Merge pull request #25776 from thaJeztah/add-basic-mount-docs

Add --mount syntax documentation to CLI reference
This commit is contained in:
Sebastiaan van Stijn 2016-09-19 12:17:07 +02:00 committed by GitHub
commit c496b4eb1b
3 changed files with 228 additions and 14 deletions

View file

@ -197,8 +197,8 @@ The `-w` lets the command being executed inside directory given, here
$ docker run -it --storage-opt size=120G fedora /bin/bash
This (size) will allow to set the container rootfs size to 120G at creation time.
User cannot pass a size less than the Default BaseFS Size. This option is only
This (size) will allow to set the container rootfs size to 120G at creation time.
User cannot pass a size less than the Default BaseFS Size. This option is only
available for the `devicemapper`, `btrfs`, `windowsfilter`, and `zfs` graph drivers.
### Mount tmpfs (--tmpfs)
@ -240,6 +240,8 @@ binary (refer to [get the linux binary](
you give the container the full access to create and manipulate the host's
Docker daemon.
For in-depth information about volumes, refer to [manage data in containers](../../tutorials/dockervolumes.md)
### Publish or expose port (-p, --expose)
$ docker run -p 127.0.0.1:80:8080 ubuntu bash
@ -634,14 +636,14 @@ On Microsoft Windows, can take any of these values:
| `hyperv` | Hyper-V hypervisor partition-based isolation. |
On Windows, the default isolation for client is `hyperv`, and for server is
`process`. Therefore when running on Windows server without a `daemon` option
`process`. Therefore when running on Windows server without a `daemon` option
set, these two commands are equivalent:
```
$ docker run -d --isolation default busybox top
$ docker run -d --isolation process busybox top
```
If you have set the `--exec-opt isolation=hyperv` option on the Docker `daemon`,
If you have set the `--exec-opt isolation=hyperv` option on the Docker `daemon`,
if running on Windows server, any of these commands also result in `hyperv` isolation:
```

View file

@ -137,13 +137,183 @@ $ docker service create \
For more information about labels, refer to [apply custom
metadata](../../userguide/labels-custom-metadata.md).
### Add bind-mounts or volumes
Docker supports two different kinds of mounts, which allow containers to read to
or write from files or directories on other containers or the host operating
system. These types are _data volumes_ (often referred to simply as volumes) and
_bind-mounts_.
A **bind-mount** makes a file or directory on the host available to the
container it is mounted within. A bind-mount may be either read-only or
read-write. For example, a container might share its host's DNS information by
means of a bind-mount of the host's `/etc/resolv.conf` or a container might
write logs to its host's `/var/log/myContainerLogs` directory. If you use
bind-mounts and your host and containers have different notions of permissions,
access controls, or other such details, you will run into portability issues.
A **named volume** is a mechanism for decoupling persistent data needed by your
container from the image used to create the container and from the host machine.
Named volumes are created and managed by Docker, and a named volume persists
even when no container is currently using it. Data in named volumes can be
shared between a container and the host machine, as well as between multiple
containers. Docker uses a _volume driver_ to create, manage, and mount volumes.
You can back up or restore volumes using Docker commands.
Consider a situation where your image starts a lightweight web server. You could
use that image as a base image, copy in your website's HTML files, and package
that into another image. Each time your website changed, you'd need to update
the new image and redeploy all of the containers serving your website. A better
solution is to store the website in a named volume which is attached to each of
your web server containers when they start. To update the website, you just
update the named volume.
For more information about named volumes, see
[Data Volumes](https://docs.docker.com/engine/tutorials/dockervolumes/).
The following table describes options which apply to both bind-mounts and named
volumes in a service:
| Option | Required | Description
|:-----------------------------------------|:--------------------------|:-----------------------------------------------------------------------------------------
| **type** | | The type of mount, can be either `volume`, or `bind`. Defaults to `volume` if no type is specified.<ul><li>`volume`: mounts a [managed volume](volume_create.md) into the container.</li><li>`bind`: bind-mounts a directory or file from the host into the container.</li></ul>
| **src** or **source** | for `type=bind`&nbsp;only | <ul><li>`type=volume`: `src` is an optional way to specify the name of the volume (for example, `src=my-volume`). If the named volume does not exist, it is automatically created. If no `src` is specified, the volume is assigned a random name which is guaranteed to be unique on the host, but may not be unique cluster-wide. A randomly-named volume has the same lifecycle as its container and is destroyed when the *container* is destroyed (which is upon `service update`, or when scaling or re-balancing the service).</li><li>`type=bind`: `src` is required, and specifies an absolute path to the file or directory to bind-mount (for example, `src=/path/on/host/`). An error is produced if the file or directory does not exist.</li></ul>
| **dst** or **destination** or **target** | yes | Mount path inside the container, for example `/some/path/in/container/`. If the path does not exist in the container's filesystem, the Engine creates a directory at the specified location before mounting the volume or bind-mount.
| **readonly** or **ro** | | The Engine mounts binds and volumes `read-write` unless `readonly` option is given when mounting the bind or volume.<br /><br /><ul><li>`true` or `1` or no value: Mounts the bind or volume read-only.</li><li>`false` or `0`: Mounts the bind or volume read-write.</li></ul>
#### Bind Propagation
Bind propagation refers to whether or not mounts created within a given
bind-mount or named volume can be propagated to replicas of that mount. Consider
a mount point `/mnt`, which is also mounted on `/tmp`. The propation settings
control whether a mount on `/tmp/a` would also be available on `/mnt/a`. Each
propagation setting has a recursive counterpoint. In the case of recursion,
consider that `/tmp/a` is also mounted as `/foo`. The propagation settings
control whether `/mnt/a` and/or `/tmp/a` would exist.
The `bind-propagation` option defaults to `rprivate` for both bind-mounts and
volume mounts, and is only configurable for bind-mounts. In other words, named
volumes do not support bind propagation.
- **`shared`**: Sub-mounts of the original mount are exposed to replica mounts,
and sub-mounts of replica mounts are also propagated to the
original mount.
- **`slave`**: similar to a shared mount, but only in one direction. If the
original mount exposes a sub-mount, the replica mount can see it.
However, if the replica mount exposes a sub-mount, the original
mount cannot see it.
- **`private`**: The mount is private. Sub-mounts within it are not exposed to
replica mounts, and sub-mounts of replica mounts are not
exposed to the original mount.
- **`rshared`**: The same as shared, but the propagation also extends to and from
mount points nested within any of the original or replica mount
points.
- **`rslave`**: The same as `slave`, but the propagation also extends to and from
mount points nested within any of the original or replica mount
points.
- **`rprivate`**: The default. The same as `private`, meaning that no mount points
anywhere within the original or replica mount points propagate
in either direction.
For more information about bind propagation, see the
[Linux kernel documentation for shared subtree](https://www.kernel.org/doc/Documentation/filesystems/sharedsubtree.txt).
#### Options for Named Volumes
The following options can only be used for named volumes (`type=volume`);
| Option | Description
|:----------------------|:--------------------------------------------------------------------------------------------------------------------
| **volume-driver** | Name of the volume-driver plugin to use for the volume. Defaults to ``"local"``, to use the local volume driver to create the volume if the volume does not exist.
| **volume-label** | One or more custom metadata ("labels") to apply to the volume upon creation. For example, `volume-label=mylabel=hello-world,my-other-label=hello-mars`. For more information about labels, refer to [apply custom metadata](../../userguide/labels-custom-metadata.md).
| **volume-nocopy** | By default, if you attach an empty volume to a container, and files or directories already existed at the mount-path in the container (`dst`), the Engine copies those files and directories into the volume, allowing the host to access them. Set `volume-nocopy` to disables copying files from the container's filesystem to the volume and mount the empty volume.<br /><br />A value is optional:<ul><li>`true` or `1`: Default if you do not provide a value. Disables copying.</li><li>`false` or `0`: Enables copying.</li></ul>
| **volume-opt** | Options specific to a given volume driver, which will be passed to the driver when creating the volume. Options are provided as a comma-separated list of key/value pairs, for example, `volume-opt=some-option=some-value,some-other-option=some-other-value`. For available options for a given driver, refer to that driver's documentation.
#### Differences between "--mount" and "--volume"
The `--mount` flag supports most options that are supported by the `-v`
or `--volume` flag for `docker run`, with some important exceptions:
- The `--mount` flag allows you to specify a volume driver and volume driver
options *per volume*, without creating the volumes in advance. In contrast,
`docker run` allows you to specify a single volume driver which is shared
by all volumes, using the `--volume-driver` flag.
- The `--mount` flag allows you to specify custom metadata ("labels") for a volume,
before the volume is created.
- When you use `--mount` with `type=bind`, the host-path must refer to an *existing*
path on the host. The path will not be created for you and the service will fail
with an error if the path does not exist.
- The `--mount` flag does not allow you to relabel a volume with `Z` or `z` flags,
which are used for `selinux` labeling.
#### Create a service using a named volume
The following example creates a service that uses a named volume:
```bash
$ docker service create \
--name my-service \
--replicas 3 \
--mount type=volume,source=my-volume,destination=/path/in/container,volume-label="color=red",volume-label="shape=round" \
nginx:alpine
```
For each replica of the service, the engine requests a volume named "my-volume"
from the default ("local") volume driver where the task is deployed. If the
volume does not exist, the engine creates a new volume and applies the "color"
and "shape" labels.
When the task is started, the volume is mounted on `/path/in/container/` inside
the container.
Be aware that the default ("local") volume is a locally scoped volume driver.
This means that depending on where a task is deployed, either that task gets a
*new* volume named "my-volume", or shares the same "my-volume" with other tasks
of the same service. Multiple containers writing to a single shared volume can
cause data corruption if the software running inside the container is not
designed to handle concurrent processes writing to the same location. Also take
into account that containers can be re-scheduled by the Swarm orchestrator and
be deployed on a different node.
#### Create a service that uses an anonymous volume
The following command creates a service with three replicas with an anonymous
volume on `/path/in/container`:
```bash
$ docker service create \
--name my-service \
--replicas 3 \
--mount type=volume,destination=/path/in/container \
nginx:alpine
```
In this example, no name (`source`) is specified for the volume, so a new volume
is created for each task. This guarantees that each task gets its own volume,
and volumes are not shared between tasks. Anonymous volumes are removed after
the task using them is complete.
#### Create a service that uses a bind-mounted host directory
The following example bind-mounts a host directory at `/path/in/container` in
the containers backing the service:
```bash
$ docker service create \
--name my-service \
--mount type=bind,source=/path/on/host,destination=/path/in/container \
nginx:alpine
```
### Set service mode (--mode)
You can set the service mode to "replicated" (default) or to "global". A
replicated service runs the number of replica tasks you specify. A global
The service mode determines whether this is a _replicated_ service or a _global_
service. A replicated service runs as many tasks as specified, while a global
service runs on each active node in the swarm.
The following command creates a "global" service:
The following command creates a global service:
```bash
$ docker service create \
@ -159,13 +329,13 @@ constraint expressions. Multiple constraints find nodes that satisfy every
expression (AND match). Constraints can match node or Docker Engine labels as
follows:
| node attribute | matches | example |
|:------------- |:-------------| :---------------------------------------------|
| node.id | node ID | `node.id == 2ivku8v2gvtg4` |
| node.hostname | node hostname | `node.hostname != node-2` |
| node.role | node role: manager | `node.role == manager` |
| node.labels | user defined node labels | `node.labels.security == high` |
| engine.labels | Docker Engine's labels | `engine.labels.operatingsystem == ubuntu 14.04`|
| node attribute | matches | example |
|:----------------|:--------------------------|:------------------------------------------------|
| node.id | node ID | `node.id == 2ivku8v2gvtg4` |
| node.hostname | node hostname | `node.hostname != node-2` |
| node.role | node role: manager | `node.role == manager` |
| node.labels | user defined node labels | `node.labels.security == high` |
| engine.labels | Docker Engine's labels | `engine.labels.operatingsystem == ubuntu 14.04` |
`engine.labels` apply to Docker Engine labels like operating system,
drivers, etc. Swarm administrators add `node.labels` for operational purposes by
@ -240,3 +410,5 @@ the service running on the node. For more information refer to
* [service scale](service_scale.md)
* [service ps](service_ps.md)
* [service update](service_update.md)
<style>table tr > td:first-child { white-space: nowrap;}</style>

View file

@ -67,6 +67,46 @@ for further information.
$ docker service update --limit-cpu 2 redis
```
### Adding and removing mounts
Use the `--mount-add` or `--mount-rm` options add or remove a service's bind-mounts
or volumes.
The following example creates a service which mounts the `test-data` volume to
`/somewhere`. The next step updates the service to also mount the `other-volume`
volume to `/somewhere-else`volume, The last step unmounts the `/somewhere` mount
point, effectively removing the `test-data` volume. Each command returns the
service name.
- The `--mount-add` flag takes the same parameters as the `--mount` flag on
`service create`. Refer to the [volumes and
bind-mounts](service_create.md#volumes-and-bind-mounts-mount) section in the
`service create` reference for details.
- The `--mount-rm` flag takes the `target` path of the mount.
```bash
$ docker service create \
--name=myservice \
--mount \
type=volume,source=test-data,target=/somewhere \
nginx:alpine \
myservice
myservice
$ docker service update \
--mount-add \
type=volume,source=other-volume,target=/somewhere-else \
myservice
myservice
$ docker service update --mount-rm /somewhere myservice
myservice
```
## Related information
* [service create](service_create.md)