|
@@ -1,772 +0,0 @@
|
|
|
-// Package difflib is a partial port of Python difflib module.
|
|
|
-//
|
|
|
-// It provides tools to compare sequences of strings and generate textual diffs.
|
|
|
-//
|
|
|
-// The following class and functions have been ported:
|
|
|
-//
|
|
|
-// - SequenceMatcher
|
|
|
-//
|
|
|
-// - unified_diff
|
|
|
-//
|
|
|
-// - context_diff
|
|
|
-//
|
|
|
-// Getting unified diffs was the main goal of the port. Keep in mind this code
|
|
|
-// is mostly suitable to output text differences in a human friendly way, there
|
|
|
-// are no guarantees generated diffs are consumable by patch(1).
|
|
|
-package difflib
|
|
|
-
|
|
|
-import (
|
|
|
- "bufio"
|
|
|
- "bytes"
|
|
|
- "fmt"
|
|
|
- "io"
|
|
|
- "strings"
|
|
|
-)
|
|
|
-
|
|
|
-func min(a, b int) int {
|
|
|
- if a < b {
|
|
|
- return a
|
|
|
- }
|
|
|
- return b
|
|
|
-}
|
|
|
-
|
|
|
-func max(a, b int) int {
|
|
|
- if a > b {
|
|
|
- return a
|
|
|
- }
|
|
|
- return b
|
|
|
-}
|
|
|
-
|
|
|
-func calculateRatio(matches, length int) float64 {
|
|
|
- if length > 0 {
|
|
|
- return 2.0 * float64(matches) / float64(length)
|
|
|
- }
|
|
|
- return 1.0
|
|
|
-}
|
|
|
-
|
|
|
-type Match struct {
|
|
|
- A int
|
|
|
- B int
|
|
|
- Size int
|
|
|
-}
|
|
|
-
|
|
|
-type OpCode struct {
|
|
|
- Tag byte
|
|
|
- I1 int
|
|
|
- I2 int
|
|
|
- J1 int
|
|
|
- J2 int
|
|
|
-}
|
|
|
-
|
|
|
-// SequenceMatcher compares sequence of strings. The basic
|
|
|
-// algorithm predates, and is a little fancier than, an algorithm
|
|
|
-// published in the late 1980's by Ratcliff and Obershelp under the
|
|
|
-// hyperbolic name "gestalt pattern matching". The basic idea is to find
|
|
|
-// the longest contiguous matching subsequence that contains no "junk"
|
|
|
-// elements (R-O doesn't address junk). The same idea is then applied
|
|
|
-// recursively to the pieces of the sequences to the left and to the right
|
|
|
-// of the matching subsequence. This does not yield minimal edit
|
|
|
-// sequences, but does tend to yield matches that "look right" to people.
|
|
|
-//
|
|
|
-// SequenceMatcher tries to compute a "human-friendly diff" between two
|
|
|
-// sequences. Unlike e.g. UNIX(tm) diff, the fundamental notion is the
|
|
|
-// longest *contiguous* & junk-free matching subsequence. That's what
|
|
|
-// catches peoples' eyes. The Windows(tm) windiff has another interesting
|
|
|
-// notion, pairing up elements that appear uniquely in each sequence.
|
|
|
-// That, and the method here, appear to yield more intuitive difference
|
|
|
-// reports than does diff. This method appears to be the least vulnerable
|
|
|
-// to synching up on blocks of "junk lines", though (like blank lines in
|
|
|
-// ordinary text files, or maybe "<P>" lines in HTML files). That may be
|
|
|
-// because this is the only method of the 3 that has a *concept* of
|
|
|
-// "junk" <wink>.
|
|
|
-//
|
|
|
-// Timing: Basic R-O is cubic time worst case and quadratic time expected
|
|
|
-// case. SequenceMatcher is quadratic time for the worst case and has
|
|
|
-// expected-case behavior dependent in a complicated way on how many
|
|
|
-// elements the sequences have in common; best case time is linear.
|
|
|
-type SequenceMatcher struct {
|
|
|
- a []string
|
|
|
- b []string
|
|
|
- b2j map[string][]int
|
|
|
- IsJunk func(string) bool
|
|
|
- autoJunk bool
|
|
|
- bJunk map[string]struct{}
|
|
|
- matchingBlocks []Match
|
|
|
- fullBCount map[string]int
|
|
|
- bPopular map[string]struct{}
|
|
|
- opCodes []OpCode
|
|
|
-}
|
|
|
-
|
|
|
-func NewMatcher(a, b []string) *SequenceMatcher {
|
|
|
- m := SequenceMatcher{autoJunk: true}
|
|
|
- m.SetSeqs(a, b)
|
|
|
- return &m
|
|
|
-}
|
|
|
-
|
|
|
-func NewMatcherWithJunk(a, b []string, autoJunk bool,
|
|
|
- isJunk func(string) bool) *SequenceMatcher {
|
|
|
-
|
|
|
- m := SequenceMatcher{IsJunk: isJunk, autoJunk: autoJunk}
|
|
|
- m.SetSeqs(a, b)
|
|
|
- return &m
|
|
|
-}
|
|
|
-
|
|
|
-// Set two sequences to be compared.
|
|
|
-func (m *SequenceMatcher) SetSeqs(a, b []string) {
|
|
|
- m.SetSeq1(a)
|
|
|
- m.SetSeq2(b)
|
|
|
-}
|
|
|
-
|
|
|
-// Set the first sequence to be compared. The second sequence to be compared is
|
|
|
-// not changed.
|
|
|
-//
|
|
|
-// SequenceMatcher computes and caches detailed information about the second
|
|
|
-// sequence, so if you want to compare one sequence S against many sequences,
|
|
|
-// use .SetSeq2(s) once and call .SetSeq1(x) repeatedly for each of the other
|
|
|
-// sequences.
|
|
|
-//
|
|
|
-// See also SetSeqs() and SetSeq2().
|
|
|
-func (m *SequenceMatcher) SetSeq1(a []string) {
|
|
|
- if &a == &m.a {
|
|
|
- return
|
|
|
- }
|
|
|
- m.a = a
|
|
|
- m.matchingBlocks = nil
|
|
|
- m.opCodes = nil
|
|
|
-}
|
|
|
-
|
|
|
-// Set the second sequence to be compared. The first sequence to be compared is
|
|
|
-// not changed.
|
|
|
-func (m *SequenceMatcher) SetSeq2(b []string) {
|
|
|
- if &b == &m.b {
|
|
|
- return
|
|
|
- }
|
|
|
- m.b = b
|
|
|
- m.matchingBlocks = nil
|
|
|
- m.opCodes = nil
|
|
|
- m.fullBCount = nil
|
|
|
- m.chainB()
|
|
|
-}
|
|
|
-
|
|
|
-func (m *SequenceMatcher) chainB() {
|
|
|
- // Populate line -> index mapping
|
|
|
- b2j := map[string][]int{}
|
|
|
- for i, s := range m.b {
|
|
|
- indices := b2j[s]
|
|
|
- indices = append(indices, i)
|
|
|
- b2j[s] = indices
|
|
|
- }
|
|
|
-
|
|
|
- // Purge junk elements
|
|
|
- m.bJunk = map[string]struct{}{}
|
|
|
- if m.IsJunk != nil {
|
|
|
- junk := m.bJunk
|
|
|
- for s, _ := range b2j {
|
|
|
- if m.IsJunk(s) {
|
|
|
- junk[s] = struct{}{}
|
|
|
- }
|
|
|
- }
|
|
|
- for s, _ := range junk {
|
|
|
- delete(b2j, s)
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // Purge remaining popular elements
|
|
|
- popular := map[string]struct{}{}
|
|
|
- n := len(m.b)
|
|
|
- if m.autoJunk && n >= 200 {
|
|
|
- ntest := n/100 + 1
|
|
|
- for s, indices := range b2j {
|
|
|
- if len(indices) > ntest {
|
|
|
- popular[s] = struct{}{}
|
|
|
- }
|
|
|
- }
|
|
|
- for s, _ := range popular {
|
|
|
- delete(b2j, s)
|
|
|
- }
|
|
|
- }
|
|
|
- m.bPopular = popular
|
|
|
- m.b2j = b2j
|
|
|
-}
|
|
|
-
|
|
|
-func (m *SequenceMatcher) isBJunk(s string) bool {
|
|
|
- _, ok := m.bJunk[s]
|
|
|
- return ok
|
|
|
-}
|
|
|
-
|
|
|
-// Find longest matching block in a[alo:ahi] and b[blo:bhi].
|
|
|
-//
|
|
|
-// If IsJunk is not defined:
|
|
|
-//
|
|
|
-// Return (i,j,k) such that a[i:i+k] is equal to b[j:j+k], where
|
|
|
-// alo <= i <= i+k <= ahi
|
|
|
-// blo <= j <= j+k <= bhi
|
|
|
-// and for all (i',j',k') meeting those conditions,
|
|
|
-// k >= k'
|
|
|
-// i <= i'
|
|
|
-// and if i == i', j <= j'
|
|
|
-//
|
|
|
-// In other words, of all maximal matching blocks, return one that
|
|
|
-// starts earliest in a, and of all those maximal matching blocks that
|
|
|
-// start earliest in a, return the one that starts earliest in b.
|
|
|
-//
|
|
|
-// If IsJunk is defined, first the longest matching block is
|
|
|
-// determined as above, but with the additional restriction that no
|
|
|
-// junk element appears in the block. Then that block is extended as
|
|
|
-// far as possible by matching (only) junk elements on both sides. So
|
|
|
-// the resulting block never matches on junk except as identical junk
|
|
|
-// happens to be adjacent to an "interesting" match.
|
|
|
-//
|
|
|
-// If no blocks match, return (alo, blo, 0).
|
|
|
-func (m *SequenceMatcher) findLongestMatch(alo, ahi, blo, bhi int) Match {
|
|
|
- // CAUTION: stripping common prefix or suffix would be incorrect.
|
|
|
- // E.g.,
|
|
|
- // ab
|
|
|
- // acab
|
|
|
- // Longest matching block is "ab", but if common prefix is
|
|
|
- // stripped, it's "a" (tied with "b"). UNIX(tm) diff does so
|
|
|
- // strip, so ends up claiming that ab is changed to acab by
|
|
|
- // inserting "ca" in the middle. That's minimal but unintuitive:
|
|
|
- // "it's obvious" that someone inserted "ac" at the front.
|
|
|
- // Windiff ends up at the same place as diff, but by pairing up
|
|
|
- // the unique 'b's and then matching the first two 'a's.
|
|
|
- besti, bestj, bestsize := alo, blo, 0
|
|
|
-
|
|
|
- // find longest junk-free match
|
|
|
- // during an iteration of the loop, j2len[j] = length of longest
|
|
|
- // junk-free match ending with a[i-1] and b[j]
|
|
|
- j2len := map[int]int{}
|
|
|
- for i := alo; i != ahi; i++ {
|
|
|
- // look at all instances of a[i] in b; note that because
|
|
|
- // b2j has no junk keys, the loop is skipped if a[i] is junk
|
|
|
- newj2len := map[int]int{}
|
|
|
- for _, j := range m.b2j[m.a[i]] {
|
|
|
- // a[i] matches b[j]
|
|
|
- if j < blo {
|
|
|
- continue
|
|
|
- }
|
|
|
- if j >= bhi {
|
|
|
- break
|
|
|
- }
|
|
|
- k := j2len[j-1] + 1
|
|
|
- newj2len[j] = k
|
|
|
- if k > bestsize {
|
|
|
- besti, bestj, bestsize = i-k+1, j-k+1, k
|
|
|
- }
|
|
|
- }
|
|
|
- j2len = newj2len
|
|
|
- }
|
|
|
-
|
|
|
- // Extend the best by non-junk elements on each end. In particular,
|
|
|
- // "popular" non-junk elements aren't in b2j, which greatly speeds
|
|
|
- // the inner loop above, but also means "the best" match so far
|
|
|
- // doesn't contain any junk *or* popular non-junk elements.
|
|
|
- for besti > alo && bestj > blo && !m.isBJunk(m.b[bestj-1]) &&
|
|
|
- m.a[besti-1] == m.b[bestj-1] {
|
|
|
- besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
|
|
|
- }
|
|
|
- for besti+bestsize < ahi && bestj+bestsize < bhi &&
|
|
|
- !m.isBJunk(m.b[bestj+bestsize]) &&
|
|
|
- m.a[besti+bestsize] == m.b[bestj+bestsize] {
|
|
|
- bestsize += 1
|
|
|
- }
|
|
|
-
|
|
|
- // Now that we have a wholly interesting match (albeit possibly
|
|
|
- // empty!), we may as well suck up the matching junk on each
|
|
|
- // side of it too. Can't think of a good reason not to, and it
|
|
|
- // saves post-processing the (possibly considerable) expense of
|
|
|
- // figuring out what to do with it. In the case of an empty
|
|
|
- // interesting match, this is clearly the right thing to do,
|
|
|
- // because no other kind of match is possible in the regions.
|
|
|
- for besti > alo && bestj > blo && m.isBJunk(m.b[bestj-1]) &&
|
|
|
- m.a[besti-1] == m.b[bestj-1] {
|
|
|
- besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
|
|
|
- }
|
|
|
- for besti+bestsize < ahi && bestj+bestsize < bhi &&
|
|
|
- m.isBJunk(m.b[bestj+bestsize]) &&
|
|
|
- m.a[besti+bestsize] == m.b[bestj+bestsize] {
|
|
|
- bestsize += 1
|
|
|
- }
|
|
|
-
|
|
|
- return Match{A: besti, B: bestj, Size: bestsize}
|
|
|
-}
|
|
|
-
|
|
|
-// Return list of triples describing matching subsequences.
|
|
|
-//
|
|
|
-// Each triple is of the form (i, j, n), and means that
|
|
|
-// a[i:i+n] == b[j:j+n]. The triples are monotonically increasing in
|
|
|
-// i and in j. It's also guaranteed that if (i, j, n) and (i', j', n') are
|
|
|
-// adjacent triples in the list, and the second is not the last triple in the
|
|
|
-// list, then i+n != i' or j+n != j'. IOW, adjacent triples never describe
|
|
|
-// adjacent equal blocks.
|
|
|
-//
|
|
|
-// The last triple is a dummy, (len(a), len(b), 0), and is the only
|
|
|
-// triple with n==0.
|
|
|
-func (m *SequenceMatcher) GetMatchingBlocks() []Match {
|
|
|
- if m.matchingBlocks != nil {
|
|
|
- return m.matchingBlocks
|
|
|
- }
|
|
|
-
|
|
|
- var matchBlocks func(alo, ahi, blo, bhi int, matched []Match) []Match
|
|
|
- matchBlocks = func(alo, ahi, blo, bhi int, matched []Match) []Match {
|
|
|
- match := m.findLongestMatch(alo, ahi, blo, bhi)
|
|
|
- i, j, k := match.A, match.B, match.Size
|
|
|
- if match.Size > 0 {
|
|
|
- if alo < i && blo < j {
|
|
|
- matched = matchBlocks(alo, i, blo, j, matched)
|
|
|
- }
|
|
|
- matched = append(matched, match)
|
|
|
- if i+k < ahi && j+k < bhi {
|
|
|
- matched = matchBlocks(i+k, ahi, j+k, bhi, matched)
|
|
|
- }
|
|
|
- }
|
|
|
- return matched
|
|
|
- }
|
|
|
- matched := matchBlocks(0, len(m.a), 0, len(m.b), nil)
|
|
|
-
|
|
|
- // It's possible that we have adjacent equal blocks in the
|
|
|
- // matching_blocks list now.
|
|
|
- nonAdjacent := []Match{}
|
|
|
- i1, j1, k1 := 0, 0, 0
|
|
|
- for _, b := range matched {
|
|
|
- // Is this block adjacent to i1, j1, k1?
|
|
|
- i2, j2, k2 := b.A, b.B, b.Size
|
|
|
- if i1+k1 == i2 && j1+k1 == j2 {
|
|
|
- // Yes, so collapse them -- this just increases the length of
|
|
|
- // the first block by the length of the second, and the first
|
|
|
- // block so lengthened remains the block to compare against.
|
|
|
- k1 += k2
|
|
|
- } else {
|
|
|
- // Not adjacent. Remember the first block (k1==0 means it's
|
|
|
- // the dummy we started with), and make the second block the
|
|
|
- // new block to compare against.
|
|
|
- if k1 > 0 {
|
|
|
- nonAdjacent = append(nonAdjacent, Match{i1, j1, k1})
|
|
|
- }
|
|
|
- i1, j1, k1 = i2, j2, k2
|
|
|
- }
|
|
|
- }
|
|
|
- if k1 > 0 {
|
|
|
- nonAdjacent = append(nonAdjacent, Match{i1, j1, k1})
|
|
|
- }
|
|
|
-
|
|
|
- nonAdjacent = append(nonAdjacent, Match{len(m.a), len(m.b), 0})
|
|
|
- m.matchingBlocks = nonAdjacent
|
|
|
- return m.matchingBlocks
|
|
|
-}
|
|
|
-
|
|
|
-// Return list of 5-tuples describing how to turn a into b.
|
|
|
-//
|
|
|
-// Each tuple is of the form (tag, i1, i2, j1, j2). The first tuple
|
|
|
-// has i1 == j1 == 0, and remaining tuples have i1 == the i2 from the
|
|
|
-// tuple preceding it, and likewise for j1 == the previous j2.
|
|
|
-//
|
|
|
-// The tags are characters, with these meanings:
|
|
|
-//
|
|
|
-// 'r' (replace): a[i1:i2] should be replaced by b[j1:j2]
|
|
|
-//
|
|
|
-// 'd' (delete): a[i1:i2] should be deleted, j1==j2 in this case.
|
|
|
-//
|
|
|
-// 'i' (insert): b[j1:j2] should be inserted at a[i1:i1], i1==i2 in this case.
|
|
|
-//
|
|
|
-// 'e' (equal): a[i1:i2] == b[j1:j2]
|
|
|
-func (m *SequenceMatcher) GetOpCodes() []OpCode {
|
|
|
- if m.opCodes != nil {
|
|
|
- return m.opCodes
|
|
|
- }
|
|
|
- i, j := 0, 0
|
|
|
- matching := m.GetMatchingBlocks()
|
|
|
- opCodes := make([]OpCode, 0, len(matching))
|
|
|
- for _, m := range matching {
|
|
|
- // invariant: we've pumped out correct diffs to change
|
|
|
- // a[:i] into b[:j], and the next matching block is
|
|
|
- // a[ai:ai+size] == b[bj:bj+size]. So we need to pump
|
|
|
- // out a diff to change a[i:ai] into b[j:bj], pump out
|
|
|
- // the matching block, and move (i,j) beyond the match
|
|
|
- ai, bj, size := m.A, m.B, m.Size
|
|
|
- tag := byte(0)
|
|
|
- if i < ai && j < bj {
|
|
|
- tag = 'r'
|
|
|
- } else if i < ai {
|
|
|
- tag = 'd'
|
|
|
- } else if j < bj {
|
|
|
- tag = 'i'
|
|
|
- }
|
|
|
- if tag > 0 {
|
|
|
- opCodes = append(opCodes, OpCode{tag, i, ai, j, bj})
|
|
|
- }
|
|
|
- i, j = ai+size, bj+size
|
|
|
- // the list of matching blocks is terminated by a
|
|
|
- // sentinel with size 0
|
|
|
- if size > 0 {
|
|
|
- opCodes = append(opCodes, OpCode{'e', ai, i, bj, j})
|
|
|
- }
|
|
|
- }
|
|
|
- m.opCodes = opCodes
|
|
|
- return m.opCodes
|
|
|
-}
|
|
|
-
|
|
|
-// Isolate change clusters by eliminating ranges with no changes.
|
|
|
-//
|
|
|
-// Return a generator of groups with up to n lines of context.
|
|
|
-// Each group is in the same format as returned by GetOpCodes().
|
|
|
-func (m *SequenceMatcher) GetGroupedOpCodes(n int) [][]OpCode {
|
|
|
- if n < 0 {
|
|
|
- n = 3
|
|
|
- }
|
|
|
- codes := m.GetOpCodes()
|
|
|
- if len(codes) == 0 {
|
|
|
- codes = []OpCode{OpCode{'e', 0, 1, 0, 1}}
|
|
|
- }
|
|
|
- // Fixup leading and trailing groups if they show no changes.
|
|
|
- if codes[0].Tag == 'e' {
|
|
|
- c := codes[0]
|
|
|
- i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
|
|
|
- codes[0] = OpCode{c.Tag, max(i1, i2-n), i2, max(j1, j2-n), j2}
|
|
|
- }
|
|
|
- if codes[len(codes)-1].Tag == 'e' {
|
|
|
- c := codes[len(codes)-1]
|
|
|
- i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
|
|
|
- codes[len(codes)-1] = OpCode{c.Tag, i1, min(i2, i1+n), j1, min(j2, j1+n)}
|
|
|
- }
|
|
|
- nn := n + n
|
|
|
- groups := [][]OpCode{}
|
|
|
- group := []OpCode{}
|
|
|
- for _, c := range codes {
|
|
|
- i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
|
|
|
- // End the current group and start a new one whenever
|
|
|
- // there is a large range with no changes.
|
|
|
- if c.Tag == 'e' && i2-i1 > nn {
|
|
|
- group = append(group, OpCode{c.Tag, i1, min(i2, i1+n),
|
|
|
- j1, min(j2, j1+n)})
|
|
|
- groups = append(groups, group)
|
|
|
- group = []OpCode{}
|
|
|
- i1, j1 = max(i1, i2-n), max(j1, j2-n)
|
|
|
- }
|
|
|
- group = append(group, OpCode{c.Tag, i1, i2, j1, j2})
|
|
|
- }
|
|
|
- if len(group) > 0 && !(len(group) == 1 && group[0].Tag == 'e') {
|
|
|
- groups = append(groups, group)
|
|
|
- }
|
|
|
- return groups
|
|
|
-}
|
|
|
-
|
|
|
-// Return a measure of the sequences' similarity (float in [0,1]).
|
|
|
-//
|
|
|
-// Where T is the total number of elements in both sequences, and
|
|
|
-// M is the number of matches, this is 2.0*M / T.
|
|
|
-// Note that this is 1 if the sequences are identical, and 0 if
|
|
|
-// they have nothing in common.
|
|
|
-//
|
|
|
-// .Ratio() is expensive to compute if you haven't already computed
|
|
|
-// .GetMatchingBlocks() or .GetOpCodes(), in which case you may
|
|
|
-// want to try .QuickRatio() or .RealQuickRation() first to get an
|
|
|
-// upper bound.
|
|
|
-func (m *SequenceMatcher) Ratio() float64 {
|
|
|
- matches := 0
|
|
|
- for _, m := range m.GetMatchingBlocks() {
|
|
|
- matches += m.Size
|
|
|
- }
|
|
|
- return calculateRatio(matches, len(m.a)+len(m.b))
|
|
|
-}
|
|
|
-
|
|
|
-// Return an upper bound on ratio() relatively quickly.
|
|
|
-//
|
|
|
-// This isn't defined beyond that it is an upper bound on .Ratio(), and
|
|
|
-// is faster to compute.
|
|
|
-func (m *SequenceMatcher) QuickRatio() float64 {
|
|
|
- // viewing a and b as multisets, set matches to the cardinality
|
|
|
- // of their intersection; this counts the number of matches
|
|
|
- // without regard to order, so is clearly an upper bound
|
|
|
- if m.fullBCount == nil {
|
|
|
- m.fullBCount = map[string]int{}
|
|
|
- for _, s := range m.b {
|
|
|
- m.fullBCount[s] = m.fullBCount[s] + 1
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // avail[x] is the number of times x appears in 'b' less the
|
|
|
- // number of times we've seen it in 'a' so far ... kinda
|
|
|
- avail := map[string]int{}
|
|
|
- matches := 0
|
|
|
- for _, s := range m.a {
|
|
|
- n, ok := avail[s]
|
|
|
- if !ok {
|
|
|
- n = m.fullBCount[s]
|
|
|
- }
|
|
|
- avail[s] = n - 1
|
|
|
- if n > 0 {
|
|
|
- matches += 1
|
|
|
- }
|
|
|
- }
|
|
|
- return calculateRatio(matches, len(m.a)+len(m.b))
|
|
|
-}
|
|
|
-
|
|
|
-// Return an upper bound on ratio() very quickly.
|
|
|
-//
|
|
|
-// This isn't defined beyond that it is an upper bound on .Ratio(), and
|
|
|
-// is faster to compute than either .Ratio() or .QuickRatio().
|
|
|
-func (m *SequenceMatcher) RealQuickRatio() float64 {
|
|
|
- la, lb := len(m.a), len(m.b)
|
|
|
- return calculateRatio(min(la, lb), la+lb)
|
|
|
-}
|
|
|
-
|
|
|
-// Convert range to the "ed" format
|
|
|
-func formatRangeUnified(start, stop int) string {
|
|
|
- // Per the diff spec at http://www.unix.org/single_unix_specification/
|
|
|
- beginning := start + 1 // lines start numbering with one
|
|
|
- length := stop - start
|
|
|
- if length == 1 {
|
|
|
- return fmt.Sprintf("%d", beginning)
|
|
|
- }
|
|
|
- if length == 0 {
|
|
|
- beginning -= 1 // empty ranges begin at line just before the range
|
|
|
- }
|
|
|
- return fmt.Sprintf("%d,%d", beginning, length)
|
|
|
-}
|
|
|
-
|
|
|
-// Unified diff parameters
|
|
|
-type UnifiedDiff struct {
|
|
|
- A []string // First sequence lines
|
|
|
- FromFile string // First file name
|
|
|
- FromDate string // First file time
|
|
|
- B []string // Second sequence lines
|
|
|
- ToFile string // Second file name
|
|
|
- ToDate string // Second file time
|
|
|
- Eol string // Headers end of line, defaults to LF
|
|
|
- Context int // Number of context lines
|
|
|
-}
|
|
|
-
|
|
|
-// Compare two sequences of lines; generate the delta as a unified diff.
|
|
|
-//
|
|
|
-// Unified diffs are a compact way of showing line changes and a few
|
|
|
-// lines of context. The number of context lines is set by 'n' which
|
|
|
-// defaults to three.
|
|
|
-//
|
|
|
-// By default, the diff control lines (those with ---, +++, or @@) are
|
|
|
-// created with a trailing newline. This is helpful so that inputs
|
|
|
-// created from file.readlines() result in diffs that are suitable for
|
|
|
-// file.writelines() since both the inputs and outputs have trailing
|
|
|
-// newlines.
|
|
|
-//
|
|
|
-// For inputs that do not have trailing newlines, set the lineterm
|
|
|
-// argument to "" so that the output will be uniformly newline free.
|
|
|
-//
|
|
|
-// The unidiff format normally has a header for filenames and modification
|
|
|
-// times. Any or all of these may be specified using strings for
|
|
|
-// 'fromfile', 'tofile', 'fromfiledate', and 'tofiledate'.
|
|
|
-// The modification times are normally expressed in the ISO 8601 format.
|
|
|
-func WriteUnifiedDiff(writer io.Writer, diff UnifiedDiff) error {
|
|
|
- buf := bufio.NewWriter(writer)
|
|
|
- defer buf.Flush()
|
|
|
- wf := func(format string, args ...interface{}) error {
|
|
|
- _, err := buf.WriteString(fmt.Sprintf(format, args...))
|
|
|
- return err
|
|
|
- }
|
|
|
- ws := func(s string) error {
|
|
|
- _, err := buf.WriteString(s)
|
|
|
- return err
|
|
|
- }
|
|
|
-
|
|
|
- if len(diff.Eol) == 0 {
|
|
|
- diff.Eol = "\n"
|
|
|
- }
|
|
|
-
|
|
|
- started := false
|
|
|
- m := NewMatcher(diff.A, diff.B)
|
|
|
- for _, g := range m.GetGroupedOpCodes(diff.Context) {
|
|
|
- if !started {
|
|
|
- started = true
|
|
|
- fromDate := ""
|
|
|
- if len(diff.FromDate) > 0 {
|
|
|
- fromDate = "\t" + diff.FromDate
|
|
|
- }
|
|
|
- toDate := ""
|
|
|
- if len(diff.ToDate) > 0 {
|
|
|
- toDate = "\t" + diff.ToDate
|
|
|
- }
|
|
|
- if diff.FromFile != "" || diff.ToFile != "" {
|
|
|
- err := wf("--- %s%s%s", diff.FromFile, fromDate, diff.Eol)
|
|
|
- if err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
- err = wf("+++ %s%s%s", diff.ToFile, toDate, diff.Eol)
|
|
|
- if err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- first, last := g[0], g[len(g)-1]
|
|
|
- range1 := formatRangeUnified(first.I1, last.I2)
|
|
|
- range2 := formatRangeUnified(first.J1, last.J2)
|
|
|
- if err := wf("@@ -%s +%s @@%s", range1, range2, diff.Eol); err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
- for _, c := range g {
|
|
|
- i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
|
|
|
- if c.Tag == 'e' {
|
|
|
- for _, line := range diff.A[i1:i2] {
|
|
|
- if err := ws(" " + line); err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
- }
|
|
|
- continue
|
|
|
- }
|
|
|
- if c.Tag == 'r' || c.Tag == 'd' {
|
|
|
- for _, line := range diff.A[i1:i2] {
|
|
|
- if err := ws("-" + line); err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- if c.Tag == 'r' || c.Tag == 'i' {
|
|
|
- for _, line := range diff.B[j1:j2] {
|
|
|
- if err := ws("+" + line); err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- return nil
|
|
|
-}
|
|
|
-
|
|
|
-// Like WriteUnifiedDiff but returns the diff a string.
|
|
|
-func GetUnifiedDiffString(diff UnifiedDiff) (string, error) {
|
|
|
- w := &bytes.Buffer{}
|
|
|
- err := WriteUnifiedDiff(w, diff)
|
|
|
- return string(w.Bytes()), err
|
|
|
-}
|
|
|
-
|
|
|
-// Convert range to the "ed" format.
|
|
|
-func formatRangeContext(start, stop int) string {
|
|
|
- // Per the diff spec at http://www.unix.org/single_unix_specification/
|
|
|
- beginning := start + 1 // lines start numbering with one
|
|
|
- length := stop - start
|
|
|
- if length == 0 {
|
|
|
- beginning -= 1 // empty ranges begin at line just before the range
|
|
|
- }
|
|
|
- if length <= 1 {
|
|
|
- return fmt.Sprintf("%d", beginning)
|
|
|
- }
|
|
|
- return fmt.Sprintf("%d,%d", beginning, beginning+length-1)
|
|
|
-}
|
|
|
-
|
|
|
-type ContextDiff UnifiedDiff
|
|
|
-
|
|
|
-// Compare two sequences of lines; generate the delta as a context diff.
|
|
|
-//
|
|
|
-// Context diffs are a compact way of showing line changes and a few
|
|
|
-// lines of context. The number of context lines is set by diff.Context
|
|
|
-// which defaults to three.
|
|
|
-//
|
|
|
-// By default, the diff control lines (those with *** or ---) are
|
|
|
-// created with a trailing newline.
|
|
|
-//
|
|
|
-// For inputs that do not have trailing newlines, set the diff.Eol
|
|
|
-// argument to "" so that the output will be uniformly newline free.
|
|
|
-//
|
|
|
-// The context diff format normally has a header for filenames and
|
|
|
-// modification times. Any or all of these may be specified using
|
|
|
-// strings for diff.FromFile, diff.ToFile, diff.FromDate, diff.ToDate.
|
|
|
-// The modification times are normally expressed in the ISO 8601 format.
|
|
|
-// If not specified, the strings default to blanks.
|
|
|
-func WriteContextDiff(writer io.Writer, diff ContextDiff) error {
|
|
|
- buf := bufio.NewWriter(writer)
|
|
|
- defer buf.Flush()
|
|
|
- var diffErr error
|
|
|
- wf := func(format string, args ...interface{}) {
|
|
|
- _, err := buf.WriteString(fmt.Sprintf(format, args...))
|
|
|
- if diffErr == nil && err != nil {
|
|
|
- diffErr = err
|
|
|
- }
|
|
|
- }
|
|
|
- ws := func(s string) {
|
|
|
- _, err := buf.WriteString(s)
|
|
|
- if diffErr == nil && err != nil {
|
|
|
- diffErr = err
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- if len(diff.Eol) == 0 {
|
|
|
- diff.Eol = "\n"
|
|
|
- }
|
|
|
-
|
|
|
- prefix := map[byte]string{
|
|
|
- 'i': "+ ",
|
|
|
- 'd': "- ",
|
|
|
- 'r': "! ",
|
|
|
- 'e': " ",
|
|
|
- }
|
|
|
-
|
|
|
- started := false
|
|
|
- m := NewMatcher(diff.A, diff.B)
|
|
|
- for _, g := range m.GetGroupedOpCodes(diff.Context) {
|
|
|
- if !started {
|
|
|
- started = true
|
|
|
- fromDate := ""
|
|
|
- if len(diff.FromDate) > 0 {
|
|
|
- fromDate = "\t" + diff.FromDate
|
|
|
- }
|
|
|
- toDate := ""
|
|
|
- if len(diff.ToDate) > 0 {
|
|
|
- toDate = "\t" + diff.ToDate
|
|
|
- }
|
|
|
- if diff.FromFile != "" || diff.ToFile != "" {
|
|
|
- wf("*** %s%s%s", diff.FromFile, fromDate, diff.Eol)
|
|
|
- wf("--- %s%s%s", diff.ToFile, toDate, diff.Eol)
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- first, last := g[0], g[len(g)-1]
|
|
|
- ws("***************" + diff.Eol)
|
|
|
-
|
|
|
- range1 := formatRangeContext(first.I1, last.I2)
|
|
|
- wf("*** %s ****%s", range1, diff.Eol)
|
|
|
- for _, c := range g {
|
|
|
- if c.Tag == 'r' || c.Tag == 'd' {
|
|
|
- for _, cc := range g {
|
|
|
- if cc.Tag == 'i' {
|
|
|
- continue
|
|
|
- }
|
|
|
- for _, line := range diff.A[cc.I1:cc.I2] {
|
|
|
- ws(prefix[cc.Tag] + line)
|
|
|
- }
|
|
|
- }
|
|
|
- break
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- range2 := formatRangeContext(first.J1, last.J2)
|
|
|
- wf("--- %s ----%s", range2, diff.Eol)
|
|
|
- for _, c := range g {
|
|
|
- if c.Tag == 'r' || c.Tag == 'i' {
|
|
|
- for _, cc := range g {
|
|
|
- if cc.Tag == 'd' {
|
|
|
- continue
|
|
|
- }
|
|
|
- for _, line := range diff.B[cc.J1:cc.J2] {
|
|
|
- ws(prefix[cc.Tag] + line)
|
|
|
- }
|
|
|
- }
|
|
|
- break
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- return diffErr
|
|
|
-}
|
|
|
-
|
|
|
-// Like WriteContextDiff but returns the diff a string.
|
|
|
-func GetContextDiffString(diff ContextDiff) (string, error) {
|
|
|
- w := &bytes.Buffer{}
|
|
|
- err := WriteContextDiff(w, diff)
|
|
|
- return string(w.Bytes()), err
|
|
|
-}
|
|
|
-
|
|
|
-// Split a string on "\n" while preserving them. The output can be used
|
|
|
-// as input for UnifiedDiff and ContextDiff structures.
|
|
|
-func SplitLines(s string) []string {
|
|
|
- lines := strings.SplitAfter(s, "\n")
|
|
|
- lines[len(lines)-1] += "\n"
|
|
|
- return lines
|
|
|
-}
|