MemoryManager.cpp 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Assertions.h>
  7. #include <AK/Memory.h>
  8. #include <AK/StringView.h>
  9. #include <Kernel/BootInfo.h>
  10. #include <Kernel/CMOS.h>
  11. #include <Kernel/FileSystem/Inode.h>
  12. #include <Kernel/Heap/kmalloc.h>
  13. #include <Kernel/Multiboot.h>
  14. #include <Kernel/Panic.h>
  15. #include <Kernel/Process.h>
  16. #include <Kernel/Sections.h>
  17. #include <Kernel/StdLib.h>
  18. #include <Kernel/VM/AnonymousVMObject.h>
  19. #include <Kernel/VM/MemoryManager.h>
  20. #include <Kernel/VM/PageDirectory.h>
  21. #include <Kernel/VM/PhysicalRegion.h>
  22. #include <Kernel/VM/SharedInodeVMObject.h>
  23. extern u8 start_of_kernel_image[];
  24. extern u8 end_of_kernel_image[];
  25. extern u8 start_of_kernel_text[];
  26. extern u8 start_of_kernel_data[];
  27. extern u8 end_of_kernel_bss[];
  28. extern u8 start_of_ro_after_init[];
  29. extern u8 end_of_ro_after_init[];
  30. extern u8 start_of_unmap_after_init[];
  31. extern u8 end_of_unmap_after_init[];
  32. extern u8 start_of_kernel_ksyms[];
  33. extern u8 end_of_kernel_ksyms[];
  34. extern multiboot_module_entry_t multiboot_copy_boot_modules_array[16];
  35. extern size_t multiboot_copy_boot_modules_count;
  36. // Treat the super pages as logically separate from .bss
  37. __attribute__((section(".super_pages"))) static u8 super_pages[1 * MiB];
  38. namespace Kernel {
  39. // NOTE: We can NOT use AK::Singleton for this class, because
  40. // MemoryManager::initialize is called *before* global constructors are
  41. // run. If we do, then AK::Singleton would get re-initialized, causing
  42. // the memory manager to be initialized twice!
  43. static MemoryManager* s_the;
  44. RecursiveSpinLock s_mm_lock;
  45. MemoryManager& MM
  46. {
  47. return *s_the;
  48. }
  49. bool MemoryManager::is_initialized()
  50. {
  51. return s_the != nullptr;
  52. }
  53. UNMAP_AFTER_INIT MemoryManager::MemoryManager()
  54. {
  55. s_the = this;
  56. ScopedSpinLock lock(s_mm_lock);
  57. parse_memory_map();
  58. write_cr3(kernel_page_directory().cr3());
  59. protect_kernel_image();
  60. // We're temporarily "committing" to two pages that we need to allocate below
  61. if (!commit_user_physical_pages(2))
  62. VERIFY_NOT_REACHED();
  63. m_shared_zero_page = allocate_committed_user_physical_page();
  64. // We're wasting a page here, we just need a special tag (physical
  65. // address) so that we know when we need to lazily allocate a page
  66. // that we should be drawing this page from the committed pool rather
  67. // than potentially failing if no pages are available anymore.
  68. // By using a tag we don't have to query the VMObject for every page
  69. // whether it was committed or not
  70. m_lazy_committed_page = allocate_committed_user_physical_page();
  71. }
  72. UNMAP_AFTER_INIT MemoryManager::~MemoryManager()
  73. {
  74. }
  75. UNMAP_AFTER_INIT void MemoryManager::protect_kernel_image()
  76. {
  77. ScopedSpinLock page_lock(kernel_page_directory().get_lock());
  78. // Disable writing to the kernel text and rodata segments.
  79. for (auto i = start_of_kernel_text; i < start_of_kernel_data; i += PAGE_SIZE) {
  80. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  81. pte.set_writable(false);
  82. }
  83. if (Processor::current().has_feature(CPUFeature::NX)) {
  84. // Disable execution of the kernel data, bss and heap segments.
  85. for (auto i = start_of_kernel_data; i < end_of_kernel_image; i += PAGE_SIZE) {
  86. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  87. pte.set_execute_disabled(true);
  88. }
  89. }
  90. }
  91. UNMAP_AFTER_INIT void MemoryManager::protect_readonly_after_init_memory()
  92. {
  93. ScopedSpinLock mm_lock(s_mm_lock);
  94. ScopedSpinLock page_lock(kernel_page_directory().get_lock());
  95. // Disable writing to the .ro_after_init section
  96. for (auto i = (FlatPtr)&start_of_ro_after_init; i < (FlatPtr)&end_of_ro_after_init; i += PAGE_SIZE) {
  97. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  98. pte.set_writable(false);
  99. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  100. }
  101. }
  102. void MemoryManager::unmap_text_after_init()
  103. {
  104. ScopedSpinLock mm_lock(s_mm_lock);
  105. ScopedSpinLock page_lock(kernel_page_directory().get_lock());
  106. auto start = page_round_down((FlatPtr)&start_of_unmap_after_init);
  107. auto end = page_round_up((FlatPtr)&end_of_unmap_after_init);
  108. // Unmap the entire .unmap_after_init section
  109. for (auto i = start; i < end; i += PAGE_SIZE) {
  110. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  111. pte.clear();
  112. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  113. }
  114. dmesgln("Unmapped {} KiB of kernel text after init! :^)", (end - start) / KiB);
  115. }
  116. void MemoryManager::unmap_ksyms_after_init()
  117. {
  118. ScopedSpinLock mm_lock(s_mm_lock);
  119. ScopedSpinLock page_lock(kernel_page_directory().get_lock());
  120. auto start = page_round_down((FlatPtr)start_of_kernel_ksyms);
  121. auto end = page_round_up((FlatPtr)end_of_kernel_ksyms);
  122. // Unmap the entire .ksyms section
  123. for (auto i = start; i < end; i += PAGE_SIZE) {
  124. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  125. pte.clear();
  126. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  127. }
  128. dmesgln("Unmapped {} KiB of kernel symbols after init! :^)", (end - start) / KiB);
  129. }
  130. UNMAP_AFTER_INIT void MemoryManager::register_reserved_ranges()
  131. {
  132. VERIFY(!m_physical_memory_ranges.is_empty());
  133. ContiguousReservedMemoryRange range;
  134. for (auto& current_range : m_physical_memory_ranges) {
  135. if (current_range.type != PhysicalMemoryRangeType::Reserved) {
  136. if (range.start.is_null())
  137. continue;
  138. m_reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, current_range.start.get() - range.start.get() });
  139. range.start.set((FlatPtr) nullptr);
  140. continue;
  141. }
  142. if (!range.start.is_null()) {
  143. continue;
  144. }
  145. range.start = current_range.start;
  146. }
  147. if (m_physical_memory_ranges.last().type != PhysicalMemoryRangeType::Reserved)
  148. return;
  149. if (range.start.is_null())
  150. return;
  151. m_reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, m_physical_memory_ranges.last().start.get() + m_physical_memory_ranges.last().length - range.start.get() });
  152. }
  153. bool MemoryManager::is_allowed_to_mmap_to_userspace(PhysicalAddress start_address, Range const& range) const
  154. {
  155. VERIFY(!m_reserved_memory_ranges.is_empty());
  156. for (auto& current_range : m_reserved_memory_ranges) {
  157. if (!(current_range.start <= start_address))
  158. continue;
  159. if (!(current_range.start.offset(current_range.length) > start_address))
  160. continue;
  161. if (current_range.length < range.size())
  162. return false;
  163. return true;
  164. }
  165. return false;
  166. }
  167. UNMAP_AFTER_INIT void MemoryManager::parse_memory_map()
  168. {
  169. // Register used memory regions that we know of.
  170. m_used_memory_ranges.ensure_capacity(4);
  171. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::LowMemory, PhysicalAddress(0x00000000), PhysicalAddress(1 * MiB) });
  172. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::Prekernel, start_of_prekernel_image, end_of_prekernel_image });
  173. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::Kernel, PhysicalAddress(virtual_to_low_physical((FlatPtr)start_of_kernel_image)), PhysicalAddress(page_round_up(virtual_to_low_physical((FlatPtr)end_of_kernel_image))) });
  174. if (multiboot_flags & 0x4) {
  175. auto* bootmods_start = multiboot_copy_boot_modules_array;
  176. auto* bootmods_end = bootmods_start + multiboot_copy_boot_modules_count;
  177. for (auto* bootmod = bootmods_start; bootmod < bootmods_end; bootmod++) {
  178. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::BootModule, PhysicalAddress(bootmod->start), PhysicalAddress(bootmod->end) });
  179. }
  180. }
  181. auto* mmap_begin = multiboot_memory_map;
  182. auto* mmap_end = multiboot_memory_map + multiboot_memory_map_count;
  183. struct ContiguousPhysicalRange {
  184. PhysicalAddress lower;
  185. PhysicalAddress upper;
  186. };
  187. Vector<ContiguousPhysicalRange> contiguous_physical_ranges;
  188. for (auto* mmap = mmap_begin; mmap < mmap_end; mmap++) {
  189. dmesgln("MM: Multiboot mmap: address={:p}, length={}, type={}", mmap->addr, mmap->len, mmap->type);
  190. auto start_address = PhysicalAddress(mmap->addr);
  191. auto length = mmap->len;
  192. switch (mmap->type) {
  193. case (MULTIBOOT_MEMORY_AVAILABLE):
  194. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Usable, start_address, length });
  195. break;
  196. case (MULTIBOOT_MEMORY_RESERVED):
  197. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Reserved, start_address, length });
  198. break;
  199. case (MULTIBOOT_MEMORY_ACPI_RECLAIMABLE):
  200. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_Reclaimable, start_address, length });
  201. break;
  202. case (MULTIBOOT_MEMORY_NVS):
  203. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_NVS, start_address, length });
  204. break;
  205. case (MULTIBOOT_MEMORY_BADRAM):
  206. dmesgln("MM: Warning, detected bad memory range!");
  207. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::BadMemory, start_address, length });
  208. break;
  209. default:
  210. dbgln("MM: Unknown range!");
  211. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Unknown, start_address, length });
  212. break;
  213. }
  214. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  215. continue;
  216. // Fix up unaligned memory regions.
  217. auto diff = (FlatPtr)mmap->addr % PAGE_SIZE;
  218. if (diff != 0) {
  219. dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting {:p} by {} bytes", mmap->addr, diff);
  220. diff = PAGE_SIZE - diff;
  221. mmap->addr += diff;
  222. mmap->len -= diff;
  223. }
  224. if ((mmap->len % PAGE_SIZE) != 0) {
  225. dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting length {} by {} bytes", mmap->len, mmap->len % PAGE_SIZE);
  226. mmap->len -= mmap->len % PAGE_SIZE;
  227. }
  228. if (mmap->len < PAGE_SIZE) {
  229. dmesgln("MM: Memory physical_region from bootloader is too small; we want >= {} bytes, but got {} bytes", PAGE_SIZE, mmap->len);
  230. continue;
  231. }
  232. for (PhysicalSize page_base = mmap->addr; page_base <= (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
  233. auto addr = PhysicalAddress(page_base);
  234. // Skip used memory ranges.
  235. bool should_skip = false;
  236. for (auto& used_range : m_used_memory_ranges) {
  237. if (addr.get() >= used_range.start.get() && addr.get() <= used_range.end.get()) {
  238. should_skip = true;
  239. break;
  240. }
  241. }
  242. if (should_skip)
  243. continue;
  244. if (contiguous_physical_ranges.is_empty() || contiguous_physical_ranges.last().upper.offset(PAGE_SIZE) != addr) {
  245. contiguous_physical_ranges.append(ContiguousPhysicalRange {
  246. .lower = addr,
  247. .upper = addr,
  248. });
  249. } else {
  250. contiguous_physical_ranges.last().upper = addr;
  251. }
  252. }
  253. }
  254. for (auto& range : contiguous_physical_ranges) {
  255. m_user_physical_regions.append(PhysicalRegion::try_create(range.lower, range.upper).release_nonnull());
  256. }
  257. // Super pages are guaranteed to be in the first 16MB of physical memory
  258. VERIFY(virtual_to_low_physical((FlatPtr)super_pages) + sizeof(super_pages) < 0x1000000);
  259. // Append statically-allocated super physical physical_region.
  260. m_super_physical_region = PhysicalRegion::try_create(
  261. PhysicalAddress(virtual_to_low_physical(FlatPtr(super_pages))),
  262. PhysicalAddress(virtual_to_low_physical(FlatPtr(super_pages + sizeof(super_pages)))));
  263. VERIFY(m_super_physical_region);
  264. m_system_memory_info.super_physical_pages += m_super_physical_region->size();
  265. for (auto& region : m_user_physical_regions)
  266. m_system_memory_info.user_physical_pages += region.size();
  267. register_reserved_ranges();
  268. for (auto& range : m_reserved_memory_ranges) {
  269. dmesgln("MM: Contiguous reserved range from {}, length is {}", range.start, range.length);
  270. }
  271. initialize_physical_pages();
  272. VERIFY(m_system_memory_info.super_physical_pages > 0);
  273. VERIFY(m_system_memory_info.user_physical_pages > 0);
  274. // We start out with no committed pages
  275. m_system_memory_info.user_physical_pages_uncommitted = m_system_memory_info.user_physical_pages;
  276. for (auto& used_range : m_used_memory_ranges) {
  277. dmesgln("MM: {} range @ {} - {} (size {:#x})", UserMemoryRangeTypeNames[to_underlying(used_range.type)], used_range.start, used_range.end.offset(-1), used_range.end.as_ptr() - used_range.start.as_ptr());
  278. }
  279. dmesgln("MM: Super physical region: {} - {} (size {:#x})", m_super_physical_region->lower(), m_super_physical_region->upper().offset(-1), PAGE_SIZE * m_super_physical_region->size());
  280. m_super_physical_region->initialize_zones();
  281. for (auto& region : m_user_physical_regions) {
  282. dmesgln("MM: User physical region: {} - {} (size {:#x})", region.lower(), region.upper().offset(-1), PAGE_SIZE * region.size());
  283. region.initialize_zones();
  284. }
  285. }
  286. UNMAP_AFTER_INIT void MemoryManager::initialize_physical_pages()
  287. {
  288. // We assume that the physical page range is contiguous and doesn't contain huge gaps!
  289. PhysicalAddress highest_physical_address;
  290. for (auto& range : m_used_memory_ranges) {
  291. if (range.end.get() > highest_physical_address.get())
  292. highest_physical_address = range.end;
  293. }
  294. for (auto& region : m_physical_memory_ranges) {
  295. auto range_end = PhysicalAddress(region.start).offset(region.length);
  296. if (range_end.get() > highest_physical_address.get())
  297. highest_physical_address = range_end;
  298. }
  299. // Calculate how many total physical pages the array will have
  300. m_physical_page_entries_count = PhysicalAddress::physical_page_index(highest_physical_address.get()) + 1;
  301. VERIFY(m_physical_page_entries_count != 0);
  302. VERIFY(!Checked<decltype(m_physical_page_entries_count)>::multiplication_would_overflow(m_physical_page_entries_count, sizeof(PhysicalPageEntry)));
  303. // Calculate how many bytes the array will consume
  304. auto physical_page_array_size = m_physical_page_entries_count * sizeof(PhysicalPageEntry);
  305. auto physical_page_array_pages = page_round_up(physical_page_array_size) / PAGE_SIZE;
  306. VERIFY(physical_page_array_pages * PAGE_SIZE >= physical_page_array_size);
  307. // Calculate how many page tables we will need to be able to map them all
  308. auto needed_page_table_count = (physical_page_array_pages + 512 - 1) / 512;
  309. auto physical_page_array_pages_and_page_tables_count = physical_page_array_pages + needed_page_table_count;
  310. // Now that we know how much memory we need for a contiguous array of PhysicalPage instances, find a memory region that can fit it
  311. PhysicalRegion* found_region { nullptr };
  312. Optional<size_t> found_region_index;
  313. for (size_t i = 0; i < m_user_physical_regions.size(); ++i) {
  314. auto& region = m_user_physical_regions[i];
  315. if (region.size() >= physical_page_array_pages_and_page_tables_count) {
  316. found_region = &region;
  317. found_region_index = i;
  318. break;
  319. }
  320. }
  321. if (!found_region) {
  322. dmesgln("MM: Need {} bytes for physical page management, but no memory region is large enough!", physical_page_array_pages_and_page_tables_count);
  323. VERIFY_NOT_REACHED();
  324. }
  325. VERIFY(m_system_memory_info.user_physical_pages >= physical_page_array_pages_and_page_tables_count);
  326. m_system_memory_info.user_physical_pages -= physical_page_array_pages_and_page_tables_count;
  327. if (found_region->size() == physical_page_array_pages_and_page_tables_count) {
  328. // We're stealing the entire region
  329. m_physical_pages_region = m_user_physical_regions.take(*found_region_index);
  330. } else {
  331. m_physical_pages_region = found_region->try_take_pages_from_beginning(physical_page_array_pages_and_page_tables_count);
  332. }
  333. m_used_memory_ranges.append({ UsedMemoryRangeType::PhysicalPages, m_physical_pages_region->lower(), m_physical_pages_region->upper() });
  334. // Create the bare page directory. This is not a fully constructed page directory and merely contains the allocators!
  335. m_kernel_page_directory = PageDirectory::create_kernel_page_directory();
  336. // Allocate a virtual address range for our array
  337. auto range = m_kernel_page_directory->range_allocator().allocate_anywhere(physical_page_array_pages * PAGE_SIZE);
  338. if (!range.has_value()) {
  339. dmesgln("MM: Could not allocate {} bytes to map physical page array!", physical_page_array_pages * PAGE_SIZE);
  340. VERIFY_NOT_REACHED();
  341. }
  342. // Now that we have our special m_physical_pages_region region with enough pages to hold the entire array
  343. // try to map the entire region into kernel space so we always have it
  344. // We can't use ensure_pte here because it would try to allocate a PhysicalPage and we don't have the array
  345. // mapped yet so we can't create them
  346. ScopedSpinLock lock(s_mm_lock);
  347. // Create page tables at the beginning of m_physical_pages_region, followed by the PhysicalPageEntry array
  348. auto page_tables_base = m_physical_pages_region->lower();
  349. auto physical_page_array_base = page_tables_base.offset(needed_page_table_count * PAGE_SIZE);
  350. auto physical_page_array_current_page = physical_page_array_base.get();
  351. auto virtual_page_array_base = range.value().base().get();
  352. auto virtual_page_array_current_page = virtual_page_array_base;
  353. for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) {
  354. auto virtual_page_base_for_this_pt = virtual_page_array_current_page;
  355. auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE);
  356. auto* pt = reinterpret_cast<PageTableEntry*>(quickmap_page(pt_paddr));
  357. __builtin_memset(pt, 0, PAGE_SIZE);
  358. for (size_t pte_index = 0; pte_index < PAGE_SIZE / sizeof(PageTableEntry); pte_index++) {
  359. auto& pte = pt[pte_index];
  360. pte.set_physical_page_base(physical_page_array_current_page);
  361. pte.set_user_allowed(false);
  362. pte.set_writable(true);
  363. if (Processor::current().has_feature(CPUFeature::NX))
  364. pte.set_execute_disabled(false);
  365. pte.set_global(true);
  366. pte.set_present(true);
  367. physical_page_array_current_page += PAGE_SIZE;
  368. virtual_page_array_current_page += PAGE_SIZE;
  369. }
  370. unquickmap_page();
  371. // Hook the page table into the kernel page directory
  372. u32 page_directory_index = (virtual_page_base_for_this_pt >> 21) & 0x1ff;
  373. auto* pd = reinterpret_cast<PageDirectoryEntry*>(quickmap_page(boot_pd_kernel));
  374. PageDirectoryEntry& pde = pd[page_directory_index];
  375. VERIFY(!pde.is_present()); // Nothing should be using this PD yet
  376. // We can't use ensure_pte quite yet!
  377. pde.set_page_table_base(pt_paddr.get());
  378. pde.set_user_allowed(false);
  379. pde.set_present(true);
  380. pde.set_writable(true);
  381. pde.set_global(true);
  382. unquickmap_page();
  383. flush_tlb_local(VirtualAddress(virtual_page_base_for_this_pt));
  384. }
  385. // We now have the entire PhysicalPageEntry array mapped!
  386. m_physical_page_entries = (PhysicalPageEntry*)range.value().base().get();
  387. for (size_t i = 0; i < m_physical_page_entries_count; i++)
  388. new (&m_physical_page_entries[i]) PageTableEntry();
  389. // Now we should be able to allocate PhysicalPage instances,
  390. // so finish setting up the kernel page directory
  391. m_kernel_page_directory->allocate_kernel_directory();
  392. // Now create legit PhysicalPage objects for the page tables we created, so that
  393. // we can put them into kernel_page_directory().m_page_tables
  394. auto& kernel_page_tables = kernel_page_directory().m_page_tables;
  395. virtual_page_array_current_page = virtual_page_array_base;
  396. for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) {
  397. VERIFY(virtual_page_array_current_page <= range.value().end().get());
  398. auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE);
  399. auto physical_page_index = PhysicalAddress::physical_page_index(pt_paddr.get());
  400. auto& physical_page_entry = m_physical_page_entries[physical_page_index];
  401. auto physical_page = adopt_ref(*new (&physical_page_entry.allocated.physical_page) PhysicalPage(MayReturnToFreeList::No));
  402. auto result = kernel_page_tables.set(virtual_page_array_current_page & ~0x1fffff, move(physical_page));
  403. VERIFY(result == AK::HashSetResult::InsertedNewEntry);
  404. virtual_page_array_current_page += (PAGE_SIZE / sizeof(PageTableEntry)) * PAGE_SIZE;
  405. }
  406. dmesgln("MM: Physical page entries: {}", range.value());
  407. }
  408. PhysicalPageEntry& MemoryManager::get_physical_page_entry(PhysicalAddress physical_address)
  409. {
  410. VERIFY(m_physical_page_entries);
  411. auto physical_page_entry_index = PhysicalAddress::physical_page_index(physical_address.get());
  412. VERIFY(physical_page_entry_index < m_physical_page_entries_count);
  413. return m_physical_page_entries[physical_page_entry_index];
  414. }
  415. PhysicalAddress MemoryManager::get_physical_address(PhysicalPage const& physical_page)
  416. {
  417. PhysicalPageEntry const& physical_page_entry = *reinterpret_cast<PhysicalPageEntry const*>((u8 const*)&physical_page - __builtin_offsetof(PhysicalPageEntry, allocated.physical_page));
  418. VERIFY(m_physical_page_entries);
  419. size_t physical_page_entry_index = &physical_page_entry - m_physical_page_entries;
  420. VERIFY(physical_page_entry_index < m_physical_page_entries_count);
  421. return PhysicalAddress((PhysicalPtr)physical_page_entry_index * PAGE_SIZE);
  422. }
  423. PageTableEntry* MemoryManager::pte(PageDirectory& page_directory, VirtualAddress vaddr)
  424. {
  425. VERIFY_INTERRUPTS_DISABLED();
  426. VERIFY(s_mm_lock.own_lock());
  427. VERIFY(page_directory.get_lock().own_lock());
  428. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
  429. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  430. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  431. auto* pd = quickmap_pd(const_cast<PageDirectory&>(page_directory), page_directory_table_index);
  432. PageDirectoryEntry const& pde = pd[page_directory_index];
  433. if (!pde.is_present())
  434. return nullptr;
  435. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  436. }
  437. PageTableEntry* MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  438. {
  439. VERIFY_INTERRUPTS_DISABLED();
  440. VERIFY(s_mm_lock.own_lock());
  441. VERIFY(page_directory.get_lock().own_lock());
  442. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
  443. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  444. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  445. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  446. PageDirectoryEntry& pde = pd[page_directory_index];
  447. if (!pde.is_present()) {
  448. bool did_purge = false;
  449. auto page_table = allocate_user_physical_page(ShouldZeroFill::Yes, &did_purge);
  450. if (!page_table) {
  451. dbgln("MM: Unable to allocate page table to map {}", vaddr);
  452. return nullptr;
  453. }
  454. if (did_purge) {
  455. // If any memory had to be purged, ensure_pte may have been called as part
  456. // of the purging process. So we need to re-map the pd in this case to ensure
  457. // we're writing to the correct underlying physical page
  458. pd = quickmap_pd(page_directory, page_directory_table_index);
  459. VERIFY(&pde == &pd[page_directory_index]); // Sanity check
  460. VERIFY(!pde.is_present()); // Should have not changed
  461. }
  462. pde.set_page_table_base(page_table->paddr().get());
  463. pde.set_user_allowed(true);
  464. pde.set_present(true);
  465. pde.set_writable(true);
  466. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  467. // Use page_directory_table_index and page_directory_index as key
  468. // This allows us to release the page table entry when no longer needed
  469. auto result = page_directory.m_page_tables.set(vaddr.get() & ~(FlatPtr)0x1fffff, move(page_table));
  470. // If you're hitting this VERIFY on x86_64 chances are a 64-bit pointer was truncated somewhere
  471. VERIFY(result == AK::HashSetResult::InsertedNewEntry);
  472. }
  473. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  474. }
  475. void MemoryManager::release_pte(PageDirectory& page_directory, VirtualAddress vaddr, bool is_last_release)
  476. {
  477. VERIFY_INTERRUPTS_DISABLED();
  478. VERIFY(s_mm_lock.own_lock());
  479. VERIFY(page_directory.get_lock().own_lock());
  480. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
  481. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  482. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  483. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  484. PageDirectoryEntry& pde = pd[page_directory_index];
  485. if (pde.is_present()) {
  486. auto* page_table = quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()));
  487. auto& pte = page_table[page_table_index];
  488. pte.clear();
  489. if (is_last_release || page_table_index == 0x1ff) {
  490. // If this is the last PTE in a region or the last PTE in a page table then
  491. // check if we can also release the page table
  492. bool all_clear = true;
  493. for (u32 i = 0; i <= 0x1ff; i++) {
  494. if (!page_table[i].is_null()) {
  495. all_clear = false;
  496. break;
  497. }
  498. }
  499. if (all_clear) {
  500. pde.clear();
  501. auto result = page_directory.m_page_tables.remove(vaddr.get() & ~0x1fffff);
  502. VERIFY(result);
  503. }
  504. }
  505. }
  506. }
  507. UNMAP_AFTER_INIT void MemoryManager::initialize(u32 cpu)
  508. {
  509. ProcessorSpecific<MemoryManagerData>::initialize();
  510. if (cpu == 0) {
  511. new MemoryManager;
  512. kmalloc_enable_expand();
  513. }
  514. }
  515. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  516. {
  517. ScopedSpinLock lock(s_mm_lock);
  518. for (auto& region : MM.m_kernel_regions) {
  519. if (region.contains(vaddr))
  520. return &region;
  521. }
  522. return nullptr;
  523. }
  524. Region* MemoryManager::find_user_region_from_vaddr_no_lock(Space& space, VirtualAddress vaddr)
  525. {
  526. VERIFY(space.get_lock().own_lock());
  527. return space.find_region_containing({ vaddr, 1 });
  528. }
  529. Region* MemoryManager::find_user_region_from_vaddr(Space& space, VirtualAddress vaddr)
  530. {
  531. ScopedSpinLock lock(space.get_lock());
  532. return find_user_region_from_vaddr_no_lock(space, vaddr);
  533. }
  534. void MemoryManager::validate_syscall_preconditions(Space& space, RegisterState const& regs)
  535. {
  536. // We take the space lock once here and then use the no_lock variants
  537. // to avoid excessive spinlock recursion in this extemely common path.
  538. ScopedSpinLock lock(space.get_lock());
  539. auto unlock_and_handle_crash = [&lock, &regs](const char* description, int signal) {
  540. lock.unlock();
  541. handle_crash(regs, description, signal);
  542. };
  543. {
  544. VirtualAddress userspace_sp = VirtualAddress { regs.userspace_sp() };
  545. if (!MM.validate_user_stack_no_lock(space, userspace_sp)) {
  546. dbgln("Invalid stack pointer: {:p}", userspace_sp);
  547. unlock_and_handle_crash("Bad stack on syscall entry", SIGSTKFLT);
  548. }
  549. }
  550. {
  551. VirtualAddress ip = VirtualAddress { regs.ip() };
  552. auto* calling_region = MM.find_user_region_from_vaddr_no_lock(space, ip);
  553. if (!calling_region) {
  554. dbgln("Syscall from {:p} which has no associated region", ip);
  555. unlock_and_handle_crash("Syscall from unknown region", SIGSEGV);
  556. }
  557. if (calling_region->is_writable()) {
  558. dbgln("Syscall from writable memory at {:p}", ip);
  559. unlock_and_handle_crash("Syscall from writable memory", SIGSEGV);
  560. }
  561. if (space.enforces_syscall_regions() && !calling_region->is_syscall_region()) {
  562. dbgln("Syscall from non-syscall region");
  563. unlock_and_handle_crash("Syscall from non-syscall region", SIGSEGV);
  564. }
  565. }
  566. }
  567. Region* MemoryManager::find_region_from_vaddr(VirtualAddress vaddr)
  568. {
  569. ScopedSpinLock lock(s_mm_lock);
  570. if (auto* region = kernel_region_from_vaddr(vaddr))
  571. return region;
  572. auto page_directory = PageDirectory::find_by_cr3(read_cr3());
  573. if (!page_directory)
  574. return nullptr;
  575. VERIFY(page_directory->space());
  576. return find_user_region_from_vaddr(*page_directory->space(), vaddr);
  577. }
  578. PageFaultResponse MemoryManager::handle_page_fault(PageFault const& fault)
  579. {
  580. VERIFY_INTERRUPTS_DISABLED();
  581. if (Processor::current().in_irq()) {
  582. dbgln("CPU[{}] BUG! Page fault while handling IRQ! code={}, vaddr={}, irq level: {}",
  583. Processor::id(), fault.code(), fault.vaddr(), Processor::current().in_irq());
  584. dump_kernel_regions();
  585. return PageFaultResponse::ShouldCrash;
  586. }
  587. dbgln_if(PAGE_FAULT_DEBUG, "MM: CPU[{}] handle_page_fault({:#04x}) at {}", Processor::id(), fault.code(), fault.vaddr());
  588. auto* region = find_region_from_vaddr(fault.vaddr());
  589. if (!region) {
  590. return PageFaultResponse::ShouldCrash;
  591. }
  592. return region->handle_fault(fault);
  593. }
  594. OwnPtr<Region> MemoryManager::allocate_contiguous_kernel_region(size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  595. {
  596. VERIFY(!(size % PAGE_SIZE));
  597. ScopedSpinLock lock(s_mm_lock);
  598. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  599. if (!range.has_value())
  600. return {};
  601. auto vmobject = AnonymousVMObject::try_create_physically_contiguous_with_size(size);
  602. if (!vmobject) {
  603. kernel_page_directory().range_allocator().deallocate(range.value());
  604. return {};
  605. }
  606. return allocate_kernel_region_with_vmobject(range.value(), *vmobject, name, access, cacheable);
  607. }
  608. OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, StringView name, Region::Access access, AllocationStrategy strategy, Region::Cacheable cacheable)
  609. {
  610. VERIFY(!(size % PAGE_SIZE));
  611. auto vm_object = AnonymousVMObject::try_create_with_size(size, strategy);
  612. if (!vm_object)
  613. return {};
  614. ScopedSpinLock lock(s_mm_lock);
  615. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  616. if (!range.has_value())
  617. return {};
  618. return allocate_kernel_region_with_vmobject(range.value(), vm_object.release_nonnull(), name, access, cacheable);
  619. }
  620. OwnPtr<Region> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  621. {
  622. auto vm_object = AnonymousVMObject::try_create_for_physical_range(paddr, size);
  623. if (!vm_object)
  624. return {};
  625. VERIFY(!(size % PAGE_SIZE));
  626. ScopedSpinLock lock(s_mm_lock);
  627. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  628. if (!range.has_value())
  629. return {};
  630. return allocate_kernel_region_with_vmobject(range.value(), *vm_object, name, access, cacheable);
  631. }
  632. OwnPtr<Region> MemoryManager::allocate_kernel_region_identity(PhysicalAddress paddr, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  633. {
  634. auto vm_object = AnonymousVMObject::try_create_for_physical_range(paddr, size);
  635. if (!vm_object)
  636. return {};
  637. VERIFY(!(size % PAGE_SIZE));
  638. ScopedSpinLock lock(s_mm_lock);
  639. auto range = kernel_page_directory().identity_range_allocator().allocate_specific(VirtualAddress(paddr.get()), size);
  640. if (!range.has_value())
  641. return {};
  642. return allocate_kernel_region_with_vmobject(range.value(), *vm_object, name, access, cacheable);
  643. }
  644. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(Range const& range, VMObject& vmobject, StringView name, Region::Access access, Region::Cacheable cacheable)
  645. {
  646. ScopedSpinLock lock(s_mm_lock);
  647. auto region = Region::try_create_kernel_only(range, vmobject, 0, KString::try_create(name), access, cacheable);
  648. if (region)
  649. region->map(kernel_page_directory());
  650. return region;
  651. }
  652. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  653. {
  654. VERIFY(!(size % PAGE_SIZE));
  655. ScopedSpinLock lock(s_mm_lock);
  656. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  657. if (!range.has_value())
  658. return {};
  659. return allocate_kernel_region_with_vmobject(range.value(), vmobject, name, access, cacheable);
  660. }
  661. bool MemoryManager::commit_user_physical_pages(size_t page_count)
  662. {
  663. VERIFY(page_count > 0);
  664. ScopedSpinLock lock(s_mm_lock);
  665. if (m_system_memory_info.user_physical_pages_uncommitted < page_count)
  666. return false;
  667. m_system_memory_info.user_physical_pages_uncommitted -= page_count;
  668. m_system_memory_info.user_physical_pages_committed += page_count;
  669. return true;
  670. }
  671. void MemoryManager::uncommit_user_physical_pages(size_t page_count)
  672. {
  673. VERIFY(page_count > 0);
  674. ScopedSpinLock lock(s_mm_lock);
  675. VERIFY(m_system_memory_info.user_physical_pages_committed >= page_count);
  676. m_system_memory_info.user_physical_pages_uncommitted += page_count;
  677. m_system_memory_info.user_physical_pages_committed -= page_count;
  678. }
  679. void MemoryManager::deallocate_physical_page(PhysicalAddress paddr)
  680. {
  681. ScopedSpinLock lock(s_mm_lock);
  682. // Are we returning a user page?
  683. for (auto& region : m_user_physical_regions) {
  684. if (!region.contains(paddr))
  685. continue;
  686. region.return_page(paddr);
  687. --m_system_memory_info.user_physical_pages_used;
  688. // Always return pages to the uncommitted pool. Pages that were
  689. // committed and allocated are only freed upon request. Once
  690. // returned there is no guarantee being able to get them back.
  691. ++m_system_memory_info.user_physical_pages_uncommitted;
  692. return;
  693. }
  694. // If it's not a user page, it should be a supervisor page.
  695. if (!m_super_physical_region->contains(paddr))
  696. PANIC("MM: deallocate_user_physical_page couldn't figure out region for page @ {}", paddr);
  697. m_super_physical_region->return_page(paddr);
  698. --m_system_memory_info.super_physical_pages_used;
  699. }
  700. RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page(bool committed)
  701. {
  702. VERIFY(s_mm_lock.is_locked());
  703. RefPtr<PhysicalPage> page;
  704. if (committed) {
  705. // Draw from the committed pages pool. We should always have these pages available
  706. VERIFY(m_system_memory_info.user_physical_pages_committed > 0);
  707. m_system_memory_info.user_physical_pages_committed--;
  708. } else {
  709. // We need to make sure we don't touch pages that we have committed to
  710. if (m_system_memory_info.user_physical_pages_uncommitted == 0)
  711. return {};
  712. m_system_memory_info.user_physical_pages_uncommitted--;
  713. }
  714. for (auto& region : m_user_physical_regions) {
  715. page = region.take_free_page();
  716. if (!page.is_null()) {
  717. ++m_system_memory_info.user_physical_pages_used;
  718. break;
  719. }
  720. }
  721. VERIFY(!committed || !page.is_null());
  722. return page;
  723. }
  724. NonnullRefPtr<PhysicalPage> MemoryManager::allocate_committed_user_physical_page(ShouldZeroFill should_zero_fill)
  725. {
  726. ScopedSpinLock lock(s_mm_lock);
  727. auto page = find_free_user_physical_page(true);
  728. if (should_zero_fill == ShouldZeroFill::Yes) {
  729. auto* ptr = quickmap_page(*page);
  730. memset(ptr, 0, PAGE_SIZE);
  731. unquickmap_page();
  732. }
  733. return page.release_nonnull();
  734. }
  735. RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill, bool* did_purge)
  736. {
  737. ScopedSpinLock lock(s_mm_lock);
  738. auto page = find_free_user_physical_page(false);
  739. bool purged_pages = false;
  740. if (!page) {
  741. // We didn't have a single free physical page. Let's try to free something up!
  742. // First, we look for a purgeable VMObject in the volatile state.
  743. for_each_vmobject([&](auto& vmobject) {
  744. if (!vmobject.is_anonymous())
  745. return IterationDecision::Continue;
  746. auto& anonymous_vmobject = static_cast<AnonymousVMObject&>(vmobject);
  747. if (!anonymous_vmobject.is_purgeable() || !anonymous_vmobject.is_volatile())
  748. return IterationDecision::Continue;
  749. if (auto purged_page_count = anonymous_vmobject.purge()) {
  750. dbgln("MM: Purge saved the day! Purged {} pages from AnonymousVMObject", purged_page_count);
  751. page = find_free_user_physical_page(false);
  752. purged_pages = true;
  753. VERIFY(page);
  754. return IterationDecision::Break;
  755. }
  756. return IterationDecision::Continue;
  757. });
  758. if (!page) {
  759. dmesgln("MM: no user physical pages available");
  760. return {};
  761. }
  762. }
  763. if (should_zero_fill == ShouldZeroFill::Yes) {
  764. auto* ptr = quickmap_page(*page);
  765. memset(ptr, 0, PAGE_SIZE);
  766. unquickmap_page();
  767. }
  768. if (did_purge)
  769. *did_purge = purged_pages;
  770. return page;
  771. }
  772. NonnullRefPtrVector<PhysicalPage> MemoryManager::allocate_contiguous_supervisor_physical_pages(size_t size)
  773. {
  774. VERIFY(!(size % PAGE_SIZE));
  775. ScopedSpinLock lock(s_mm_lock);
  776. size_t count = ceil_div(size, static_cast<size_t>(PAGE_SIZE));
  777. auto physical_pages = m_super_physical_region->take_contiguous_free_pages(count);
  778. if (physical_pages.is_empty()) {
  779. dmesgln("MM: no super physical pages available");
  780. VERIFY_NOT_REACHED();
  781. return {};
  782. }
  783. auto cleanup_region = MM.allocate_kernel_region(physical_pages[0].paddr(), PAGE_SIZE * count, "MemoryManager Allocation Sanitization", Region::Access::Read | Region::Access::Write);
  784. fast_u32_fill((u32*)cleanup_region->vaddr().as_ptr(), 0, (PAGE_SIZE * count) / sizeof(u32));
  785. m_system_memory_info.super_physical_pages_used += count;
  786. return physical_pages;
  787. }
  788. RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  789. {
  790. ScopedSpinLock lock(s_mm_lock);
  791. auto page = m_super_physical_region->take_free_page();
  792. if (!page) {
  793. dmesgln("MM: no super physical pages available");
  794. VERIFY_NOT_REACHED();
  795. return {};
  796. }
  797. fast_u32_fill((u32*)page->paddr().offset(physical_to_virtual_offset).as_ptr(), 0, PAGE_SIZE / sizeof(u32));
  798. ++m_system_memory_info.super_physical_pages_used;
  799. return page;
  800. }
  801. void MemoryManager::enter_process_paging_scope(Process& process)
  802. {
  803. enter_space(process.space());
  804. }
  805. void MemoryManager::enter_space(Space& space)
  806. {
  807. auto current_thread = Thread::current();
  808. VERIFY(current_thread != nullptr);
  809. ScopedSpinLock lock(s_mm_lock);
  810. current_thread->regs().cr3 = space.page_directory().cr3();
  811. write_cr3(space.page_directory().cr3());
  812. }
  813. void MemoryManager::flush_tlb_local(VirtualAddress vaddr, size_t page_count)
  814. {
  815. Processor::flush_tlb_local(vaddr, page_count);
  816. }
  817. void MemoryManager::flush_tlb(PageDirectory const* page_directory, VirtualAddress vaddr, size_t page_count)
  818. {
  819. Processor::flush_tlb(page_directory, vaddr, page_count);
  820. }
  821. PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
  822. {
  823. VERIFY(s_mm_lock.own_lock());
  824. auto& mm_data = get_data();
  825. auto& pte = boot_pd_kernel_pt1023[(KERNEL_QUICKMAP_PD - KERNEL_PT1024_BASE) / PAGE_SIZE];
  826. auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
  827. if (pte.physical_page_base() != pd_paddr.get()) {
  828. pte.set_physical_page_base(pd_paddr.get());
  829. pte.set_present(true);
  830. pte.set_writable(true);
  831. pte.set_user_allowed(false);
  832. // Because we must continue to hold the MM lock while we use this
  833. // mapping, it is sufficient to only flush on the current CPU. Other
  834. // CPUs trying to use this API must wait on the MM lock anyway
  835. flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PD));
  836. } else {
  837. // Even though we don't allow this to be called concurrently, it's
  838. // possible that this PD was mapped on a different CPU and we don't
  839. // broadcast the flush. If so, we still need to flush the TLB.
  840. if (mm_data.m_last_quickmap_pd != pd_paddr)
  841. flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PD));
  842. }
  843. mm_data.m_last_quickmap_pd = pd_paddr;
  844. return (PageDirectoryEntry*)KERNEL_QUICKMAP_PD;
  845. }
  846. PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
  847. {
  848. VERIFY(s_mm_lock.own_lock());
  849. auto& mm_data = get_data();
  850. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[(KERNEL_QUICKMAP_PT - KERNEL_PT1024_BASE) / PAGE_SIZE];
  851. if (pte.physical_page_base() != pt_paddr.get()) {
  852. pte.set_physical_page_base(pt_paddr.get());
  853. pte.set_present(true);
  854. pte.set_writable(true);
  855. pte.set_user_allowed(false);
  856. // Because we must continue to hold the MM lock while we use this
  857. // mapping, it is sufficient to only flush on the current CPU. Other
  858. // CPUs trying to use this API must wait on the MM lock anyway
  859. flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PT));
  860. } else {
  861. // Even though we don't allow this to be called concurrently, it's
  862. // possible that this PT was mapped on a different CPU and we don't
  863. // broadcast the flush. If so, we still need to flush the TLB.
  864. if (mm_data.m_last_quickmap_pt != pt_paddr)
  865. flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PT));
  866. }
  867. mm_data.m_last_quickmap_pt = pt_paddr;
  868. return (PageTableEntry*)KERNEL_QUICKMAP_PT;
  869. }
  870. u8* MemoryManager::quickmap_page(PhysicalAddress const& physical_address)
  871. {
  872. VERIFY_INTERRUPTS_DISABLED();
  873. auto& mm_data = get_data();
  874. mm_data.m_quickmap_prev_flags = mm_data.m_quickmap_in_use.lock();
  875. ScopedSpinLock lock(s_mm_lock);
  876. VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::id() * PAGE_SIZE);
  877. u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
  878. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx];
  879. if (pte.physical_page_base() != physical_address.get()) {
  880. pte.set_physical_page_base(physical_address.get());
  881. pte.set_present(true);
  882. pte.set_writable(true);
  883. pte.set_user_allowed(false);
  884. flush_tlb_local(vaddr);
  885. }
  886. return vaddr.as_ptr();
  887. }
  888. void MemoryManager::unquickmap_page()
  889. {
  890. VERIFY_INTERRUPTS_DISABLED();
  891. ScopedSpinLock lock(s_mm_lock);
  892. auto& mm_data = get_data();
  893. VERIFY(mm_data.m_quickmap_in_use.is_locked());
  894. VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::id() * PAGE_SIZE);
  895. u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
  896. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx];
  897. pte.clear();
  898. flush_tlb_local(vaddr);
  899. mm_data.m_quickmap_in_use.unlock(mm_data.m_quickmap_prev_flags);
  900. }
  901. bool MemoryManager::validate_user_stack_no_lock(Space& space, VirtualAddress vaddr) const
  902. {
  903. VERIFY(space.get_lock().own_lock());
  904. if (!is_user_address(vaddr))
  905. return false;
  906. auto* region = find_user_region_from_vaddr_no_lock(space, vaddr);
  907. return region && region->is_user() && region->is_stack();
  908. }
  909. bool MemoryManager::validate_user_stack(Space& space, VirtualAddress vaddr) const
  910. {
  911. ScopedSpinLock lock(space.get_lock());
  912. return validate_user_stack_no_lock(space, vaddr);
  913. }
  914. void MemoryManager::register_vmobject(VMObject& vmobject)
  915. {
  916. ScopedSpinLock lock(s_mm_lock);
  917. m_vmobjects.append(vmobject);
  918. }
  919. void MemoryManager::unregister_vmobject(VMObject& vmobject)
  920. {
  921. ScopedSpinLock lock(s_mm_lock);
  922. m_vmobjects.remove(vmobject);
  923. }
  924. void MemoryManager::register_region(Region& region)
  925. {
  926. ScopedSpinLock lock(s_mm_lock);
  927. if (region.is_kernel())
  928. m_kernel_regions.append(region);
  929. else
  930. m_user_regions.append(region);
  931. }
  932. void MemoryManager::unregister_region(Region& region)
  933. {
  934. ScopedSpinLock lock(s_mm_lock);
  935. if (region.is_kernel())
  936. m_kernel_regions.remove(region);
  937. else
  938. m_user_regions.remove(region);
  939. }
  940. void MemoryManager::dump_kernel_regions()
  941. {
  942. dbgln("Kernel regions:");
  943. #if ARCH(I386)
  944. auto addr_padding = "";
  945. #else
  946. auto addr_padding = " ";
  947. #endif
  948. dbgln("BEGIN{} END{} SIZE{} ACCESS NAME",
  949. addr_padding, addr_padding, addr_padding);
  950. ScopedSpinLock lock(s_mm_lock);
  951. for (auto& region : m_kernel_regions) {
  952. dbgln("{:p} -- {:p} {:p} {:c}{:c}{:c}{:c}{:c}{:c} {}",
  953. region.vaddr().get(),
  954. region.vaddr().offset(region.size() - 1).get(),
  955. region.size(),
  956. region.is_readable() ? 'R' : ' ',
  957. region.is_writable() ? 'W' : ' ',
  958. region.is_executable() ? 'X' : ' ',
  959. region.is_shared() ? 'S' : ' ',
  960. region.is_stack() ? 'T' : ' ',
  961. region.is_syscall_region() ? 'C' : ' ',
  962. region.name());
  963. }
  964. }
  965. void MemoryManager::set_page_writable_direct(VirtualAddress vaddr, bool writable)
  966. {
  967. ScopedSpinLock lock(s_mm_lock);
  968. ScopedSpinLock page_lock(kernel_page_directory().get_lock());
  969. auto* pte = ensure_pte(kernel_page_directory(), vaddr);
  970. VERIFY(pte);
  971. if (pte->is_writable() == writable)
  972. return;
  973. pte->set_writable(writable);
  974. flush_tlb(&kernel_page_directory(), vaddr);
  975. }
  976. }