Scheduler.cpp 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633
  1. #include <AK/QuickSort.h>
  2. #include <AK/TemporaryChange.h>
  3. #include <Kernel/Arch/i386/PIT.h>
  4. #include <Kernel/FileSystem/FileDescription.h>
  5. #include <Kernel/Process.h>
  6. #include <Kernel/Profiling.h>
  7. #include <Kernel/RTC.h>
  8. #include <Kernel/Scheduler.h>
  9. #include <Kernel/TimerQueue.h>
  10. //#define LOG_EVERY_CONTEXT_SWITCH
  11. //#define SCHEDULER_DEBUG
  12. //#define SCHEDULER_RUNNABLE_DEBUG
  13. SchedulerData* g_scheduler_data;
  14. void Scheduler::init_thread(Thread& thread)
  15. {
  16. g_scheduler_data->m_nonrunnable_threads.append(thread);
  17. }
  18. void Scheduler::update_state_for_thread(Thread& thread)
  19. {
  20. ASSERT_INTERRUPTS_DISABLED();
  21. auto& list = g_scheduler_data->thread_list_for_state(thread.state());
  22. if (list.contains(thread))
  23. return;
  24. list.append(thread);
  25. }
  26. static u32 time_slice_for(const Thread& thread)
  27. {
  28. // One time slice unit == 1ms
  29. if (&thread == g_colonel)
  30. return 1;
  31. return 10;
  32. }
  33. Thread* current;
  34. Thread* g_finalizer;
  35. Thread* g_colonel;
  36. WaitQueue* g_finalizer_wait_queue;
  37. static Process* s_colonel_process;
  38. u64 g_uptime;
  39. struct TaskRedirectionData {
  40. u16 selector;
  41. TSS32 tss;
  42. };
  43. static TaskRedirectionData s_redirection;
  44. static bool s_active;
  45. bool Scheduler::is_active()
  46. {
  47. return s_active;
  48. }
  49. Thread::JoinBlocker::JoinBlocker(Thread& joinee, void*& joinee_exit_value)
  50. : m_joinee(joinee)
  51. , m_joinee_exit_value(joinee_exit_value)
  52. {
  53. ASSERT(m_joinee.m_joiner == nullptr);
  54. m_joinee.m_joiner = current;
  55. current->m_joinee = &joinee;
  56. }
  57. bool Thread::JoinBlocker::should_unblock(Thread& joiner, time_t, long)
  58. {
  59. return !joiner.m_joinee;
  60. }
  61. Thread::FileDescriptionBlocker::FileDescriptionBlocker(const FileDescription& description)
  62. : m_blocked_description(description)
  63. {
  64. }
  65. const FileDescription& Thread::FileDescriptionBlocker::blocked_description() const
  66. {
  67. return m_blocked_description;
  68. }
  69. Thread::AcceptBlocker::AcceptBlocker(const FileDescription& description)
  70. : FileDescriptionBlocker(description)
  71. {
  72. }
  73. bool Thread::AcceptBlocker::should_unblock(Thread&, time_t, long)
  74. {
  75. auto& socket = *blocked_description().socket();
  76. return socket.can_accept();
  77. }
  78. Thread::ReceiveBlocker::ReceiveBlocker(const FileDescription& description)
  79. : FileDescriptionBlocker(description)
  80. {
  81. }
  82. bool Thread::ReceiveBlocker::should_unblock(Thread&, time_t now_sec, long now_usec)
  83. {
  84. auto& socket = *blocked_description().socket();
  85. // FIXME: Block until the amount of data wanted is available.
  86. bool timed_out = now_sec > socket.receive_deadline().tv_sec || (now_sec == socket.receive_deadline().tv_sec && now_usec >= socket.receive_deadline().tv_usec);
  87. if (timed_out || blocked_description().can_read())
  88. return true;
  89. return false;
  90. }
  91. Thread::ConnectBlocker::ConnectBlocker(const FileDescription& description)
  92. : FileDescriptionBlocker(description)
  93. {
  94. }
  95. bool Thread::ConnectBlocker::should_unblock(Thread&, time_t, long)
  96. {
  97. auto& socket = *blocked_description().socket();
  98. return socket.setup_state() == Socket::SetupState::Completed;
  99. }
  100. Thread::WriteBlocker::WriteBlocker(const FileDescription& description)
  101. : FileDescriptionBlocker(description)
  102. {
  103. }
  104. bool Thread::WriteBlocker::should_unblock(Thread&, time_t, long)
  105. {
  106. return blocked_description().can_write();
  107. }
  108. Thread::ReadBlocker::ReadBlocker(const FileDescription& description)
  109. : FileDescriptionBlocker(description)
  110. {
  111. }
  112. bool Thread::ReadBlocker::should_unblock(Thread&, time_t, long)
  113. {
  114. // FIXME: Block until the amount of data wanted is available.
  115. return blocked_description().can_read();
  116. }
  117. Thread::ConditionBlocker::ConditionBlocker(const char* state_string, Function<bool()>&& condition)
  118. : m_block_until_condition(move(condition))
  119. , m_state_string(state_string)
  120. {
  121. ASSERT(m_block_until_condition);
  122. }
  123. bool Thread::ConditionBlocker::should_unblock(Thread&, time_t, long)
  124. {
  125. return m_block_until_condition();
  126. }
  127. Thread::SleepBlocker::SleepBlocker(u64 wakeup_time)
  128. : m_wakeup_time(wakeup_time)
  129. {
  130. }
  131. bool Thread::SleepBlocker::should_unblock(Thread&, time_t, long)
  132. {
  133. return m_wakeup_time <= g_uptime;
  134. }
  135. Thread::SelectBlocker::SelectBlocker(const timeval& tv, bool select_has_timeout, const FDVector& read_fds, const FDVector& write_fds, const FDVector& except_fds)
  136. : m_select_timeout(tv)
  137. , m_select_has_timeout(select_has_timeout)
  138. , m_select_read_fds(read_fds)
  139. , m_select_write_fds(write_fds)
  140. , m_select_exceptional_fds(except_fds)
  141. {
  142. }
  143. bool Thread::SelectBlocker::should_unblock(Thread& thread, time_t now_sec, long now_usec)
  144. {
  145. if (m_select_has_timeout) {
  146. if (now_sec > m_select_timeout.tv_sec || (now_sec == m_select_timeout.tv_sec && now_usec >= m_select_timeout.tv_usec))
  147. return true;
  148. }
  149. auto& process = thread.process();
  150. for (int fd : m_select_read_fds) {
  151. if (process.m_fds[fd].description->can_read())
  152. return true;
  153. }
  154. for (int fd : m_select_write_fds) {
  155. if (process.m_fds[fd].description->can_write())
  156. return true;
  157. }
  158. return false;
  159. }
  160. Thread::WaitBlocker::WaitBlocker(int wait_options, pid_t& waitee_pid)
  161. : m_wait_options(wait_options)
  162. , m_waitee_pid(waitee_pid)
  163. {
  164. }
  165. bool Thread::WaitBlocker::should_unblock(Thread& thread, time_t, long)
  166. {
  167. bool should_unblock = false;
  168. if (m_waitee_pid != -1) {
  169. auto* peer = Process::from_pid(m_waitee_pid);
  170. if (!peer)
  171. return true;
  172. }
  173. thread.process().for_each_child([&](Process& child) {
  174. if (m_waitee_pid != -1 && m_waitee_pid != child.pid())
  175. return IterationDecision::Continue;
  176. bool child_exited = child.is_dead();
  177. bool child_stopped = child.thread_count() && child.any_thread().state() == Thread::State::Stopped;
  178. bool wait_finished = ((m_wait_options & WEXITED) && child_exited)
  179. || ((m_wait_options & WSTOPPED) && child_stopped);
  180. if (!wait_finished)
  181. return IterationDecision::Continue;
  182. m_waitee_pid = child.pid();
  183. should_unblock = true;
  184. return IterationDecision::Break;
  185. });
  186. return should_unblock;
  187. }
  188. Thread::SemiPermanentBlocker::SemiPermanentBlocker(Reason reason)
  189. : m_reason(reason)
  190. {
  191. }
  192. bool Thread::SemiPermanentBlocker::should_unblock(Thread&, time_t, long)
  193. {
  194. // someone else has to unblock us
  195. return false;
  196. }
  197. // Called by the scheduler on threads that are blocked for some reason.
  198. // Make a decision as to whether to unblock them or not.
  199. void Thread::consider_unblock(time_t now_sec, long now_usec)
  200. {
  201. switch (state()) {
  202. case Thread::Invalid:
  203. case Thread::Runnable:
  204. case Thread::Running:
  205. case Thread::Dead:
  206. case Thread::Stopped:
  207. case Thread::Queued:
  208. case Thread::Dying:
  209. /* don't know, don't care */
  210. return;
  211. case Thread::Blocked:
  212. ASSERT(m_blocker != nullptr);
  213. if (m_blocker->should_unblock(*this, now_sec, now_usec))
  214. unblock();
  215. return;
  216. case Thread::Skip1SchedulerPass:
  217. set_state(Thread::Skip0SchedulerPasses);
  218. return;
  219. case Thread::Skip0SchedulerPasses:
  220. set_state(Thread::Runnable);
  221. return;
  222. }
  223. }
  224. bool Scheduler::pick_next()
  225. {
  226. ASSERT_INTERRUPTS_DISABLED();
  227. ASSERT(!s_active);
  228. TemporaryChange<bool> change(s_active, true);
  229. ASSERT(s_active);
  230. if (!current) {
  231. // XXX: The first ever context_switch() goes to the idle process.
  232. // This to setup a reliable place we can return to.
  233. return context_switch(*g_colonel);
  234. }
  235. struct timeval now;
  236. kgettimeofday(now);
  237. auto now_sec = now.tv_sec;
  238. auto now_usec = now.tv_usec;
  239. // Check and unblock threads whose wait conditions have been met.
  240. Scheduler::for_each_nonrunnable([&](Thread& thread) {
  241. thread.consider_unblock(now_sec, now_usec);
  242. return IterationDecision::Continue;
  243. });
  244. Process::for_each([&](Process& process) {
  245. if (process.is_dead()) {
  246. if (current->pid() != process.pid() && (!process.ppid() || !Process::from_pid(process.ppid()))) {
  247. auto name = process.name();
  248. auto pid = process.pid();
  249. auto exit_status = Process::reap(process);
  250. dbgprintf("reaped unparented process %s(%u), exit status: %u\n", name.characters(), pid, exit_status);
  251. }
  252. return IterationDecision::Continue;
  253. }
  254. if (process.m_alarm_deadline && g_uptime > process.m_alarm_deadline) {
  255. process.m_alarm_deadline = 0;
  256. process.send_signal(SIGALRM, nullptr);
  257. }
  258. return IterationDecision::Continue;
  259. });
  260. // Dispatch any pending signals.
  261. // FIXME: Do we really need this to be a separate pass over the process list?
  262. Thread::for_each_living([](Thread& thread) -> IterationDecision {
  263. if (!thread.has_unmasked_pending_signals())
  264. return IterationDecision::Continue;
  265. // FIXME: It would be nice if the Scheduler didn't have to worry about who is "current"
  266. // For now, avoid dispatching signals to "current" and do it in a scheduling pass
  267. // while some other process is interrupted. Otherwise a mess will be made.
  268. if (&thread == current)
  269. return IterationDecision::Continue;
  270. // We know how to interrupt blocked processes, but if they are just executing
  271. // at some random point in the kernel, let them continue. They'll be in userspace
  272. // sooner or later and we can deliver the signal then.
  273. // FIXME: Maybe we could check when returning from a syscall if there's a pending
  274. // signal and dispatch it then and there? Would that be doable without the
  275. // syscall effectively being "interrupted" despite having completed?
  276. if (thread.in_kernel() && !thread.is_blocked() && !thread.is_stopped())
  277. return IterationDecision::Continue;
  278. // NOTE: dispatch_one_pending_signal() may unblock the process.
  279. bool was_blocked = thread.is_blocked();
  280. if (thread.dispatch_one_pending_signal() == ShouldUnblockThread::No)
  281. return IterationDecision::Continue;
  282. if (was_blocked) {
  283. dbgprintf("Unblock %s(%u) due to signal\n", thread.process().name().characters(), thread.pid());
  284. ASSERT(thread.m_blocker != nullptr);
  285. thread.m_blocker->set_interrupted_by_signal();
  286. thread.unblock();
  287. }
  288. return IterationDecision::Continue;
  289. });
  290. #ifdef SCHEDULER_RUNNABLE_DEBUG
  291. dbgprintf("Non-runnables:\n");
  292. Scheduler::for_each_nonrunnable([](Thread& thread) -> IterationDecision {
  293. dbgprintf(" %-12s %s(%u:%u) @ %w:%x\n", thread.state_string(), thread.name().characters(), thread.pid(), thread.tid(), thread.tss().cs, thread.tss().eip);
  294. return IterationDecision::Continue;
  295. });
  296. dbgprintf("Runnables:\n");
  297. Scheduler::for_each_runnable([](Thread& thread) -> IterationDecision {
  298. dbgprintf(" %3u/%2u %-12s %s(%u:%u) @ %w:%x\n", thread.effective_priority(), thread.priority(), thread.state_string(), thread.name().characters(), thread.pid(), thread.tid(), thread.tss().cs, thread.tss().eip);
  299. return IterationDecision::Continue;
  300. });
  301. #endif
  302. Vector<Thread*, 128> sorted_runnables;
  303. for_each_runnable([&sorted_runnables](auto& thread) {
  304. sorted_runnables.append(&thread);
  305. return IterationDecision::Continue;
  306. });
  307. quick_sort(sorted_runnables.begin(), sorted_runnables.end(), [](auto& a, auto& b) { return a->effective_priority() >= b->effective_priority(); });
  308. Thread* thread_to_schedule = nullptr;
  309. for (auto* thread : sorted_runnables) {
  310. if (thread->process().is_being_inspected())
  311. continue;
  312. ASSERT(thread->state() == Thread::Runnable || thread->state() == Thread::Running);
  313. if (!thread_to_schedule) {
  314. thread->m_extra_priority = 0;
  315. thread_to_schedule = thread;
  316. } else {
  317. thread->m_extra_priority++;
  318. }
  319. }
  320. if (!thread_to_schedule)
  321. thread_to_schedule = g_colonel;
  322. #ifdef SCHEDULER_DEBUG
  323. dbgprintf("switch to %s(%u:%u) @ %w:%x\n",
  324. thread_to_schedule->name().characters(),
  325. thread_to_schedule->pid(),
  326. thread_to_schedule->tid(),
  327. thread_to_schedule->tss().cs,
  328. thread_to_schedule->tss().eip);
  329. #endif
  330. return context_switch(*thread_to_schedule);
  331. }
  332. bool Scheduler::donate_to(Thread* beneficiary, const char* reason)
  333. {
  334. InterruptDisabler disabler;
  335. if (!Thread::is_thread(beneficiary))
  336. return false;
  337. (void)reason;
  338. unsigned ticks_left = current->ticks_left();
  339. if (!beneficiary || beneficiary->state() != Thread::Runnable || ticks_left <= 1)
  340. return yield();
  341. unsigned ticks_to_donate = min(ticks_left - 1, time_slice_for(*beneficiary));
  342. #ifdef SCHEDULER_DEBUG
  343. dbgprintf("%s(%u:%u) donating %u ticks to %s(%u:%u), reason=%s\n", current->process().name().characters(), current->pid(), current->tid(), ticks_to_donate, beneficiary->process().name().characters(), beneficiary->pid(), beneficiary->tid(), reason);
  344. #endif
  345. context_switch(*beneficiary);
  346. beneficiary->set_ticks_left(ticks_to_donate);
  347. switch_now();
  348. return false;
  349. }
  350. bool Scheduler::yield()
  351. {
  352. InterruptDisabler disabler;
  353. ASSERT(current);
  354. // dbgprintf("%s(%u:%u) yield()\n", current->process().name().characters(), current->pid(), current->tid());
  355. if (!pick_next())
  356. return false;
  357. // dbgprintf("yield() jumping to new process: sel=%x, %s(%u:%u)\n", current->far_ptr().selector, current->process().name().characters(), current->pid(), current->tid());
  358. switch_now();
  359. return true;
  360. }
  361. void Scheduler::pick_next_and_switch_now()
  362. {
  363. bool someone_wants_to_run = pick_next();
  364. ASSERT(someone_wants_to_run);
  365. switch_now();
  366. }
  367. void Scheduler::switch_now()
  368. {
  369. Descriptor& descriptor = get_gdt_entry(current->selector());
  370. descriptor.type = 9;
  371. flush_gdt();
  372. asm("sti\n"
  373. "ljmp *(%%eax)\n" ::"a"(&current->far_ptr()));
  374. }
  375. bool Scheduler::context_switch(Thread& thread)
  376. {
  377. thread.set_ticks_left(time_slice_for(thread));
  378. thread.did_schedule();
  379. if (current == &thread)
  380. return false;
  381. if (current) {
  382. // If the last process hasn't blocked (still marked as running),
  383. // mark it as runnable for the next round.
  384. if (current->state() == Thread::Running)
  385. current->set_state(Thread::Runnable);
  386. asm volatile("fxsave %0"
  387. : "=m"(current->fpu_state()));
  388. #ifdef LOG_EVERY_CONTEXT_SWITCH
  389. dbgprintf("Scheduler: %s(%u:%u) -> %s(%u:%u) [%u] %w:%x\n",
  390. current->process().name().characters(), current->process().pid(), current->tid(),
  391. thread.process().name().characters(), thread.process().pid(), thread.tid(),
  392. thread.priority(),
  393. thread.tss().cs, thread.tss().eip);
  394. #endif
  395. }
  396. current = &thread;
  397. thread.set_state(Thread::Running);
  398. asm volatile("fxrstor %0" ::"m"(current->fpu_state()));
  399. if (!thread.selector()) {
  400. thread.set_selector(gdt_alloc_entry());
  401. auto& descriptor = get_gdt_entry(thread.selector());
  402. descriptor.set_base(&thread.tss());
  403. descriptor.set_limit(0xffff);
  404. descriptor.dpl = 0;
  405. descriptor.segment_present = 1;
  406. descriptor.granularity = 1;
  407. descriptor.zero = 0;
  408. descriptor.operation_size = 1;
  409. descriptor.descriptor_type = 0;
  410. }
  411. if (!thread.thread_specific_data().is_null()) {
  412. auto& descriptor = thread_specific_descriptor();
  413. descriptor.set_base(thread.thread_specific_data().as_ptr());
  414. descriptor.set_limit(sizeof(ThreadSpecificData*));
  415. }
  416. auto& descriptor = get_gdt_entry(thread.selector());
  417. descriptor.type = 11; // Busy TSS
  418. flush_gdt();
  419. return true;
  420. }
  421. static void initialize_redirection()
  422. {
  423. auto& descriptor = get_gdt_entry(s_redirection.selector);
  424. descriptor.set_base(&s_redirection.tss);
  425. descriptor.set_limit(0xffff);
  426. descriptor.dpl = 0;
  427. descriptor.segment_present = 1;
  428. descriptor.granularity = 1;
  429. descriptor.zero = 0;
  430. descriptor.operation_size = 1;
  431. descriptor.descriptor_type = 0;
  432. descriptor.type = 9;
  433. flush_gdt();
  434. }
  435. void Scheduler::prepare_for_iret_to_new_process()
  436. {
  437. auto& descriptor = get_gdt_entry(s_redirection.selector);
  438. descriptor.type = 9;
  439. s_redirection.tss.backlink = current->selector();
  440. load_task_register(s_redirection.selector);
  441. }
  442. void Scheduler::prepare_to_modify_tss(Thread& thread)
  443. {
  444. // This ensures that a currently running process modifying its own TSS
  445. // in order to yield() and end up somewhere else doesn't just end up
  446. // right after the yield().
  447. if (current == &thread)
  448. load_task_register(s_redirection.selector);
  449. }
  450. Process* Scheduler::colonel()
  451. {
  452. return s_colonel_process;
  453. }
  454. void Scheduler::initialize()
  455. {
  456. g_scheduler_data = new SchedulerData;
  457. g_finalizer_wait_queue = new WaitQueue;
  458. s_redirection.selector = gdt_alloc_entry();
  459. initialize_redirection();
  460. s_colonel_process = Process::create_kernel_process(g_colonel, "colonel", nullptr);
  461. g_colonel->set_priority(THREAD_PRIORITY_MIN);
  462. load_task_register(s_redirection.selector);
  463. }
  464. void Scheduler::timer_tick(RegisterDump& regs)
  465. {
  466. if (!current)
  467. return;
  468. ++g_uptime;
  469. timeval tv;
  470. tv.tv_sec = RTC::boot_time() + PIT::seconds_since_boot();
  471. tv.tv_usec = PIT::ticks_this_second() * 1000;
  472. Process::update_info_page_timestamp(tv);
  473. if (current->process().is_profiling()) {
  474. auto backtrace = current->raw_backtrace(regs.ebp);
  475. auto& sample = Profiling::next_sample_slot();
  476. sample.pid = current->pid();
  477. sample.tid = current->tid();
  478. sample.timestamp = g_uptime;
  479. for (size_t i = 0; i < min((size_t)backtrace.size(), Profiling::max_stack_frame_count); ++i) {
  480. sample.frames[i] = backtrace[i];
  481. }
  482. }
  483. TimerQueue::the().fire();
  484. if (current->tick())
  485. return;
  486. auto& outgoing_tss = current->tss();
  487. if (!pick_next())
  488. return;
  489. outgoing_tss.gs = regs.gs;
  490. outgoing_tss.fs = regs.fs;
  491. outgoing_tss.es = regs.es;
  492. outgoing_tss.ds = regs.ds;
  493. outgoing_tss.edi = regs.edi;
  494. outgoing_tss.esi = regs.esi;
  495. outgoing_tss.ebp = regs.ebp;
  496. outgoing_tss.ebx = regs.ebx;
  497. outgoing_tss.edx = regs.edx;
  498. outgoing_tss.ecx = regs.ecx;
  499. outgoing_tss.eax = regs.eax;
  500. outgoing_tss.eip = regs.eip;
  501. outgoing_tss.cs = regs.cs;
  502. outgoing_tss.eflags = regs.eflags;
  503. // Compute process stack pointer.
  504. // Add 16 for CS, EIP, EFLAGS, exception code (interrupt mechanic)
  505. outgoing_tss.esp = regs.esp + 16;
  506. outgoing_tss.ss = regs.ss;
  507. if ((outgoing_tss.cs & 3) != 0) {
  508. outgoing_tss.ss = regs.ss_if_crossRing;
  509. outgoing_tss.esp = regs.esp_if_crossRing;
  510. }
  511. prepare_for_iret_to_new_process();
  512. // Set the NT (nested task) flag.
  513. asm(
  514. "pushf\n"
  515. "orl $0x00004000, (%esp)\n"
  516. "popf\n");
  517. }
  518. static bool s_should_stop_idling = false;
  519. void Scheduler::stop_idling()
  520. {
  521. if (current != g_colonel)
  522. return;
  523. s_should_stop_idling = true;
  524. }
  525. void Scheduler::idle_loop()
  526. {
  527. for (;;) {
  528. asm("hlt");
  529. if (s_should_stop_idling) {
  530. s_should_stop_idling = false;
  531. yield();
  532. }
  533. }
  534. }