, "// %s: %d bytes\n", name, len(b))
fmt.Fprintf(w, "var %s = [...]byte {", name)
for i, c := range b {
switch {
case i%64 == 0:
fmt.Fprintf(w, "\n// Bytes %x - %x\n", i, i+63)
case i%8 == 0:
fmt.Fprintf(w, "\n")
}
fmt.Fprintf(w, "0x%.2X, ", c)
}
fmt.Fprint(w, "\n}\n\n")
}
// See forminfo.go for format.
func makeEntry(f *FormInfo, c *Char) uint16 {
e := uint16(0)
if r := c.codePoint; HangulBase <= r && r < HangulEnd {
e |= 0x40
}
if f.combinesForward {
e |= 0x20
}
if f.quickCheck[MDecomposed] == QCNo {
e |= 0x4
}
switch f.quickCheck[MComposed] {
case QCYes:
case QCNo:
e |= 0x10
case QCMaybe:
e |= 0x18
default:
log.Fatalf("Illegal quickcheck value %v.", f.quickCheck[MComposed])
}
e |= uint16(c.nTrailingNonStarters)
return e
}
// decompSet keeps track of unique decompositions, grouped by whether
// the decomposition is followed by a trailing and/or leading CCC.
type decompSet [7]map[string]bool
const (
normalDecomp = iota
firstMulti
firstCCC
endMulti
firstLeadingCCC
firstCCCZeroExcept
firstStarterWithNLead
lastDecomp
)
var cname = []string{"firstMulti", "firstCCC", "endMulti", "firstLeadingCCC", "firstCCCZeroExcept", "firstStarterWithNLead", "lastDecomp"}
func makeDecompSet() decompSet {
m := decompSet{}
for i := range m {
m[i] = make(map[string]bool)
}
return m
}
func (m *decompSet) insert(key int, s string) {
m[key][s] = true
}
func printCharInfoTables(w io.Writer) int {
mkstr := func(r rune, f *FormInfo) (int, string) {
d := f.expandedDecomp
s := string([]rune(d))
if max := 1 << 6; len(s) >= max {
const msg = "%U: too many bytes in decomposition: %d >= %d"
log.Fatalf(msg, r, len(s), max)
}
head := uint8(len(s))
if f.quickCheck[MComposed] != QCYes {
head |= 0x40
}
if f.combinesForward {
head |= 0x80
}
s = string([]byte{head}) + s
lccc := ccc(d[0])
tccc := ccc(d[len(d)-1])
cc := ccc(r)
if cc != 0 && lccc == 0 && tccc == 0 {
log.Fatalf("%U: trailing and leading ccc are 0 for non-zero ccc %d", r, cc)
}
if tccc < lccc && lccc != 0 {
const msg = "%U: lccc (%d) must be <= tcc (%d)"
log.Fatalf(msg, r, lccc, tccc)
}
index := normalDecomp
nTrail := chars[r].nTrailingNonStarters
if tccc > 0 || lccc > 0 || nTrail > 0 {
tccc <<= 2
tccc |= nTrail
s += string([]byte{tccc})
index = endMulti
for _, r := range d[1:] {
if ccc(r) == 0 {
index = firstCCC
}
}
if lccc > 0 {
s += string([]byte{lccc})
if index == firstCCC {
log.Fatalf("%U: multi-segment decomposition not supported for decompositions with leading CCC != 0", r)
}
index = firstLeadingCCC
}
if cc != lccc {
if cc != 0 {
log.Fatalf("%U: for lccc != ccc, expected ccc to be 0; was %d", r, cc)
}
index = firstCCCZeroExcept
}
} else if len(d) > 1 {
index = firstMulti
}
return index, s
}
decompSet := makeDecompSet()
const nLeadStr = "\x00\x01" // 0-byte length and tccc with nTrail.
decompSet.insert(firstStarterWithNLead, nLeadStr)
// Store the uniqued decompositions in a byte buffer,
// preceded by their byte length.
for _, c := range chars {
for _, f := range c.forms {
if len(f.expandedDecomp) == 0 {
continue
}
if f.combinesBackward {
log.Fatalf("%U: combinesBackward and decompose", c.codePoint)
}
index, s := mkstr(c.codePoint, &f)
decompSet.insert(index, s)
}
}
decompositions := bytes.NewBuffer(make([]byte, 0, 10000))
size := 0
positionMap := make(map[string]uint16)
decompositions.WriteString("\000")
fmt.Fprintln(w, "const (")
for i, m := range decompSet {
sa := []string{}
for s := range m {
sa = append(sa, s)
}
sort.Strings(sa)
for _, s := range sa {
p := decompositions.Len()
decompositions.WriteString(s)
positionMap[s] = uint16(p)
}
if cname[i] != "" {
fmt.Fprintf(w, "%s = 0x%X\n", cname[i], decompositions.Len())
}
}
fmt.Fprintln(w, "maxDecomp = 0x8000")
fmt.Fprintln(w, ")")
b := decompositions.Bytes()
printBytes(w, b, "decomps")
size += len(b)
varnames := []string{"nfc", "nfkc"}
for i := 0; i < FNumberOfFormTypes; i++ {
trie := triegen.NewTrie(varnames[i])
for r, c := range chars {
f := c.forms[i]
d := f.expandedDecomp
if len(d) != 0 {
_, key := mkstr(c.codePoint, &f)
trie.Insert(rune(r), uint64(positionMap[key]))
if c.ccc != ccc(d[0]) {
// We assume the lead ccc of a decomposition !=0 in this case.
if ccc(d[0]) == 0 {
log.Fatalf("Expected leading CCC to be non-zero; ccc is %d", c.ccc)
}
}
} else if c.nLeadingNonStarters > 0 && len(f.expandedDecomp) == 0 && c.ccc == 0 && !f.combinesBackward {
// Handle cases where it can't be detected that the nLead should be equal
// to nTrail.
trie.Insert(c.codePoint, uint64(positionMap[nLeadStr]))
} else if v := makeEntry(&f, &c)<<8 | uint16(c.ccc); v != 0 {
trie.Insert(c.codePoint, uint64(0x8000|v))
}
}
sz, err := trie.Gen(w, triegen.Compact(&normCompacter{name: varnames[i]}))
if err != nil {
log.Fatal(err)
}
size += sz
}
return size
}
func contains(sa []string, s string) bool {
for _, a := range sa {
if a == s {
return true
}
}
return false
}
func makeTables() {
w := &bytes.Buffer{}
size := 0
if *tablelist == "" {
return
}
list := strings.Split(*tablelist, ",")
if *tablelist == "all" {
list = []string{"recomp", "info"}
}
// Compute maximum decomposition size.
max := 0
for _, c := range chars {
if n := len(string(c.forms[FCompatibility].expandedDecomp)); n > max {
max = n
}
}
fmt.Fprintln(w, "const (")
fmt.Fprintln(w, "\t// Version is the Unicode edition from which the tables are derived.")
fmt.Fprintf(w, "\tVersion = %q\n", gen.UnicodeVersion())
fmt.Fprintln(w)
fmt.Fprintln(w, "\t// MaxTransformChunkSize indicates the maximum number of bytes that Transform")
fmt.Fprintln(w, "\t// may need to write atomically for any Form. Making a destination buffer at")
fmt.Fprintln(w, "\t// least this size ensures that Transform can always make progress and that")
fmt.Fprintln(w, "\t// the user does not need to grow the buffer on an ErrShortDst.")
fmt.Fprintf(w, "\tMaxTransformChunkSize = %d+maxNonStarters*4\n", len(string(0x034F))+max)
fmt.Fprintln(w, ")\n")
// Print the CCC remap table.
size += len(cccMap)
fmt.Fprintf(w, "var ccc = [%d]uint8{", len(cccMap))
for i := 0; i < len(cccMap); i++ {
if i%8 == 0 {
fmt.Fprintln(w)
}
fmt.Fprintf(w, "%3d, ", cccMap[uint8(i)])
}
fmt.Fprintln(w, "\n}\n")
if contains(list, "info") {
size += printCharInfoTables(w)
}
if contains(list, "recomp") {
// Note that we use 32 bit keys, instead of 64 bit.
// This clips the bits of three entries, but we know
// this won't cause a collision. The compiler will catch
// any changes made to UnicodeData.txt that introduces
// a collision.
// Note that the recomposition map for NFC and NFKC
// are identical.
// Recomposition map
nrentries := 0
for _, c := range chars {
f := c.forms[FCanonical]
if !f.isOneWay && len(f.decomp) > 0 {
nrentries++
}
}
sz := nrentries * 8
size += sz
fmt.Fprintf(w, "// recompMap: %d bytes (entries only)\n", sz)
fmt.Fprintln(w, "var recompMap = map[uint32]rune{")
for i, c := range chars {
f := c.forms[FCanonical]
d := f.decomp
if !f.isOneWay && len(d) > 0 {
key := uint32(uint16(d[0]))<<16 + uint32(uint16(d[1]))
fmt.Fprintf(w, "0x%.8X: 0x%.4X,\n", key, i)
}
}
fmt.Fprintf(w, "}\n\n")
}
fmt.Fprintf(w, "// Total size of tables: %dKB (%d bytes)\n", (size+512)/1024, size)
gen.WriteGoFile("tables.go", "norm", w.Bytes())
}
func printChars() {
if *verbose {
for _, c := range chars {
if !c.isValid() || c.state == SMissing {
continue
}
fmt.Println(c)
}
}
}
// verifyComputed does various consistency tests.
func verifyComputed() {
for i, c := range chars {
for _, f := range c.forms {
isNo := (f.quickCheck[MDecomposed] == QCNo)
if (len(f.decomp) > 0) != isNo && !isHangul(rune(i)) {
log.Fatalf("%U: NF*D QC must be No if rune decomposes", i)
}
isMaybe := f.quickCheck[MComposed] == QCMaybe
if f.combinesBackward != isMaybe {
log.Fatalf("%U: NF*C QC must be Maybe if combinesBackward", i)
}
if len(f.decomp) > 0 && f.combinesForward && isMaybe {
log.Fatalf("%U: NF*C QC must be Yes or No if combinesForward and decomposes", i)
}
if len(f.expandedDecomp) != 0 {
continue
}
if a, b := c.nLeadingNonStarters > 0, (c.ccc > 0 || f.combinesBackward); a != b {
// We accept these runes to be treated differently (it only affects
// segment breaking in iteration, most likely on improper use), but
// reconsider if more characters are added.
// U+FF9E HALFWIDTH KATAKANA VOICED SOUND MARK;Lm;0;L;<narrow> 3099;;;;N;;;;;
// U+FF9F HALFWIDTH KATAKANA SEMI-VOICED SOUND MARK;Lm;0;L;<narrow> 309A;;;;N;;;;;
// U+3133 HANGUL LETTER KIYEOK-SIOS;Lo;0;L;<compat> 11AA;;;;N;HANGUL LETTER GIYEOG SIOS;;;;
// U+318E HANGUL LETTER ARAEAE;Lo;0;L;<compat> 11A1;;;;N;HANGUL LETTER ALAE AE;;;;
// U+FFA3 HALFWIDTH HANGUL LETTER KIYEOK-SIOS;Lo;0;L;<narrow> 3133;;;;N;HALFWIDTH HANGUL LETTER GIYEOG SIOS;;;;
// U+FFDC HALFWIDTH HANGUL LETTER I;Lo;0;L;<narrow> 3163;;;;N;;;;;
if i != 0xFF9E && i != 0xFF9F && !(0x3133 <= i && i <= 0x318E) && !(0xFFA3 <= i && i <= 0xFFDC) {
log.Fatalf("%U: nLead was %v; want %v", i, a, b)
}
}
}
nfc := c.forms[FCanonical]
nfkc := c.forms[FCompatibility]
if nfc.combinesBackward != nfkc.combinesBackward {
log.Fatalf("%U: Cannot combine combinesBackward\n", c.codePoint)
}
}
}
// Use values in DerivedNormalizationProps.txt to compare against the
// values we computed.
// DerivedNormalizationProps.txt has form:
// 00C0..00C5 ; NFD_QC; N # ...
// 0374 ; NFD_QC; N # ...
// See http://unicode.org/reports/tr44/ for full explanation
func testDerived() {
f := gen.OpenUCDFile("DerivedNormalizationProps.txt")
defer f.Close()
p := ucd.New(f)
for p.Next() {
r := p.Rune(0)
c := &chars[r]
var ftype, mode int
qt := p.String(1)
switch qt {
case "NFC_QC":
ftype, mode = FCanonical, MComposed
case "NFD_QC":
ftype, mode = FCanonical, MDecomposed
case "NFKC_QC":
ftype, mode = FCompatibility, MComposed
case "NFKD_QC":
ftype, mode = FCompatibility, MDecomposed
default:
continue
}
var qr QCResult
switch p.String(2) {
case "Y":
qr = QCYes
case "N":
qr = QCNo
case "M":
qr = QCMaybe
default:
log.Fatalf(`Unexpected quick check value "%s"`, p.String(2))
}
if got := c.forms[ftype].quickCheck[mode]; got != qr {
log.Printf("%U: FAILED %s (was %v need %v)\n", r, qt, got, qr)
}
c.forms[ftype].verified[mode] = true
}
if err := p.Err(); err != nil {
log.Fatal(err)
}
// Any unspecified value must be QCYes. Verify this.
for i, c := range chars {
for j, fd := range c.forms {
for k, qr := range fd.quickCheck {
if !fd.verified[k] && qr != QCYes {
m := "%U: FAIL F:%d M:%d (was %v need Yes) %s\n"
log.Printf(m, i, j, k, qr, c.name)
}
}
}
}
}
var testHeader = `const (
Yes = iota
No
Maybe
)
type formData struct {
qc uint8
combinesForward bool
decomposition string
}
type runeData struct {
r rune
ccc uint8
nLead uint8
nTrail uint8
f [2]formData // 0: canonical; 1: compatibility
}
func f(qc uint8, cf bool, dec string) [2]formData {
return [2]formData{{qc, cf, dec}, {qc, cf, dec}}
}
func g(qc, qck uint8, cf, cfk bool, d, dk string) [2]formData {
return [2]formData{{qc, cf, d}, {qck, cfk, dk}}
}
var testData = []runeData{
`
func printTestdata() {
type lastInfo struct {
ccc uint8
nLead uint8
nTrail uint8
f string
}
last := lastInfo{}
w := &bytes.Buffer{}
fmt.Fprintf(w, testHeader)
for r, c := range chars {
f := c.forms[FCanonical]
qc, cf, d := f.quickCheck[MComposed], f.combinesForward, string(f.expandedDecomp)
f = c.forms[FCompatibility]
qck, cfk, dk := f.quickCheck[MComposed], f.combinesForward, string(f.expandedDecomp)
s := ""
if d == dk && qc == qck && cf == cfk {
s = fmt.Sprintf("f(%s, %v, %q)", qc, cf, d)
} else {
s = fmt.Sprintf("g(%s, %s, %v, %v, %q, %q)", qc, qck, cf, cfk, d, dk)
}
current := lastInfo{c.ccc, c.nLeadingNonStarters, c.nTrailingNonStarters, s}
if last != current {
fmt.Fprintf(w, "\t{0x%x, %d, %d, %d, %s},\n", r, c.origCCC, c.nLeadingNonStarters, c.nTrailingNonStarters, s)
last = current
}
}
fmt.Fprintln(w, "}")
gen.WriteGoFile("data_test.go", "norm", w.Bytes())
}

608
vendor/golang.org/x/text/unicode/norm/normalize.go generated vendored Normal file
View file

@ -0,0 +1,608 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:generate go run maketables.go triegen.go
//go:generate go run maketables.go triegen.go -test
// Package norm contains types and functions for normalizing Unicode strings.
package norm // import "golang.org/x/text/unicode/norm"
import (
"unicode/utf8"
"golang.org/x/text/transform"
)
// A Form denotes a canonical representation of Unicode code points.
// The Unicode-defined normalization and equivalence forms are:
//
// NFC Unicode Normalization Form C
// NFD Unicode Normalization Form D
// NFKC Unicode Normalization Form KC
// NFKD Unicode Normalization Form KD
//
// For a Form f, this documentation uses the notation f(x) to mean
// the bytes or string x converted to the given form.
// A position n in x is called a boundary if conversion to the form can
// proceed independently on both sides:
// f(x) == append(f(x[0:n]), f(x[n:])...)
//
// References: http://unicode.org/reports/tr15/ and
// http://unicode.org/notes/tn5/.
type Form int
const (
NFC Form = iota
NFD
NFKC
NFKD
)
// Bytes returns f(b). May return b if f(b) = b.
func (f Form) Bytes(b []byte) []byte {
src := inputBytes(b)
ft := formTable[f]
n, ok := ft.quickSpan(src, 0, len(b), true)
if ok {
return b
}
out := make([]byte, n, len(b))
copy(out, b[0:n])
rb := reorderBuffer{f: *ft, src: src, nsrc: len(b), out: out, flushF: appendFlush}
return doAppendInner(&rb, n)
}
// String returns f(s).
func (f Form) String(s string) string {
src := inputString(s)
ft := formTable[f]
n, ok := ft.quickSpan(src, 0, len(s), true)
if ok {
return s
}
out := make([]byte, n, len(s))
copy(out, s[0:n])
rb := reorderBuffer{f: *ft, src: src, nsrc: len(s), out: out, flushF: appendFlush}
return string(doAppendInner(&rb, n))
}
// IsNormal returns true if b == f(b).
func (f Form) IsNormal(b []byte) bool {
src := inputBytes(b)
ft := formTable[f]
bp, ok := ft.quickSpan(src, 0, len(b), true)
if ok {
return true
}
rb := reorderBuffer{f: *ft, src: src, nsrc: len(b)}
rb.setFlusher(nil, cmpNormalBytes)
for bp < len(b) {
rb.out = b[bp:]
if bp = decomposeSegment(&rb, bp, true); bp < 0 {
return false
}
bp, _ = rb.f.quickSpan(rb.src, bp, len(b), true)
}
return true
}
func cmpNormalBytes(rb *reorderBuffer) bool {
b := rb.out
for i := 0; i < rb.nrune; i++ {
info := rb.rune[i]
if int(info.size) > len(b) {
return false
}
p := info.pos
pe := p + info.size
for ; p < pe; p++ {
if b[0] != rb.byte[p] {
return false
}
b = b[1:]
}
}
return true
}
// IsNormalString returns true if s == f(s).
func (f Form) IsNormalString(s string) bool {
src := inputString(s)
ft := formTable[f]
bp, ok := ft.quickSpan(src, 0, len(s), true)
if ok {
return true
}
rb := reorderBuffer{f: *ft, src: src, nsrc: len(s)}
rb.setFlusher(nil, func(rb *reorderBuffer) bool {
for i := 0; i < rb.nrune; i++ {
info := rb.rune[i]
if bp+int(info.size) > len(s) {
return false
}
p := info.pos
pe := p + info.size
for ; p < pe; p++ {
if s[bp] != rb.byte[p] {
return false
}
bp++
}
}
return true
})
for bp < len(s) {
if bp = decomposeSegment(&rb, bp, true); bp < 0 {
return false
}
bp, _ = rb.f.quickSpan(rb.src, bp, len(s), true)
}
return true
}
// patchTail fixes a case where a rune may be incorrectly normalized
// if it is followed by illegal continuation bytes. It returns the
// patched buffer and whether the decomposition is still in progress.
func patchTail(rb *reorderBuffer) bool {
info, p := lastRuneStart(&rb.f, rb.out)
if p == -1 || info.size == 0 {
return true
}
end := p + int(info.size)
extra := len(rb.out) - end
if extra > 0 {
// Potentially allocating memory. However, this only
// happens with ill-formed UTF-8.
x := make([]byte, 0)
x = append(x, rb.out[len(rb.out)-extra:]...)
rb.out = rb.out[:end]
decomposeToLastBoundary(rb)
rb.doFlush()
rb.out = append(rb.out, x...)
return false
}
buf := rb.out[p:]
rb.out = rb.out[:p]
decomposeToLastBoundary(rb)
if s := rb.ss.next(info); s == ssStarter {
rb.doFlush()
rb.ss.first(info)
} else if s == ssOverflow {
rb.doFlush()
rb.insertCGJ()
rb.ss = 0
}
rb.insertUnsafe(inputBytes(buf), 0, info)
return true
}
func appendQuick(rb *reorderBuffer, i int) int {
if rb.nsrc == i {
return i
}
end, _ := rb.f.quickSpan(rb.src, i, rb.nsrc, true)
rb.out = rb.src.appendSlice(rb.out, i, end)
return end
}
// Append returns f(append(out, b...)).
// The buffer out must be nil, empty, or equal to f(out).
func (f Form) Append(out []byte, src ...byte) []byte {
return f.doAppend(out, inputBytes(src), len(src))
}
func (f Form) doAppend(out []byte, src input, n int) []byte {
if n == 0 {
return out
}
ft := formTable[f]
// Attempt to do a quickSpan first so we can avoid initializing the reorderBuffer.
if len(out) == 0 {
p, _ := ft.quickSpan(src, 0, n, true)
out = src.appendSlice(out, 0, p)
if p == n {
return out
}
rb := reorderBuffer{f: *ft, src: src, nsrc: n, out: out, flushF: appendFlush}
return doAppendInner(&rb, p)
}
rb := reorderBuffer{f: *ft, src: src, nsrc: n}
return doAppend(&rb, out, 0)
}
func doAppend(rb *reorderBuffer, out []byte, p int) []byte {
rb.setFlusher(out, appendFlush)
src, n := rb.src, rb.nsrc
doMerge := len(out) > 0
if q := src.skipContinuationBytes(p); q > p {
// Move leading non-starters to destination.
rb.out = src.appendSlice(rb.out, p, q)
p = q
doMerge = patchTail(rb)
}
fd := &rb.f
if doMerge {
var info Properties
if p < n {
info = fd.info(src, p)
if !info.BoundaryBefore() || info.nLeadingNonStarters() > 0 {
if p == 0 {
decomposeToLastBoundary(rb)
}
p = decomposeSegment(rb, p, true)
}
}
if info.size == 0 {
rb.doFlush()
// Append incomplete UTF-8 encoding.
return src.appendSlice(rb.out, p, n)
}
if rb.nrune > 0 {
return doAppendInner(rb, p)
}
}
p = appendQuick(rb, p)
return doAppendInner(rb, p)
}
func doAppendInner(rb *reorderBuffer, p int) []byte {
for n := rb.nsrc; p < n; {
p = decomposeSegment(rb, p, true)
p = appendQuick(rb, p)
}
return rb.out
}
// AppendString returns f(append(out, []byte(s))).
// The buffer out must be nil, empty, or equal to f(out).
func (f Form) AppendString(out []byte, src string) []byte {
return f.doAppend(out, inputString(src), len(src))
}
// QuickSpan returns a boundary n such that b[0:n] == f(b[0:n]).
// It is not guaranteed to return the largest such n.
func (f Form) QuickSpan(b []byte) int {
n, _ := formTable[f].quickSpan(inputBytes(b), 0, len(b), true)
return n
}
// Span implements transform.SpanningTransformer. It returns a boundary n such
// that b[0:n] == f(b[0:n]). It is not guaranteed to return the largest such n.
func (f Form) Span(b []byte, atEOF bool) (n int, err error) {
n, ok := formTable[f].quickSpan(inputBytes(b), 0, len(b), atEOF)
if n < len(b) {
if !ok {
err = transform.ErrEndOfSpan
} else {
err = transform.ErrShortSrc
}
}
return n, err
}
// SpanString returns a boundary n such that s[0:n] == f(s[0:n]).
// It is not guaranteed to return the largest such n.
func (f Form) SpanString(s string, atEOF bool) (n int, err error) {
n, ok := formTable[f].quickSpan(inputString(s), 0, len(s), atEOF)
if n < len(s) {
if !ok {
err = transform.ErrEndOfSpan
} else {
err = transform.ErrShortSrc
}
}
return n, err
}
// quickSpan returns a boundary n such that src[0:n] == f(src[0:n]) and
// whether any non-normalized parts were found. If atEOF is false, n will
// not point past the last segment if this segment might be become
// non-normalized by appending other runes.
func (f *formInfo) quickSpan(src input, i, end int, atEOF bool) (n int, ok bool) {
var lastCC uint8
ss := streamSafe(0)
lastSegStart := i
for n = end; i < n; {
if j := src.skipASCII(i, n); i != j {
i = j
lastSegStart = i - 1
lastCC = 0
ss = 0
continue
}
info := f.info(src, i)
if info.size == 0 {
if atEOF {
// include incomplete runes
return n, true
}
return lastSegStart, true
}
// This block needs to be before the next, because it is possible to
// have an overflow for runes that are starters (e.g. with U+FF9E).
switch ss.next(info) {
case ssStarter:
ss.first(info)
lastSegStart = i
case ssOverflow:
return lastSegStart, false
case ssSuccess:
if lastCC > info.ccc {
return lastSegStart, false
}
}
if f.composing {
if !info.isYesC() {
break
}
} else {
if !info.isYesD() {
break
}
}
lastCC = info.ccc
i += int(info.size)
}
if i == n {
if !atEOF {
n = lastSegStart
}
return n, true
}
return lastSegStart, false
}
// QuickSpanString returns a boundary n such that s[0:n] == f(s[0:n]).
// It is not guaranteed to return the largest such n.
func (f Form) QuickSpanString(s string) int {
n, _ := formTable[f].quickSpan(inputString(s), 0, len(s), true)
return n
}
// FirstBoundary returns the position i of the first boundary in b
// or -1 if b contains no boundary.
func (f Form) FirstBoundary(b []byte) int {
return f.firstBoundary(inputBytes(b), len(b))
}
func (f Form) firstBoundary(src input, nsrc int) int {
i := src.skipContinuationBytes(0)
if i >= nsrc {
return -1
}
fd := formTable[f]
ss := streamSafe(0)
// We should call ss.first here, but we can't as the first rune is
// skipped already. This means FirstBoundary can't really determine
// CGJ insertion points correctly. Luckily it doesn't have to.
for {
info := fd.info(src, i)
if info.size == 0 {
return -1
}
if s := ss.next(info); s != ssSuccess {
return i
}
i += int(info.size)
if i >= nsrc {
if !info.BoundaryAfter() && !ss.isMax() {
return -1
}
return nsrc
}
}
}
// FirstBoundaryInString returns the position i of the first boundary in s
// or -1 if s contains no boundary.
func (f Form) FirstBoundaryInString(s string) int {
return f.firstBoundary(inputString(s), len(s))
}
// NextBoundary reports the index of the boundary between the first and next
// segment in b or -1 if atEOF is false and there are not enough bytes to
// determine this boundary.
func (f Form) NextBoundary(b []byte, atEOF bool) int {
return f.nextBoundary(inputBytes(b), len(b), atEOF)
}
// NextBoundaryInString reports the index of the boundary between the first and
// next segment in b or -1 if atEOF is false and there are not enough bytes to
// determine this boundary.
func (f Form) NextBoundaryInString(s string, atEOF bool) int {
return f.nextBoundary(inputString(s), len(s), atEOF)
}
func (f Form) nextBoundary(src input, nsrc int, atEOF bool) int {
if nsrc == 0 {
if atEOF {
return 0
}
return -1
}
fd := formTable[f]
info := fd.info(src, 0)
if info.size == 0 {
if atEOF {
return 1
}
return -1
}
ss := streamSafe(0)
ss.first(info)
for i := int(info.size); i < nsrc; i += int(info.size) {
info = fd.info(src, i)
if info.size == 0 {
if atEOF {
return i
}
return -1
}
if s := ss.next(info); s != ssSuccess {
return i
}
}
if !atEOF && !info.BoundaryAfter() && !ss.isMax() {
return -1
}
return nsrc
}
// LastBoundary returns the position i of the last boundary in b
// or -1 if b contains no boundary.
func (f Form) LastBoundary(b []byte) int {
return lastBoundary(formTable[f], b)
}
func lastBoundary(fd *formInfo, b []byte) int {
i := len(b)
info, p := lastRuneStart(fd, b)
if p == -1 {
return -1
}
if info.size == 0 { // ends with incomplete rune
if p == 0 { // starts with incomplete rune
return -1
}
i = p
info, p = lastRuneStart(fd, b[:i])
if p == -1 { // incomplete UTF-8 encoding or non-starter bytes without a starter
return i
}
}
if p+int(info.size) != i { // trailing non-starter bytes: illegal UTF-8
return i
}
if info.BoundaryAfter() {
return i
}
ss := streamSafe(0)
v := ss.backwards(info)
for i = p; i >= 0 && v != ssStarter; i = p {
info, p = lastRuneStart(fd, b[:i])
if v = ss.backwards(info); v == ssOverflow {
break
}
if p+int(info.size) != i {
if p == -1 { // no boundary found
return -1
}
return i // boundary after an illegal UTF-8 encoding
}
}
return i
}
// decomposeSegment scans the first segment in src into rb. It inserts 0x034f
// (Grapheme Joiner) when it encounters a sequence of more than 30 non-starters
// and returns the number of bytes consumed from src or iShortDst or iShortSrc.
func decomposeSegment(rb *reorderBuffer, sp int, atEOF bool) int {
// Force one character to be consumed.
info := rb.f.info(rb.src, sp)
if info.size == 0 {
return 0
}
if rb.nrune > 0 {
if s := rb.ss.next(info); s == ssStarter {
goto end
} else if s == ssOverflow {
rb.insertCGJ()
goto end
}
} else {
rb.ss.first(info)
}
if err := rb.insertFlush(rb.src, sp, info); err != iSuccess {
return int(err)
}
for {
sp += int(info.size)
if sp >= rb.nsrc {
if !atEOF && !info.BoundaryAfter() {
return int(iShortSrc)
}
break
}
info = rb.f.info(rb.src, sp)
if info.size == 0 {
if !atEOF {
return int(iShortSrc)
}
break
}
if s := rb.ss.next(info); s == ssStarter {
break
} else if s == ssOverflow {
rb.insertCGJ()
break
}
if err := rb.insertFlush(rb.src, sp, info); err != iSuccess {
return int(err)
}
}
end:
if !rb.doFlush() {
return int(iShortDst)
}
return sp
}
// lastRuneStart returns the runeInfo and position of the last
// rune in buf or the zero runeInfo and -1 if no rune was found.
func lastRuneStart(fd *formInfo, buf []byte) (Properties, int) {
p := len(buf) - 1
for ; p >= 0 && !utf8.RuneStart(buf[p]); p-- {
}
if p < 0 {
return Properties{}, -1
}
return fd.info(inputBytes(buf), p), p
}
// decomposeToLastBoundary finds an open segment at the end of the buffer
// and scans it into rb. Returns the buffer minus the last segment.
func decomposeToLastBoundary(rb *reorderBuffer) {
fd := &rb.f
info, i := lastRuneStart(fd, rb.out)
if int(info.size) != len(rb.out)-i {
// illegal trailing continuation bytes
return
}
if info.BoundaryAfter() {
return
}
var add [maxNonStarters + 1]Properties // stores runeInfo in reverse order
padd := 0
ss := streamSafe(0)
p := len(rb.out)
for {
add[padd] = info
v := ss.backwards(info)
if v == ssOverflow {
// Note that if we have an overflow, it the string we are appending to
// is not correctly normalized. In this case the behavior is undefined.
break
}
padd++
p -= int(info.size)
if v == ssStarter || p < 0 {
break
}
info, i = lastRuneStart(fd, rb.out[:p])
if int(info.size) != p-i {
break
}
}
rb.ss = ss
// Copy bytes for insertion as we may need to overwrite rb.out.
var buf [maxBufferSize * utf8.UTFMax]byte
cp := buf[:copy(buf[:], rb.out[p:])]
rb.out = rb.out[:p]
for padd--; padd >= 0; padd-- {
info = add[padd]
rb.insertUnsafe(inputBytes(cp), 0, info)
cp = cp[info.size:]
}
}

125
vendor/golang.org/x/text/unicode/norm/readwriter.go generated vendored Normal file
View file

@ -0,0 +1,125 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
import "io"
type normWriter struct {
rb reorderBuffer
w io.Writer
buf []byte
}
// Write implements the standard write interface. If the last characters are
// not at a normalization boundary, the bytes will be buffered for the next
// write. The remaining bytes will be written on close.
func (w *normWriter) Write(data []byte) (n int, err error) {
// Process data in pieces to keep w.buf size bounded.
const chunk = 4000
for len(data) > 0 {
// Normalize into w.buf.
m := len(data)
if m > chunk {
m = chunk
}
w.rb.src = inputBytes(data[:m])
w.rb.nsrc = m
w.buf = doAppend(&w.rb, w.buf, 0)
data = data[m:]
n += m
// Write out complete prefix, save remainder.
// Note that lastBoundary looks back at most 31 runes.
i := lastBoundary(&w.rb.f, w.buf)
if i == -1 {
i = 0
}
if i > 0 {
if _, err = w.w.Write(w.buf[:i]); err != nil {
break
}
bn := copy(w.buf, w.buf[i:])
w.buf = w.buf[:bn]
}
}
return n, err
}
// Close forces data that remains in the buffer to be written.
func (w *normWriter) Close() error {
if len(w.buf) > 0 {
_, err := w.w.Write(w.buf)
if err != nil {
return err
}
}
return nil
}
// Writer returns a new writer that implements Write(b)
// by writing f(b) to w. The returned writer may use an
// an internal buffer to maintain state across Write calls.
// Calling its Close method writes any buffered data to w.
func (f Form) Writer(w io.Writer) io.WriteCloser {
wr := &normWriter{rb: reorderBuffer{}, w: w}
wr.rb.init(f, nil)
return wr
}
type normReader struct {
rb reorderBuffer
r io.Reader
inbuf []byte
outbuf []byte
bufStart int
lastBoundary int
err error
}
// Read implements the standard read interface.
func (r *normReader) Read(p []byte) (int, error) {
for {
if r.lastBoundary-r.bufStart > 0 {
n := copy(p, r.outbuf[r.bufStart:r.lastBoundary])
r.bufStart += n
if r.lastBoundary-r.bufStart > 0 {
return n, nil
}
return n, r.err
}
if r.err != nil {
return 0, r.err
}
outn := copy(r.outbuf, r.outbuf[r.lastBoundary:])
r.outbuf = r.outbuf[0:outn]
r.bufStart = 0
n, err := r.r.Read(r.inbuf)
r.rb.src = inputBytes(r.inbuf[0:n])
r.rb.nsrc, r.err = n, err
if n > 0 {
r.outbuf = doAppend(&r.rb, r.outbuf, 0)
}
if err == io.EOF {
r.lastBoundary = len(r.outbuf)
} else {
r.lastBoundary = lastBoundary(&r.rb.f, r.outbuf)
if r.lastBoundary == -1 {
r.lastBoundary = 0
}
}
}
}
// Reader returns a new reader that implements Read
// by reading data from r and returning f(data).
func (f Form) Reader(r io.Reader) io.Reader {
const chunk = 4000
buf := make([]byte, chunk)
rr := &normReader{rb: reorderBuffer{}, r: r, inbuf: buf}
rr.rb.init(f, buf)
return rr
}

7627
vendor/golang.org/x/text/unicode/norm/tables.go generated vendored Normal file

File diff suppressed because it is too large Load diff

88
vendor/golang.org/x/text/unicode/norm/transform.go generated vendored Normal file
View file

@ -0,0 +1,88 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
import (
"unicode/utf8"
"golang.org/x/text/transform"
)
// Reset implements the Reset method of the transform.Transformer interface.
func (Form) Reset() {}
// Transform implements the Transform method of the transform.Transformer
// interface. It may need to write segments of up to MaxSegmentSize at once.
// Users should either catch ErrShortDst and allow dst to grow or have dst be at
// least of size MaxTransformChunkSize to be guaranteed of progress.
func (f Form) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
n := 0
// Cap the maximum number of src bytes to check.
b := src
eof := atEOF
if ns := len(dst); ns < len(b) {
err = transform.ErrShortDst
eof = false
b = b[:ns]
}
i, ok := formTable[f].quickSpan(inputBytes(b), n, len(b), eof)
n += copy(dst[n:], b[n:i])
if !ok {
nDst, nSrc, err = f.transform(dst[n:], src[n:], atEOF)
return nDst + n, nSrc + n, err
}
if n < len(src) && !atEOF {
err = transform.ErrShortSrc
}
return n, n, err
}
func flushTransform(rb *reorderBuffer) bool {
// Write out (must fully fit in dst, or else it is a ErrShortDst).
if len(rb.out) < rb.nrune*utf8.UTFMax {
return false
}
rb.out = rb.out[rb.flushCopy(rb.out):]
return true
}
var errs = []error{nil, transform.ErrShortDst, transform.ErrShortSrc}
// transform implements the transform.Transformer interface. It is only called
// when quickSpan does not pass for a given string.
func (f Form) transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
// TODO: get rid of reorderBuffer. See CL 23460044.
rb := reorderBuffer{}
rb.init(f, src)
for {
// Load segment into reorder buffer.
rb.setFlusher(dst[nDst:], flushTransform)
end := decomposeSegment(&rb, nSrc, atEOF)
if end < 0 {
return nDst, nSrc, errs[-end]
}
nDst = len(dst) - len(rb.out)
nSrc = end
// Next quickSpan.
end = rb.nsrc
eof := atEOF
if n := nSrc + len(dst) - nDst; n < end {
err = transform.ErrShortDst
end = n
eof = false
}
end, ok := rb.f.quickSpan(rb.src, nSrc, end, eof)
n := copy(dst[nDst:], rb.src.bytes[nSrc:end])
nSrc += n
nDst += n
if ok {
if n < rb.nsrc && !atEOF {
err = transform.ErrShortSrc
}
return nDst, nSrc, err
}
}
}

54
vendor/golang.org/x/text/unicode/norm/trie.go generated vendored Normal file
View file

@ -0,0 +1,54 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
type valueRange struct {
value uint16 // header: value:stride
lo, hi byte // header: lo:n
}
type sparseBlocks struct {
values []valueRange
offset []uint16
}
var nfcSparse = sparseBlocks{
values: nfcSparseValues[:],
offset: nfcSparseOffset[:],
}
var nfkcSparse = sparseBlocks{
values: nfkcSparseValues[:],
offset: nfkcSparseOffset[:],
}
var (
nfcData = newNfcTrie(0)
nfkcData = newNfkcTrie(0)
)
// lookupValue determines the type of block n and looks up the value for b.
// For n < t.cutoff, the block is a simple lookup table. Otherwise, the block
// is a list of ranges with an accompanying value. Given a matching range r,
// the value for b is by r.value + (b - r.lo) * stride.
func (t *sparseBlocks) lookup(n uint32, b byte) uint16 {
offset := t.offset[n]
header := t.values[offset]
lo := offset + 1
hi := lo + uint16(header.lo)
for lo < hi {
m := lo + (hi-lo)/2
r := t.values[m]
if r.lo <= b && b <= r.hi {
return r.value + uint16(b-r.lo)*header.value
}
if b < r.lo {
hi = m
} else {
lo = m + 1
}
}
return 0
}

117
vendor/golang.org/x/text/unicode/norm/triegen.go generated vendored Normal file
View file

@ -0,0 +1,117 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build ignore
// Trie table generator.
// Used by make*tables tools to generate a go file with trie data structures
// for mapping UTF-8 to a 16-bit value. All but the last byte in a UTF-8 byte
// sequence are used to lookup offsets in the index table to be used for the
// next byte. The last byte is used to index into a table with 16-bit values.
package main
import (
"fmt"
"io"
)
const maxSparseEntries = 16
type normCompacter struct {
sparseBlocks [][]uint64
sparseOffset []uint16
sparseCount int
name string
}
func mostFrequentStride(a []uint64) int {
counts := make(map[int]int)
var v int
for _, x := range a {
if stride := int(x) - v; v != 0 && stride >= 0 {
counts[stride]++
}
v = int(x)
}
var maxs, maxc int
for stride, cnt := range counts {
if cnt > maxc || (cnt == maxc && stride < maxs) {
maxs, maxc = stride, cnt
}
}
return maxs
}
func countSparseEntries(a []uint64) int {
stride := mostFrequentStride(a)
var v, count int
for _, tv := range a {
if int(tv)-v != stride {
if tv != 0 {
count++
}
}
v = int(tv)
}
return count
}
func (c *normCompacter) Size(v []uint64) (sz int, ok bool) {
if n := countSparseEntries(v); n <= maxSparseEntries {
return (n+1)*4 + 2, true
}
return 0, false
}
func (c *normCompacter) Store(v []uint64) uint32 {
h := uint32(len(c.sparseOffset))
c.sparseBlocks = append(c.sparseBlocks, v)
c.sparseOffset = append(c.sparseOffset, uint16(c.sparseCount))
c.sparseCount += countSparseEntries(v) + 1
return h
}
func (c *normCompacter) Handler() string {
return c.name + "Sparse.lookup"
}
func (c *normCompacter) Print(w io.Writer) (retErr error) {
p := func(f string, x ...interface{}) {
if _, err := fmt.Fprintf(w, f, x...); retErr == nil && err != nil {
retErr = err
}
}
ls := len(c.sparseBlocks)
p("// %sSparseOffset: %d entries, %d bytes\n", c.name, ls, ls*2)
p("var %sSparseOffset = %#v\n\n", c.name, c.sparseOffset)
ns := c.sparseCount
p("// %sSparseValues: %d entries, %d bytes\n", c.name, ns, ns*4)
p("var %sSparseValues = [%d]valueRange {", c.name, ns)
for i, b := range c.sparseBlocks {
p("\n// Block %#x, offset %#x", i, c.sparseOffset[i])
var v int
stride := mostFrequentStride(b)
n := countSparseEntries(b)
p("\n{value:%#04x,lo:%#02x},", stride, uint8(n))
for i, nv := range b {
if int(nv)-v != stride {
if v != 0 {
p(",hi:%#02x},", 0x80+i-1)
}
if nv != 0 {
p("\n{value:%#04x,lo:%#02x", nv, 0x80+i)
}
}
v = int(nv)
}
if v != 0 {
p(",hi:%#02x},", 0x80+len(b)-1)
}
}
p("\n}\n\n")
return
}

113
vendor/golang.org/x/text/unicode/rangetable/gen.go generated vendored Normal file
View file

@ -0,0 +1,113 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build ignore
package main
import (
"bytes"
"flag"
"fmt"
"io"
"log"
"reflect"
"sort"
"strings"
"unicode"
"golang.org/x/text/internal/gen"
"golang.org/x/text/internal/ucd"
"golang.org/x/text/unicode/rangetable"
)
var versionList = flag.String("versions", "",
"list of versions for which to generate RangeTables")
const bootstrapMessage = `No versions specified.
To bootstrap the code generation, run:
go run gen.go --versions=4.1.0,5.0.0,6.0.0,6.1.0,6.2.0,6.3.0,7.0.0
and ensure that the latest versions are included by checking:
http://www.unicode.org/Public/`
func getVersions() []string {
if *versionList == "" {
log.Fatal(bootstrapMessage)
}
versions := strings.Split(*versionList, ",")
sort.Strings(versions)
// Ensure that at least the current version is included.
for _, v := range versions {
if v == gen.UnicodeVersion() {
return versions
}
}
versions = append(versions, gen.UnicodeVersion())
sort.Strings(versions)
return versions
}
func main() {
gen.Init()
versions := getVersions()
w := &bytes.Buffer{}
fmt.Fprintf(w, "//go:generate go run gen.go --versions=%s\n\n", strings.Join(versions, ","))
fmt.Fprintf(w, "import \"unicode\"\n\n")
vstr := func(s string) string { return strings.Replace(s, ".", "_", -1) }
fmt.Fprintf(w, "var assigned = map[string]*unicode.RangeTable{\n")
for _, v := range versions {
fmt.Fprintf(w, "\t%q: assigned%s,\n", v, vstr(v))
}
fmt.Fprintf(w, "}\n\n")
var size int
for _, v := range versions {
assigned := []rune{}
r := gen.Open("http://www.unicode.org/Public/", "", v+"/ucd/UnicodeData.txt")
ucd.Parse(r, func(p *ucd.Parser) {
assigned = append(assigned, p.Rune(0))
})
rt := rangetable.New(assigned...)
sz := int(reflect.TypeOf(unicode.RangeTable{}).Size())
sz += int(reflect.TypeOf(unicode.Range16{}).Size()) * len(rt.R16)
sz += int(reflect.TypeOf(unicode.Range32{}).Size()) * len(rt.R32)
fmt.Fprintf(w, "// size %d bytes (%d KiB)\n", sz, sz/1024)
fmt.Fprintf(w, "var assigned%s = ", vstr(v))
print(w, rt)
size += sz
}
fmt.Fprintf(w, "// Total size %d bytes (%d KiB)\n", size, size/1024)
gen.WriteGoFile("tables.go", "rangetable", w.Bytes())
}
func print(w io.Writer, rt *unicode.RangeTable) {
fmt.Fprintln(w, "&unicode.RangeTable{")
fmt.Fprintln(w, "\tR16: []unicode.Range16{")
for _, r := range rt.R16 {
fmt.Fprintf(w, "\t\t{%#04x, %#04x, %d},\n", r.Lo, r.Hi, r.Stride)
}
fmt.Fprintln(w, "\t},")
fmt.Fprintln(w, "\tR32: []unicode.Range32{")
for _, r := range rt.R32 {
fmt.Fprintf(w, "\t\t{%#08x, %#08x, %d},\n", r.Lo, r.Hi, r.Stride)
}
fmt.Fprintln(w, "\t},")
fmt.Fprintf(w, "\tLatinOffset: %d,\n", rt.LatinOffset)
fmt.Fprintf(w, "}\n\n")
}

260
vendor/golang.org/x/text/unicode/rangetable/merge.go generated vendored Normal file
View file

@ -0,0 +1,260 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package rangetable
import (
"unicode"
)
// atEnd is used to mark a completed iteration.
const atEnd = unicode.MaxRune + 1
// Merge returns a new RangeTable that is the union of the given tables.
// It can also be used to compact user-created RangeTables. The entries in
// R16 and R32 for any given RangeTable should be sorted and non-overlapping.
//
// A lookup in the resulting table can be several times faster than using In
// directly on the ranges. Merge is an expensive operation, however, and only
// makes sense if one intends to use the result for more than a couple of
// hundred lookups.
func Merge(ranges ...*unicode.RangeTable) *unicode.RangeTable {
rt := &unicode.RangeTable{}
if len(ranges) == 0 {
return rt
}
iter := tablesIter(make([]tableIndex, len(ranges)))
for i, t := range ranges {
iter[i] = tableIndex{t, 0, atEnd}
if len(t.R16) > 0 {
iter[i].next = rune(t.R16[0].Lo)
}
}
if r0 := iter.next16(); r0.Stride != 0 {
for {
r1 := iter.next16()
if r1.Stride == 0 {
rt.R16 = append(rt.R16, r0)
break
}
stride := r1.Lo - r0.Hi
if (r1.Lo == r1.Hi || stride == r1.Stride) && (r0.Lo == r0.Hi || stride == r0.Stride) {
// Fully merge the next range into the previous one.
r0.Hi, r0.Stride = r1.Hi, stride
continue
} else if stride == r0.Stride {
// Move the first element of r1 to r0. This may eliminate an
// entry.
r0.Hi = r1.Lo
r0.Stride = stride
r1.Lo = r1.Lo + r1.Stride
if r1.Lo > r1.Hi {
continue
}
}
rt.R16 = append(rt.R16, r0)
r0 = r1
}
}
for i, t := range ranges {
iter[i] = tableIndex{t, 0, atEnd}
if len(t.R32) > 0 {
iter[i].next = rune(t.R32[0].Lo)
}
}
if r0 := iter.next32(); r0.Stride != 0 {
for {
r1 := iter.next32()
if r1.Stride == 0 {
rt.R32 = append(rt.R32, r0)
break
}
stride := r1.Lo - r0.Hi
if (r1.Lo == r1.Hi || stride == r1.Stride) && (r0.Lo == r0.Hi || stride == r0.Stride) {
// Fully merge the next range into the previous one.
r0.Hi, r0.Stride = r1.Hi, stride
continue
} else if stride == r0.Stride {
// Move the first element of r1 to r0. This may eliminate an
// entry.
r0.Hi = r1.Lo
r1.Lo = r1.Lo + r1.Stride
if r1.Lo > r1.Hi {
continue
}
}
rt.R32 = append(rt.R32, r0)
r0 = r1
}
}
for i := 0; i < len(rt.R16) && rt.R16[i].Hi <= unicode.MaxLatin1; i++ {
rt.LatinOffset = i + 1
}
return rt
}
type tableIndex struct {
t *unicode.RangeTable
p uint32
next rune
}
type tablesIter []tableIndex
// sortIter does an insertion sort using the next field of tableIndex. Insertion
// sort is a good sorting algorithm for this case.
func sortIter(t []tableIndex) {
for i := range t {
for j := i; j > 0 && t[j-1].next > t[j].next; j-- {
t[j], t[j-1] = t[j-1], t[j]
}
}
}
// next16 finds the ranged to be added to the table. If ranges overlap between
// multiple tables it clips the result to a non-overlapping range if the
// elements are not fully subsumed. It returns a zero range if there are no more
// ranges.
func (ti tablesIter) next16() unicode.Range16 {
sortIter(ti)
t0 := ti[0]
if t0.next == atEnd {
return unicode.Range16{}
}
r0 := t0.t.R16[t0.p]
r0.Lo = uint16(t0.next)
// We restrict the Hi of the current range if it overlaps with another range.
for i := range ti {
tn := ti[i]
// Since our tableIndices are sorted by next, we can break if the there
// is no overlap. The first value of a next range can always be merged
// into the current one, so we can break in case of equality as well.
if rune(r0.Hi) <= tn.next {
break
}
rn := tn.t.R16[tn.p]
rn.Lo = uint16(tn.next)
// Limit r0.Hi based on next ranges in list, but allow it to overlap
// with ranges as long as it subsumes it.
m := (rn.Lo - r0.Lo) % r0.Stride
if m == 0 && (rn.Stride == r0.Stride || rn.Lo == rn.Hi) {
// Overlap, take the min of the two Hi values: for simplicity's sake
// we only process one range at a time.
if r0.Hi > rn.Hi {
r0.Hi = rn.Hi
}
} else {
// Not a compatible stride. Set to the last possible value before
// rn.Lo, but ensure there is at least one value.
if x := rn.Lo - m; r0.Lo <= x {
r0.Hi = x
}
break
}
}
// Update the next values for each table.
for i := range ti {
tn := &ti[i]
if rune(r0.Hi) < tn.next {
break
}
rn := tn.t.R16[tn.p]
stride := rune(rn.Stride)
tn.next += stride * (1 + ((rune(r0.Hi) - tn.next) / stride))
if rune(rn.Hi) < tn.next {
if tn.p++; int(tn.p) == len(tn.t.R16) {
tn.next = atEnd
} else {
tn.next = rune(tn.t.R16[tn.p].Lo)
}
}
}
if r0.Lo == r0.Hi {
r0.Stride = 1
}
return r0
}
// next32 finds the ranged to be added to the table. If ranges overlap between
// multiple tables it clips the result to a non-overlapping range if the
// elements are not fully subsumed. It returns a zero range if there are no more
// ranges.
func (ti tablesIter) next32() unicode.Range32 {
sortIter(ti)
t0 := ti[0]
if t0.next == atEnd {
return unicode.Range32{}
}
r0 := t0.t.R32[t0.p]
r0.Lo = uint32(t0.next)
// We restrict the Hi of the current range if it overlaps with another range.
for i := range ti {
tn := ti[i]
// Since our tableIndices are sorted by next, we can break if the there
// is no overlap. The first value of a next range can always be merged
// into the current one, so we can break in case of equality as well.
if rune(r0.Hi) <= tn.next {
break
}
rn := tn.t.R32[tn.p]
rn.Lo = uint32(tn.next)
// Limit r0.Hi based on next ranges in list, but allow it to overlap
// with ranges as long as it subsumes it.
m := (rn.Lo - r0.Lo) % r0.Stride
if m == 0 && (rn.Stride == r0.Stride || rn.Lo == rn.Hi) {
// Overlap, take the min of the two Hi values: for simplicity's sake
// we only process one range at a time.
if r0.Hi > rn.Hi {
r0.Hi = rn.Hi
}
} else {
// Not a compatible stride. Set to the last possible value before
// rn.Lo, but ensure there is at least one value.
if x := rn.Lo - m; r0.Lo <= x {
r0.Hi = x
}
break
}
}
// Update the next values for each table.
for i := range ti {
tn := &ti[i]
if rune(r0.Hi) < tn.next {
break
}
rn := tn.t.R32[tn.p]
stride := rune(rn.Stride)
tn.next += stride * (1 + ((rune(r0.Hi) - tn.next) / stride))
if rune(rn.Hi) < tn.next {
if tn.p++; int(tn.p) == len(tn.t.R32) {
tn.next = atEnd
} else {
tn.next = rune(tn.t.R32[tn.p].Lo)
}
}
}
if r0.Lo == r0.Hi {
r0.Stride = 1
}
return r0
}

View file

@ -0,0 +1,70 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package rangetable provides utilities for creating and inspecting
// unicode.RangeTables.
package rangetable
import (
"sort"
"unicode"
)
// New creates a RangeTable from the given runes, which may contain duplicates.
func New(r ...rune) *unicode.RangeTable {
if len(r) == 0 {
return &unicode.RangeTable{}
}
sort.Sort(byRune(r))
// Remove duplicates.
k := 1
for i := 1; i < len(r); i++ {
if r[k-1] != r[i] {
r[k] = r[i]
k++
}
}
var rt unicode.RangeTable
for _, r := range r[:k] {
if r <= 0xFFFF {
rt.R16 = append(rt.R16, unicode.Range16{Lo: uint16(r), Hi: uint16(r), Stride: 1})
} else {
rt.R32 = append(rt.R32, unicode.Range32{Lo: uint32(r), Hi: uint32(r), Stride: 1})
}
}
// Optimize RangeTable.
return Merge(&rt)
}
type byRune []rune
func (r byRune) Len() int { return len(r) }
func (r byRune) Swap(i, j int) { r[i], r[j] = r[j], r[i] }
func (r byRune) Less(i, j int) bool { return r[i] < r[j] }
// Visit visits all runes in the given RangeTable in order, calling fn for each.
func Visit(rt *unicode.RangeTable, fn func(rune)) {
for _, r16 := range rt.R16 {
for r := rune(r16.Lo); r <= rune(r16.Hi); r += rune(r16.Stride) {
fn(r)
}
}
for _, r32 := range rt.R32 {
for r := rune(r32.Lo); r <= rune(r32.Hi); r += rune(r32.Stride) {
fn(r)
}
}
}
// Assigned returns a RangeTable with all assigned code points for a given
// Unicode version. This includes graphic, format, control, and private-use
// characters. It returns nil if the data for the given version is not
// available.
func Assigned(version string) *unicode.RangeTable {
return assigned[version]
}

5735
vendor/golang.org/x/text/unicode/rangetable/tables.go generated vendored Normal file

File diff suppressed because it is too large Load diff