Op.cpp 53 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338
  1. /*
  2. * Copyright (c) 2021, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2021-2022, Linus Groh <linusg@serenityos.org>
  4. * Copyright (c) 2021, Gunnar Beutner <gbeutner@serenityos.org>
  5. *
  6. * SPDX-License-Identifier: BSD-2-Clause
  7. */
  8. #include <AK/HashTable.h>
  9. #include <LibJS/AST.h>
  10. #include <LibJS/Bytecode/Interpreter.h>
  11. #include <LibJS/Bytecode/Op.h>
  12. #include <LibJS/Runtime/AbstractOperations.h>
  13. #include <LibJS/Runtime/Array.h>
  14. #include <LibJS/Runtime/BigInt.h>
  15. #include <LibJS/Runtime/DeclarativeEnvironment.h>
  16. #include <LibJS/Runtime/ECMAScriptFunctionObject.h>
  17. #include <LibJS/Runtime/Environment.h>
  18. #include <LibJS/Runtime/FunctionEnvironment.h>
  19. #include <LibJS/Runtime/GlobalEnvironment.h>
  20. #include <LibJS/Runtime/GlobalObject.h>
  21. #include <LibJS/Runtime/Iterator.h>
  22. #include <LibJS/Runtime/IteratorOperations.h>
  23. #include <LibJS/Runtime/NativeFunction.h>
  24. #include <LibJS/Runtime/ObjectEnvironment.h>
  25. #include <LibJS/Runtime/Reference.h>
  26. #include <LibJS/Runtime/RegExpObject.h>
  27. #include <LibJS/Runtime/Value.h>
  28. namespace JS::Bytecode {
  29. String Instruction::to_string(Bytecode::Executable const& executable) const
  30. {
  31. #define __BYTECODE_OP(op) \
  32. case Instruction::Type::op: \
  33. return static_cast<Bytecode::Op::op const&>(*this).to_string_impl(executable);
  34. switch (type()) {
  35. ENUMERATE_BYTECODE_OPS(__BYTECODE_OP)
  36. default:
  37. VERIFY_NOT_REACHED();
  38. }
  39. #undef __BYTECODE_OP
  40. }
  41. }
  42. namespace JS::Bytecode::Op {
  43. static ThrowCompletionOr<void> put_by_property_key(Object* object, Value value, PropertyKey name, Bytecode::Interpreter& interpreter, PropertyKind kind)
  44. {
  45. auto& vm = interpreter.vm();
  46. if (kind == PropertyKind::Getter || kind == PropertyKind::Setter) {
  47. // The generator should only pass us functions for getters and setters.
  48. VERIFY(value.is_function());
  49. }
  50. switch (kind) {
  51. case PropertyKind::Getter: {
  52. auto& function = value.as_function();
  53. if (function.name().is_empty() && is<ECMAScriptFunctionObject>(function))
  54. static_cast<ECMAScriptFunctionObject*>(&function)->set_name(String::formatted("get {}", name));
  55. object->define_direct_accessor(name, &function, nullptr, Attribute::Configurable | Attribute::Enumerable);
  56. break;
  57. }
  58. case PropertyKind::Setter: {
  59. auto& function = value.as_function();
  60. if (function.name().is_empty() && is<ECMAScriptFunctionObject>(function))
  61. static_cast<ECMAScriptFunctionObject*>(&function)->set_name(String::formatted("set {}", name));
  62. object->define_direct_accessor(name, nullptr, &function, Attribute::Configurable | Attribute::Enumerable);
  63. break;
  64. }
  65. case PropertyKind::KeyValue: {
  66. bool succeeded = TRY(object->internal_set(name, interpreter.accumulator(), object));
  67. if (!succeeded && vm.in_strict_mode())
  68. return vm.throw_completion<TypeError>(ErrorType::ReferenceNullishSetProperty, name, interpreter.accumulator().to_string_without_side_effects());
  69. break;
  70. }
  71. case PropertyKind::Spread:
  72. TRY(object->copy_data_properties(vm, value, {}));
  73. break;
  74. case PropertyKind::ProtoSetter:
  75. if (value.is_object() || value.is_null())
  76. MUST(object->internal_set_prototype_of(value.is_object() ? &value.as_object() : nullptr));
  77. break;
  78. }
  79. return {};
  80. }
  81. ThrowCompletionOr<void> Load::execute_impl(Bytecode::Interpreter& interpreter) const
  82. {
  83. interpreter.accumulator() = interpreter.reg(m_src);
  84. return {};
  85. }
  86. ThrowCompletionOr<void> LoadImmediate::execute_impl(Bytecode::Interpreter& interpreter) const
  87. {
  88. interpreter.accumulator() = m_value;
  89. return {};
  90. }
  91. ThrowCompletionOr<void> Store::execute_impl(Bytecode::Interpreter& interpreter) const
  92. {
  93. interpreter.reg(m_dst) = interpreter.accumulator();
  94. return {};
  95. }
  96. static ThrowCompletionOr<Value> abstract_inequals(VM& vm, Value src1, Value src2)
  97. {
  98. return Value(!TRY(is_loosely_equal(vm, src1, src2)));
  99. }
  100. static ThrowCompletionOr<Value> abstract_equals(VM& vm, Value src1, Value src2)
  101. {
  102. return Value(TRY(is_loosely_equal(vm, src1, src2)));
  103. }
  104. static ThrowCompletionOr<Value> typed_inequals(VM&, Value src1, Value src2)
  105. {
  106. return Value(!is_strictly_equal(src1, src2));
  107. }
  108. static ThrowCompletionOr<Value> typed_equals(VM&, Value src1, Value src2)
  109. {
  110. return Value(is_strictly_equal(src1, src2));
  111. }
  112. #define JS_DEFINE_COMMON_BINARY_OP(OpTitleCase, op_snake_case) \
  113. ThrowCompletionOr<void> OpTitleCase::execute_impl(Bytecode::Interpreter& interpreter) const \
  114. { \
  115. auto& vm = interpreter.vm(); \
  116. auto lhs = interpreter.reg(m_lhs_reg); \
  117. auto rhs = interpreter.accumulator(); \
  118. interpreter.accumulator() = TRY(op_snake_case(vm, lhs, rhs)); \
  119. return {}; \
  120. } \
  121. String OpTitleCase::to_string_impl(Bytecode::Executable const&) const \
  122. { \
  123. return String::formatted(#OpTitleCase " {}", m_lhs_reg); \
  124. }
  125. JS_ENUMERATE_COMMON_BINARY_OPS(JS_DEFINE_COMMON_BINARY_OP)
  126. static ThrowCompletionOr<Value> not_(VM&, Value value)
  127. {
  128. return Value(!value.to_boolean());
  129. }
  130. static ThrowCompletionOr<Value> typeof_(VM& vm, Value value)
  131. {
  132. return Value(js_string(vm, value.typeof()));
  133. }
  134. #define JS_DEFINE_COMMON_UNARY_OP(OpTitleCase, op_snake_case) \
  135. ThrowCompletionOr<void> OpTitleCase::execute_impl(Bytecode::Interpreter& interpreter) const \
  136. { \
  137. auto& vm = interpreter.vm(); \
  138. interpreter.accumulator() = TRY(op_snake_case(vm, interpreter.accumulator())); \
  139. return {}; \
  140. } \
  141. String OpTitleCase::to_string_impl(Bytecode::Executable const&) const \
  142. { \
  143. return #OpTitleCase; \
  144. }
  145. JS_ENUMERATE_COMMON_UNARY_OPS(JS_DEFINE_COMMON_UNARY_OP)
  146. ThrowCompletionOr<void> NewBigInt::execute_impl(Bytecode::Interpreter& interpreter) const
  147. {
  148. interpreter.accumulator() = js_bigint(interpreter.vm().heap(), m_bigint);
  149. return {};
  150. }
  151. ThrowCompletionOr<void> NewArray::execute_impl(Bytecode::Interpreter& interpreter) const
  152. {
  153. auto* array = MUST(Array::create(interpreter.realm(), 0));
  154. for (size_t i = 0; i < m_element_count; i++) {
  155. auto& value = interpreter.reg(Register(m_elements[0].index() + i));
  156. array->indexed_properties().put(i, value, default_attributes);
  157. }
  158. interpreter.accumulator() = array;
  159. return {};
  160. }
  161. ThrowCompletionOr<void> Append::execute_impl(Bytecode::Interpreter& interpreter) const
  162. {
  163. // Note: This OpCode is used to construct array literals and argument arrays for calls,
  164. // containing at least one spread element,
  165. // Iterating over such a spread element to unpack it has to be visible by
  166. // the user courtesy of
  167. // (1) https://tc39.es/ecma262/#sec-runtime-semantics-arrayaccumulation
  168. // SpreadElement : ... AssignmentExpression
  169. // 1. Let spreadRef be ? Evaluation of AssignmentExpression.
  170. // 2. Let spreadObj be ? GetValue(spreadRef).
  171. // 3. Let iteratorRecord be ? GetIterator(spreadObj).
  172. // 4. Repeat,
  173. // a. Let next be ? IteratorStep(iteratorRecord).
  174. // b. If next is false, return nextIndex.
  175. // c. Let nextValue be ? IteratorValue(next).
  176. // d. Perform ! CreateDataPropertyOrThrow(array, ! ToString(𝔽(nextIndex)), nextValue).
  177. // e. Set nextIndex to nextIndex + 1.
  178. // (2) https://tc39.es/ecma262/#sec-runtime-semantics-argumentlistevaluation
  179. // ArgumentList : ... AssignmentExpression
  180. // 1. Let list be a new empty List.
  181. // 2. Let spreadRef be ? Evaluation of AssignmentExpression.
  182. // 3. Let spreadObj be ? GetValue(spreadRef).
  183. // 4. Let iteratorRecord be ? GetIterator(spreadObj).
  184. // 5. Repeat,
  185. // a. Let next be ? IteratorStep(iteratorRecord).
  186. // b. If next is false, return list.
  187. // c. Let nextArg be ? IteratorValue(next).
  188. // d. Append nextArg to list.
  189. // ArgumentList : ArgumentList , ... AssignmentExpression
  190. // 1. Let precedingArgs be ? ArgumentListEvaluation of ArgumentList.
  191. // 2. Let spreadRef be ? Evaluation of AssignmentExpression.
  192. // 3. Let iteratorRecord be ? GetIterator(? GetValue(spreadRef)).
  193. // 4. Repeat,
  194. // a. Let next be ? IteratorStep(iteratorRecord).
  195. // b. If next is false, return precedingArgs.
  196. // c. Let nextArg be ? IteratorValue(next).
  197. // d. Append nextArg to precedingArgs.
  198. auto& vm = interpreter.vm();
  199. // Note: We know from codegen, that lhs is a plain array with only indexed properties
  200. auto& lhs = interpreter.reg(m_lhs).as_array();
  201. auto lhs_size = lhs.indexed_properties().array_like_size();
  202. auto rhs = interpreter.accumulator();
  203. if (m_is_spread) {
  204. // ...rhs
  205. size_t i = lhs_size;
  206. TRY(get_iterator_values(vm, rhs, [&i, &lhs](Value iterator_value) -> Optional<Completion> {
  207. lhs.indexed_properties().put(i, iterator_value, default_attributes);
  208. ++i;
  209. return {};
  210. }));
  211. } else {
  212. lhs.indexed_properties().put(lhs_size, rhs, default_attributes);
  213. }
  214. return {};
  215. }
  216. // FIXME: Since the accumulator is a Value, we store an object there and have to convert back and forth between that an Iterator records. Not great.
  217. // Make sure to put this into the accumulator before the iterator object disappears from the stack to prevent the members from being GC'd.
  218. static Object* iterator_to_object(VM& vm, Iterator iterator)
  219. {
  220. auto& realm = *vm.current_realm();
  221. auto* object = Object::create(realm, nullptr);
  222. object->define_direct_property(vm.names.iterator, iterator.iterator, 0);
  223. object->define_direct_property(vm.names.next, iterator.next_method, 0);
  224. object->define_direct_property(vm.names.done, Value(iterator.done), 0);
  225. return object;
  226. }
  227. static Iterator object_to_iterator(VM& vm, Object& object)
  228. {
  229. return Iterator {
  230. .iterator = &MUST(object.get(vm.names.iterator)).as_object(),
  231. .next_method = MUST(object.get(vm.names.next)),
  232. .done = MUST(object.get(vm.names.done)).as_bool()
  233. };
  234. }
  235. ThrowCompletionOr<void> IteratorToArray::execute_impl(Bytecode::Interpreter& interpreter) const
  236. {
  237. auto& vm = interpreter.vm();
  238. auto iterator_object = TRY(interpreter.accumulator().to_object(vm));
  239. auto iterator = object_to_iterator(vm, *iterator_object);
  240. auto* array = MUST(Array::create(interpreter.realm(), 0));
  241. size_t index = 0;
  242. while (true) {
  243. auto* iterator_result = TRY(iterator_next(vm, iterator));
  244. auto complete = TRY(iterator_complete(vm, *iterator_result));
  245. if (complete) {
  246. interpreter.accumulator() = array;
  247. return {};
  248. }
  249. auto value = TRY(iterator_value(vm, *iterator_result));
  250. MUST(array->create_data_property_or_throw(index, value));
  251. index++;
  252. }
  253. return {};
  254. }
  255. ThrowCompletionOr<void> NewString::execute_impl(Bytecode::Interpreter& interpreter) const
  256. {
  257. interpreter.accumulator() = js_string(interpreter.vm(), interpreter.current_executable().get_string(m_string));
  258. return {};
  259. }
  260. ThrowCompletionOr<void> NewObject::execute_impl(Bytecode::Interpreter& interpreter) const
  261. {
  262. auto& vm = interpreter.vm();
  263. auto& realm = *vm.current_realm();
  264. interpreter.accumulator() = Object::create(realm, realm.intrinsics().object_prototype());
  265. return {};
  266. }
  267. ThrowCompletionOr<void> NewRegExp::execute_impl(Bytecode::Interpreter& interpreter) const
  268. {
  269. auto& vm = interpreter.vm();
  270. auto source = interpreter.current_executable().get_string(m_source_index);
  271. auto flags = interpreter.current_executable().get_string(m_flags_index);
  272. interpreter.accumulator() = TRY(regexp_create(vm, js_string(vm, source), js_string(vm, flags)));
  273. return {};
  274. }
  275. ThrowCompletionOr<void> CopyObjectExcludingProperties::execute_impl(Bytecode::Interpreter& interpreter) const
  276. {
  277. auto& vm = interpreter.vm();
  278. auto& realm = *vm.current_realm();
  279. auto* from_object = TRY(interpreter.reg(m_from_object).to_object(vm));
  280. auto* to_object = Object::create(realm, realm.intrinsics().object_prototype());
  281. HashTable<Value, ValueTraits> excluded_names;
  282. for (size_t i = 0; i < m_excluded_names_count; ++i)
  283. excluded_names.set(interpreter.reg(m_excluded_names[i]));
  284. auto own_keys = TRY(from_object->internal_own_property_keys());
  285. for (auto& key : own_keys) {
  286. if (!excluded_names.contains(key)) {
  287. auto property_key = TRY(key.to_property_key(vm));
  288. auto property_value = TRY(from_object->get(property_key));
  289. to_object->define_direct_property(property_key, property_value, JS::default_attributes);
  290. }
  291. }
  292. interpreter.accumulator() = to_object;
  293. return {};
  294. }
  295. ThrowCompletionOr<void> ConcatString::execute_impl(Bytecode::Interpreter& interpreter) const
  296. {
  297. auto& vm = interpreter.vm();
  298. interpreter.reg(m_lhs) = TRY(add(vm, interpreter.reg(m_lhs), interpreter.accumulator()));
  299. return {};
  300. }
  301. ThrowCompletionOr<void> GetVariable::execute_impl(Bytecode::Interpreter& interpreter) const
  302. {
  303. auto& vm = interpreter.vm();
  304. auto get_reference = [&]() -> ThrowCompletionOr<Reference> {
  305. auto const& string = interpreter.current_executable().get_identifier(m_identifier);
  306. if (m_cached_environment_coordinate.has_value()) {
  307. Environment* environment = nullptr;
  308. if (m_cached_environment_coordinate->index == EnvironmentCoordinate::global_marker) {
  309. environment = &interpreter.vm().current_realm()->global_environment();
  310. } else {
  311. environment = vm.running_execution_context().lexical_environment;
  312. for (size_t i = 0; i < m_cached_environment_coordinate->hops; ++i)
  313. environment = environment->outer_environment();
  314. VERIFY(environment);
  315. VERIFY(environment->is_declarative_environment());
  316. }
  317. if (!environment->is_permanently_screwed_by_eval()) {
  318. return Reference { *environment, string, vm.in_strict_mode(), m_cached_environment_coordinate };
  319. }
  320. m_cached_environment_coordinate = {};
  321. }
  322. auto reference = TRY(vm.resolve_binding(string));
  323. if (reference.environment_coordinate().has_value())
  324. m_cached_environment_coordinate = reference.environment_coordinate();
  325. return reference;
  326. };
  327. auto reference = TRY(get_reference());
  328. interpreter.accumulator() = TRY(reference.get_value(vm));
  329. return {};
  330. }
  331. ThrowCompletionOr<void> DeleteVariable::execute_impl(Bytecode::Interpreter& interpreter) const
  332. {
  333. auto& vm = interpreter.vm();
  334. auto const& string = interpreter.current_executable().get_identifier(m_identifier);
  335. auto reference = TRY(vm.resolve_binding(string));
  336. interpreter.accumulator() = Value(TRY(reference.delete_(vm)));
  337. return {};
  338. }
  339. ThrowCompletionOr<void> CreateEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
  340. {
  341. auto make_and_swap_envs = [&](auto*& old_environment) {
  342. Environment* environment = new_declarative_environment(*old_environment);
  343. swap(old_environment, environment);
  344. return environment;
  345. };
  346. if (m_mode == EnvironmentMode::Lexical)
  347. interpreter.saved_lexical_environment_stack().append(make_and_swap_envs(interpreter.vm().running_execution_context().lexical_environment));
  348. else if (m_mode == EnvironmentMode::Var)
  349. interpreter.saved_variable_environment_stack().append(make_and_swap_envs(interpreter.vm().running_execution_context().variable_environment));
  350. return {};
  351. }
  352. ThrowCompletionOr<void> EnterObjectEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
  353. {
  354. auto& vm = interpreter.vm();
  355. auto& old_environment = vm.running_execution_context().lexical_environment;
  356. interpreter.saved_lexical_environment_stack().append(old_environment);
  357. auto object = TRY(interpreter.accumulator().to_object(vm));
  358. vm.running_execution_context().lexical_environment = new_object_environment(*object, true, old_environment);
  359. return {};
  360. }
  361. ThrowCompletionOr<void> CreateVariable::execute_impl(Bytecode::Interpreter& interpreter) const
  362. {
  363. auto& vm = interpreter.vm();
  364. auto const& name = interpreter.current_executable().get_identifier(m_identifier);
  365. if (m_mode == EnvironmentMode::Lexical) {
  366. VERIFY(!m_is_global);
  367. // Note: This is papering over an issue where "FunctionDeclarationInstantiation" creates these bindings for us.
  368. // Instead of crashing in there, we'll just raise an exception here.
  369. if (TRY(vm.lexical_environment()->has_binding(name)))
  370. return vm.throw_completion<InternalError>(String::formatted("Lexical environment already has binding '{}'", name));
  371. if (m_is_immutable)
  372. vm.lexical_environment()->create_immutable_binding(vm, name, vm.in_strict_mode());
  373. else
  374. vm.lexical_environment()->create_mutable_binding(vm, name, vm.in_strict_mode());
  375. } else {
  376. if (!m_is_global) {
  377. if (m_is_immutable)
  378. vm.variable_environment()->create_immutable_binding(vm, name, vm.in_strict_mode());
  379. else
  380. vm.variable_environment()->create_mutable_binding(vm, name, vm.in_strict_mode());
  381. } else {
  382. // NOTE: CreateVariable with m_is_global set to true is expected to only be used in GlobalDeclarationInstantiation currently, which only uses "false" for "can_be_deleted".
  383. // The only area that sets "can_be_deleted" to true is EvalDeclarationInstantiation, which is currently fully implemented in C++ and not in Bytecode.
  384. verify_cast<GlobalEnvironment>(vm.variable_environment())->create_global_var_binding(name, false);
  385. }
  386. }
  387. return {};
  388. }
  389. ThrowCompletionOr<void> SetVariable::execute_impl(Bytecode::Interpreter& interpreter) const
  390. {
  391. auto& vm = interpreter.vm();
  392. auto const& name = interpreter.current_executable().get_identifier(m_identifier);
  393. auto environment = m_mode == EnvironmentMode::Lexical ? vm.running_execution_context().lexical_environment : vm.running_execution_context().variable_environment;
  394. auto reference = TRY(vm.resolve_binding(name, environment));
  395. switch (m_initialization_mode) {
  396. case InitializationMode::Initialize:
  397. TRY(reference.initialize_referenced_binding(vm, interpreter.accumulator()));
  398. break;
  399. case InitializationMode::Set:
  400. TRY(reference.put_value(vm, interpreter.accumulator()));
  401. break;
  402. case InitializationMode::InitializeOrSet:
  403. VERIFY(reference.is_environment_reference());
  404. VERIFY(reference.base_environment().is_declarative_environment());
  405. TRY(static_cast<DeclarativeEnvironment&>(reference.base_environment()).initialize_or_set_mutable_binding(vm, name, interpreter.accumulator()));
  406. break;
  407. }
  408. return {};
  409. }
  410. ThrowCompletionOr<void> GetById::execute_impl(Bytecode::Interpreter& interpreter) const
  411. {
  412. auto& vm = interpreter.vm();
  413. auto* object = TRY(interpreter.accumulator().to_object(vm));
  414. interpreter.accumulator() = TRY(object->get(interpreter.current_executable().get_identifier(m_property)));
  415. return {};
  416. }
  417. ThrowCompletionOr<void> PutById::execute_impl(Bytecode::Interpreter& interpreter) const
  418. {
  419. auto& vm = interpreter.vm();
  420. auto* object = TRY(interpreter.reg(m_base).to_object(vm));
  421. PropertyKey name = interpreter.current_executable().get_identifier(m_property);
  422. auto value = interpreter.accumulator();
  423. return put_by_property_key(object, value, name, interpreter, m_kind);
  424. }
  425. ThrowCompletionOr<void> DeleteById::execute_impl(Bytecode::Interpreter& interpreter) const
  426. {
  427. auto& vm = interpreter.vm();
  428. auto* object = TRY(interpreter.accumulator().to_object(vm));
  429. auto const& identifier = interpreter.current_executable().get_identifier(m_property);
  430. bool strict = vm.in_strict_mode();
  431. auto reference = Reference { object, identifier, {}, strict };
  432. interpreter.accumulator() = Value(TRY(reference.delete_(vm)));
  433. return {};
  434. };
  435. ThrowCompletionOr<void> Jump::execute_impl(Bytecode::Interpreter& interpreter) const
  436. {
  437. interpreter.jump(*m_true_target);
  438. return {};
  439. }
  440. ThrowCompletionOr<void> ResolveThisBinding::execute_impl(Bytecode::Interpreter& interpreter) const
  441. {
  442. auto& vm = interpreter.vm();
  443. interpreter.accumulator() = TRY(vm.resolve_this_binding());
  444. return {};
  445. }
  446. ThrowCompletionOr<void> GetNewTarget::execute_impl(Bytecode::Interpreter& interpreter) const
  447. {
  448. interpreter.accumulator() = interpreter.vm().get_new_target();
  449. return {};
  450. }
  451. void Jump::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
  452. {
  453. if (m_true_target.has_value() && &m_true_target->block() == &from)
  454. m_true_target = Label { to };
  455. if (m_false_target.has_value() && &m_false_target->block() == &from)
  456. m_false_target = Label { to };
  457. }
  458. ThrowCompletionOr<void> JumpConditional::execute_impl(Bytecode::Interpreter& interpreter) const
  459. {
  460. VERIFY(m_true_target.has_value());
  461. VERIFY(m_false_target.has_value());
  462. auto result = interpreter.accumulator();
  463. if (result.to_boolean())
  464. interpreter.jump(m_true_target.value());
  465. else
  466. interpreter.jump(m_false_target.value());
  467. return {};
  468. }
  469. ThrowCompletionOr<void> JumpNullish::execute_impl(Bytecode::Interpreter& interpreter) const
  470. {
  471. VERIFY(m_true_target.has_value());
  472. VERIFY(m_false_target.has_value());
  473. auto result = interpreter.accumulator();
  474. if (result.is_nullish())
  475. interpreter.jump(m_true_target.value());
  476. else
  477. interpreter.jump(m_false_target.value());
  478. return {};
  479. }
  480. ThrowCompletionOr<void> JumpUndefined::execute_impl(Bytecode::Interpreter& interpreter) const
  481. {
  482. VERIFY(m_true_target.has_value());
  483. VERIFY(m_false_target.has_value());
  484. auto result = interpreter.accumulator();
  485. if (result.is_undefined())
  486. interpreter.jump(m_true_target.value());
  487. else
  488. interpreter.jump(m_false_target.value());
  489. return {};
  490. }
  491. // 13.3.8.1 https://tc39.es/ecma262/#sec-runtime-semantics-argumentlistevaluation
  492. static MarkedVector<Value> argument_list_evaluation(Bytecode::Interpreter& interpreter)
  493. {
  494. // Note: Any spreading and actual evaluation is handled in preceding opcodes
  495. // Note: The spec uses the concept of a list, while we create a temporary array
  496. // in the preceding opcodes, so we have to convert in a manner that is not
  497. // visible to the user
  498. auto& vm = interpreter.vm();
  499. MarkedVector<Value> argument_values { vm.heap() };
  500. auto arguments = interpreter.accumulator();
  501. if (!(arguments.is_object() && is<Array>(arguments.as_object()))) {
  502. dbgln("[{}] Call arguments are not an array, but: {}", interpreter.debug_position(), arguments.to_string_without_side_effects());
  503. interpreter.current_executable().dump();
  504. VERIFY_NOT_REACHED();
  505. }
  506. auto& argument_array = arguments.as_array();
  507. auto array_length = argument_array.indexed_properties().array_like_size();
  508. argument_values.ensure_capacity(array_length);
  509. for (size_t i = 0; i < array_length; ++i) {
  510. if (auto maybe_value = argument_array.indexed_properties().get(i); maybe_value.has_value())
  511. argument_values.append(maybe_value.release_value().value);
  512. else
  513. argument_values.append(js_undefined());
  514. }
  515. return argument_values;
  516. }
  517. Completion Call::throw_type_error_for_callee(Bytecode::Interpreter& interpreter, StringView callee_type) const
  518. {
  519. auto callee = interpreter.reg(m_callee);
  520. if (m_expression_string.has_value())
  521. return interpreter.vm().throw_completion<TypeError>(ErrorType::IsNotAEvaluatedFrom, callee.to_string_without_side_effects(), callee_type, interpreter.current_executable().get_string(m_expression_string->value()));
  522. return interpreter.vm().throw_completion<TypeError>(ErrorType::IsNotA, callee.to_string_without_side_effects(), callee_type);
  523. }
  524. ThrowCompletionOr<void> Call::execute_impl(Bytecode::Interpreter& interpreter) const
  525. {
  526. auto& vm = interpreter.vm();
  527. auto callee = interpreter.reg(m_callee);
  528. if (m_type == CallType::Call && !callee.is_function())
  529. return throw_type_error_for_callee(interpreter, "function"sv);
  530. if (m_type == CallType::Construct && !callee.is_constructor())
  531. return throw_type_error_for_callee(interpreter, "constructor"sv);
  532. auto& function = callee.as_function();
  533. auto this_value = interpreter.reg(m_this_value);
  534. auto argument_values = argument_list_evaluation(interpreter);
  535. Value return_value;
  536. if (m_type == CallType::Call)
  537. return_value = TRY(call(vm, function, this_value, move(argument_values)));
  538. else
  539. return_value = TRY(construct(vm, function, move(argument_values)));
  540. interpreter.accumulator() = return_value;
  541. return {};
  542. }
  543. // 13.3.7.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation
  544. ThrowCompletionOr<void> SuperCall::execute_impl(Bytecode::Interpreter& interpreter) const
  545. {
  546. auto& vm = interpreter.vm();
  547. // 1. Let newTarget be GetNewTarget().
  548. auto new_target = vm.get_new_target();
  549. // 2. Assert: Type(newTarget) is Object.
  550. VERIFY(new_target.is_object());
  551. // 3. Let func be GetSuperConstructor().
  552. auto* func = get_super_constructor(vm);
  553. // 4. Let argList be ? ArgumentListEvaluation of Arguments.
  554. MarkedVector<Value> arg_list { vm.heap() };
  555. if (m_is_synthetic) {
  556. auto const& value = interpreter.accumulator();
  557. VERIFY(value.is_object() && is<Array>(value.as_object()));
  558. auto const& array_value = static_cast<Array const&>(value.as_object());
  559. auto length = MUST(length_of_array_like(vm, array_value));
  560. for (size_t i = 0; i < length; ++i)
  561. arg_list.append(array_value.get_without_side_effects(PropertyKey { i }));
  562. } else {
  563. arg_list = argument_list_evaluation(interpreter);
  564. }
  565. // 5. If IsConstructor(func) is false, throw a TypeError exception.
  566. if (!Value(func).is_constructor())
  567. return vm.throw_completion<TypeError>(ErrorType::NotAConstructor, "Super constructor");
  568. // 6. Let result be ? Construct(func, argList, newTarget).
  569. auto* result = TRY(construct(vm, static_cast<FunctionObject&>(*func), move(arg_list), &new_target.as_function()));
  570. // 7. Let thisER be GetThisEnvironment().
  571. auto& this_environment = verify_cast<FunctionEnvironment>(get_this_environment(vm));
  572. // 8. Perform ? thisER.BindThisValue(result).
  573. TRY(this_environment.bind_this_value(vm, result));
  574. // 9. Let F be thisER.[[FunctionObject]].
  575. auto& f = this_environment.function_object();
  576. // 10. Assert: F is an ECMAScript function object.
  577. // NOTE: This is implied by the strong C++ type.
  578. // 11. Perform ? InitializeInstanceElements(result, F).
  579. TRY(vm.initialize_instance_elements(*result, f));
  580. // 12. Return result.
  581. interpreter.accumulator() = result;
  582. return {};
  583. }
  584. ThrowCompletionOr<void> NewFunction::execute_impl(Bytecode::Interpreter& interpreter) const
  585. {
  586. auto& vm = interpreter.vm();
  587. interpreter.accumulator() = ECMAScriptFunctionObject::create(interpreter.realm(), m_function_node.name(), m_function_node.source_text(), m_function_node.body(), m_function_node.parameters(), m_function_node.function_length(), vm.lexical_environment(), vm.running_execution_context().private_environment, m_function_node.kind(), m_function_node.is_strict_mode(), m_function_node.might_need_arguments_object(), m_function_node.contains_direct_call_to_eval(), m_function_node.is_arrow_function());
  588. return {};
  589. }
  590. ThrowCompletionOr<void> Return::execute_impl(Bytecode::Interpreter& interpreter) const
  591. {
  592. interpreter.do_return(interpreter.accumulator().value_or(js_undefined()));
  593. return {};
  594. }
  595. ThrowCompletionOr<void> Increment::execute_impl(Bytecode::Interpreter& interpreter) const
  596. {
  597. auto& vm = interpreter.vm();
  598. auto old_value = TRY(interpreter.accumulator().to_numeric(vm));
  599. if (old_value.is_number())
  600. interpreter.accumulator() = Value(old_value.as_double() + 1);
  601. else
  602. interpreter.accumulator() = js_bigint(vm, old_value.as_bigint().big_integer().plus(Crypto::SignedBigInteger { 1 }));
  603. return {};
  604. }
  605. ThrowCompletionOr<void> Decrement::execute_impl(Bytecode::Interpreter& interpreter) const
  606. {
  607. auto& vm = interpreter.vm();
  608. auto old_value = TRY(interpreter.accumulator().to_numeric(vm));
  609. if (old_value.is_number())
  610. interpreter.accumulator() = Value(old_value.as_double() - 1);
  611. else
  612. interpreter.accumulator() = js_bigint(vm, old_value.as_bigint().big_integer().minus(Crypto::SignedBigInteger { 1 }));
  613. return {};
  614. }
  615. ThrowCompletionOr<void> Throw::execute_impl(Bytecode::Interpreter& interpreter) const
  616. {
  617. return throw_completion(interpreter.accumulator());
  618. }
  619. ThrowCompletionOr<void> EnterUnwindContext::execute_impl(Bytecode::Interpreter& interpreter) const
  620. {
  621. interpreter.enter_unwind_context(m_handler_target, m_finalizer_target);
  622. interpreter.jump(m_entry_point);
  623. return {};
  624. }
  625. void EnterUnwindContext::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
  626. {
  627. if (&m_entry_point.block() == &from)
  628. m_entry_point = Label { to };
  629. if (m_handler_target.has_value() && &m_handler_target->block() == &from)
  630. m_handler_target = Label { to };
  631. if (m_finalizer_target.has_value() && &m_finalizer_target->block() == &from)
  632. m_finalizer_target = Label { to };
  633. }
  634. ThrowCompletionOr<void> FinishUnwind::execute_impl(Bytecode::Interpreter& interpreter) const
  635. {
  636. interpreter.leave_unwind_context();
  637. interpreter.jump(m_next_target);
  638. return {};
  639. }
  640. void FinishUnwind::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
  641. {
  642. if (&m_next_target.block() == &from)
  643. m_next_target = Label { to };
  644. }
  645. void CopyObjectExcludingProperties::replace_references_impl(Register from, Register to)
  646. {
  647. if (m_from_object == from)
  648. m_from_object = to;
  649. for (size_t i = 0; i < m_excluded_names_count; ++i) {
  650. if (m_excluded_names[i] == from)
  651. m_excluded_names[i] = to;
  652. }
  653. }
  654. void Call::replace_references_impl(Register from, Register to)
  655. {
  656. if (m_callee == from)
  657. m_callee = to;
  658. if (m_this_value == from)
  659. m_this_value = to;
  660. }
  661. ThrowCompletionOr<void> LeaveEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
  662. {
  663. if (m_mode == EnvironmentMode::Lexical)
  664. interpreter.vm().running_execution_context().lexical_environment = interpreter.saved_lexical_environment_stack().take_last();
  665. if (m_mode == EnvironmentMode::Var)
  666. interpreter.vm().running_execution_context().variable_environment = interpreter.saved_variable_environment_stack().take_last();
  667. return {};
  668. }
  669. ThrowCompletionOr<void> LeaveUnwindContext::execute_impl(Bytecode::Interpreter& interpreter) const
  670. {
  671. interpreter.leave_unwind_context();
  672. return {};
  673. }
  674. ThrowCompletionOr<void> ContinuePendingUnwind::execute_impl(Bytecode::Interpreter& interpreter) const
  675. {
  676. return interpreter.continue_pending_unwind(m_resume_target);
  677. }
  678. void ContinuePendingUnwind::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
  679. {
  680. if (&m_resume_target.block() == &from)
  681. m_resume_target = Label { to };
  682. }
  683. ThrowCompletionOr<void> PushDeclarativeEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
  684. {
  685. auto* environment = interpreter.vm().heap().allocate_without_realm<DeclarativeEnvironment>(interpreter.vm().lexical_environment());
  686. interpreter.vm().running_execution_context().lexical_environment = environment;
  687. interpreter.vm().running_execution_context().variable_environment = environment;
  688. return {};
  689. }
  690. ThrowCompletionOr<void> Yield::execute_impl(Bytecode::Interpreter& interpreter) const
  691. {
  692. auto yielded_value = interpreter.accumulator().value_or(js_undefined());
  693. auto object = Object::create(interpreter.realm(), nullptr);
  694. object->define_direct_property("result", yielded_value, JS::default_attributes);
  695. if (m_continuation_label.has_value())
  696. object->define_direct_property("continuation", Value(static_cast<double>(reinterpret_cast<u64>(&m_continuation_label->block()))), JS::default_attributes);
  697. else
  698. object->define_direct_property("continuation", Value(0), JS::default_attributes);
  699. interpreter.do_return(object);
  700. return {};
  701. }
  702. void Yield::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
  703. {
  704. if (m_continuation_label.has_value() && &m_continuation_label->block() == &from)
  705. m_continuation_label = Label { to };
  706. }
  707. ThrowCompletionOr<void> GetByValue::execute_impl(Bytecode::Interpreter& interpreter) const
  708. {
  709. auto& vm = interpreter.vm();
  710. auto* object = TRY(interpreter.reg(m_base).to_object(vm));
  711. auto property_key = TRY(interpreter.accumulator().to_property_key(vm));
  712. interpreter.accumulator() = TRY(object->get(property_key));
  713. return {};
  714. }
  715. ThrowCompletionOr<void> PutByValue::execute_impl(Bytecode::Interpreter& interpreter) const
  716. {
  717. auto& vm = interpreter.vm();
  718. auto* object = TRY(interpreter.reg(m_base).to_object(vm));
  719. auto property_key = TRY(interpreter.reg(m_property).to_property_key(vm));
  720. return put_by_property_key(object, interpreter.accumulator(), property_key, interpreter, m_kind);
  721. }
  722. ThrowCompletionOr<void> DeleteByValue::execute_impl(Bytecode::Interpreter& interpreter) const
  723. {
  724. auto& vm = interpreter.vm();
  725. auto* object = TRY(interpreter.reg(m_base).to_object(vm));
  726. auto property_key = TRY(interpreter.accumulator().to_property_key(vm));
  727. bool strict = vm.in_strict_mode();
  728. auto reference = Reference { object, property_key, {}, strict };
  729. interpreter.accumulator() = Value(TRY(reference.delete_(vm)));
  730. return {};
  731. }
  732. ThrowCompletionOr<void> GetIterator::execute_impl(Bytecode::Interpreter& interpreter) const
  733. {
  734. auto& vm = interpreter.vm();
  735. auto iterator = TRY(get_iterator(vm, interpreter.accumulator()));
  736. interpreter.accumulator() = iterator_to_object(vm, iterator);
  737. return {};
  738. }
  739. // 14.7.5.9 EnumerateObjectProperties ( O ), https://tc39.es/ecma262/#sec-enumerate-object-properties
  740. ThrowCompletionOr<void> GetObjectPropertyIterator::execute_impl(Bytecode::Interpreter& interpreter) const
  741. {
  742. // While the spec does provide an algorithm, it allows us to implement it ourselves so long as we meet the following invariants:
  743. // 1- Returned property keys do not include keys that are Symbols
  744. // 2- Properties of the target object may be deleted during enumeration. A property that is deleted before it is processed by the iterator's next method is ignored
  745. // 3- If new properties are added to the target object during enumeration, the newly added properties are not guaranteed to be processed in the active enumeration
  746. // 4- A property name will be returned by the iterator's next method at most once in any enumeration.
  747. // 5- Enumerating the properties of the target object includes enumerating properties of its prototype, and the prototype of the prototype, and so on, recursively;
  748. // but a property of a prototype is not processed if it has the same name as a property that has already been processed by the iterator's next method.
  749. // 6- The values of [[Enumerable]] attributes are not considered when determining if a property of a prototype object has already been processed.
  750. // 7- The enumerable property names of prototype objects must be obtained by invoking EnumerateObjectProperties passing the prototype object as the argument.
  751. // 8- EnumerateObjectProperties must obtain the own property keys of the target object by calling its [[OwnPropertyKeys]] internal method.
  752. // 9- Property attributes of the target object must be obtained by calling its [[GetOwnProperty]] internal method
  753. // Invariant 3 effectively allows the implementation to ignore newly added keys, and we do so (similar to other implementations).
  754. // Invariants 1 and 6 through 9 are implemented in `enumerable_own_property_names`, which implements the EnumerableOwnPropertyNames AO.
  755. auto& vm = interpreter.vm();
  756. auto* object = TRY(interpreter.accumulator().to_object(vm));
  757. // Note: While the spec doesn't explicitly require these to be ordered, it says that the values should be retrieved via OwnPropertyKeys,
  758. // so we just keep the order consistent anyway.
  759. OrderedHashTable<PropertyKey> properties;
  760. HashTable<Object*> seen_objects;
  761. // Collect all keys immediately (invariant no. 5)
  762. for (auto* object_to_check = object; object_to_check && !seen_objects.contains(object_to_check); object_to_check = TRY(object_to_check->internal_get_prototype_of())) {
  763. seen_objects.set(object_to_check);
  764. for (auto& key : TRY(object_to_check->enumerable_own_property_names(Object::PropertyKind::Key))) {
  765. properties.set(TRY(PropertyKey::from_value(vm, key)));
  766. }
  767. }
  768. Iterator iterator {
  769. .iterator = object,
  770. .next_method = NativeFunction::create(
  771. interpreter.realm(),
  772. [seen_items = HashTable<PropertyKey>(), items = move(properties)](VM& vm) mutable -> ThrowCompletionOr<Value> {
  773. auto& realm = *vm.current_realm();
  774. auto iterated_object_value = vm.this_value();
  775. if (!iterated_object_value.is_object())
  776. return vm.throw_completion<InternalError>("Invalid state for GetObjectPropertyIterator.next");
  777. auto& iterated_object = iterated_object_value.as_object();
  778. auto* result_object = Object::create(realm, nullptr);
  779. while (true) {
  780. if (items.is_empty()) {
  781. result_object->define_direct_property(vm.names.done, JS::Value(true), default_attributes);
  782. return result_object;
  783. }
  784. auto it = items.begin();
  785. auto key = *it;
  786. items.remove(it);
  787. // If the key was already seen, skip over it (invariant no. 4)
  788. auto result = seen_items.set(key);
  789. if (result != AK::HashSetResult::InsertedNewEntry)
  790. continue;
  791. // If the property is deleted, don't include it (invariant no. 2)
  792. if (!TRY(iterated_object.has_property(key)))
  793. continue;
  794. result_object->define_direct_property(vm.names.done, JS::Value(false), default_attributes);
  795. if (key.is_number())
  796. result_object->define_direct_property(vm.names.value, JS::Value(key.as_number()), default_attributes);
  797. else if (key.is_string())
  798. result_object->define_direct_property(vm.names.value, js_string(vm, key.as_string()), default_attributes);
  799. else
  800. VERIFY_NOT_REACHED(); // We should not have non-string/number keys.
  801. return result_object;
  802. }
  803. },
  804. 1,
  805. vm.names.next),
  806. .done = false,
  807. };
  808. interpreter.accumulator() = iterator_to_object(vm, move(iterator));
  809. return {};
  810. }
  811. ThrowCompletionOr<void> IteratorNext::execute_impl(Bytecode::Interpreter& interpreter) const
  812. {
  813. auto& vm = interpreter.vm();
  814. auto* iterator_object = TRY(interpreter.accumulator().to_object(vm));
  815. auto iterator = object_to_iterator(vm, *iterator_object);
  816. interpreter.accumulator() = TRY(iterator_next(vm, iterator));
  817. return {};
  818. }
  819. ThrowCompletionOr<void> IteratorResultDone::execute_impl(Bytecode::Interpreter& interpreter) const
  820. {
  821. auto& vm = interpreter.vm();
  822. auto* iterator_result = TRY(interpreter.accumulator().to_object(vm));
  823. auto complete = TRY(iterator_complete(vm, *iterator_result));
  824. interpreter.accumulator() = Value(complete);
  825. return {};
  826. }
  827. ThrowCompletionOr<void> IteratorResultValue::execute_impl(Bytecode::Interpreter& interpreter) const
  828. {
  829. auto& vm = interpreter.vm();
  830. auto* iterator_result = TRY(interpreter.accumulator().to_object(vm));
  831. interpreter.accumulator() = TRY(iterator_value(vm, *iterator_result));
  832. return {};
  833. }
  834. ThrowCompletionOr<void> NewClass::execute_impl(Bytecode::Interpreter& interpreter) const
  835. {
  836. auto name = m_class_expression.name();
  837. auto scope = interpreter.ast_interpreter_scope();
  838. auto& ast_interpreter = scope.interpreter();
  839. auto* class_object = TRY(m_class_expression.class_definition_evaluation(ast_interpreter, name, name.is_null() ? ""sv : name));
  840. class_object->set_source_text(m_class_expression.source_text());
  841. interpreter.accumulator() = class_object;
  842. return {};
  843. }
  844. // 13.5.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-typeof-operator-runtime-semantics-evaluation
  845. ThrowCompletionOr<void> TypeofVariable::execute_impl(Bytecode::Interpreter& interpreter) const
  846. {
  847. auto& vm = interpreter.vm();
  848. // 1. Let val be the result of evaluating UnaryExpression.
  849. auto const& string = interpreter.current_executable().get_identifier(m_identifier);
  850. auto reference = TRY(vm.resolve_binding(string));
  851. // 2. If val is a Reference Record, then
  852. // a. If IsUnresolvableReference(val) is true, return "undefined".
  853. if (reference.is_unresolvable()) {
  854. interpreter.accumulator() = js_string(vm, "undefined"sv);
  855. return {};
  856. }
  857. // 3. Set val to ? GetValue(val).
  858. auto value = TRY(reference.get_value(vm));
  859. // 4. NOTE: This step is replaced in section B.3.6.3.
  860. // 5. Return a String according to Table 41.
  861. interpreter.accumulator() = js_string(vm, value.typeof());
  862. return {};
  863. }
  864. String Load::to_string_impl(Bytecode::Executable const&) const
  865. {
  866. return String::formatted("Load {}", m_src);
  867. }
  868. String LoadImmediate::to_string_impl(Bytecode::Executable const&) const
  869. {
  870. return String::formatted("LoadImmediate {}", m_value);
  871. }
  872. String Store::to_string_impl(Bytecode::Executable const&) const
  873. {
  874. return String::formatted("Store {}", m_dst);
  875. }
  876. String NewBigInt::to_string_impl(Bytecode::Executable const&) const
  877. {
  878. return String::formatted("NewBigInt \"{}\"", m_bigint.to_base(10));
  879. }
  880. String NewArray::to_string_impl(Bytecode::Executable const&) const
  881. {
  882. StringBuilder builder;
  883. builder.append("NewArray"sv);
  884. if (m_element_count != 0) {
  885. builder.appendff(" [{}-{}]", m_elements[0], m_elements[1]);
  886. }
  887. return builder.to_string();
  888. }
  889. String Append::to_string_impl(Bytecode::Executable const&) const
  890. {
  891. if (m_is_spread)
  892. return String::formatted("Append lhs: **{}", m_lhs);
  893. return String::formatted("Append lhs: {}", m_lhs);
  894. }
  895. String IteratorToArray::to_string_impl(Bytecode::Executable const&) const
  896. {
  897. return "IteratorToArray";
  898. }
  899. String NewString::to_string_impl(Bytecode::Executable const& executable) const
  900. {
  901. return String::formatted("NewString {} (\"{}\")", m_string, executable.string_table->get(m_string));
  902. }
  903. String NewObject::to_string_impl(Bytecode::Executable const&) const
  904. {
  905. return "NewObject";
  906. }
  907. String NewRegExp::to_string_impl(Bytecode::Executable const& executable) const
  908. {
  909. return String::formatted("NewRegExp source:{} (\"{}\") flags:{} (\"{}\")", m_source_index, executable.get_string(m_source_index), m_flags_index, executable.get_string(m_flags_index));
  910. }
  911. String CopyObjectExcludingProperties::to_string_impl(Bytecode::Executable const&) const
  912. {
  913. StringBuilder builder;
  914. builder.appendff("CopyObjectExcludingProperties from:{}", m_from_object);
  915. if (m_excluded_names_count != 0) {
  916. builder.append(" excluding:["sv);
  917. builder.join(", "sv, Span<Register const>(m_excluded_names, m_excluded_names_count));
  918. builder.append(']');
  919. }
  920. return builder.to_string();
  921. }
  922. String ConcatString::to_string_impl(Bytecode::Executable const&) const
  923. {
  924. return String::formatted("ConcatString {}", m_lhs);
  925. }
  926. String GetVariable::to_string_impl(Bytecode::Executable const& executable) const
  927. {
  928. return String::formatted("GetVariable {} ({})", m_identifier, executable.identifier_table->get(m_identifier));
  929. }
  930. String DeleteVariable::to_string_impl(Bytecode::Executable const& executable) const
  931. {
  932. return String::formatted("DeleteVariable {} ({})", m_identifier, executable.identifier_table->get(m_identifier));
  933. }
  934. String CreateEnvironment::to_string_impl(Bytecode::Executable const&) const
  935. {
  936. auto mode_string = m_mode == EnvironmentMode::Lexical
  937. ? "Lexical"
  938. : "Variable";
  939. return String::formatted("CreateEnvironment mode:{}", mode_string);
  940. }
  941. String CreateVariable::to_string_impl(Bytecode::Executable const& executable) const
  942. {
  943. auto mode_string = m_mode == EnvironmentMode::Lexical ? "Lexical" : "Variable";
  944. return String::formatted("CreateVariable env:{} immutable:{} global:{} {} ({})", mode_string, m_is_immutable, m_is_global, m_identifier, executable.identifier_table->get(m_identifier));
  945. }
  946. String EnterObjectEnvironment::to_string_impl(Executable const&) const
  947. {
  948. return String::formatted("EnterObjectEnvironment");
  949. }
  950. String SetVariable::to_string_impl(Bytecode::Executable const& executable) const
  951. {
  952. auto initialization_mode_name = m_initialization_mode == InitializationMode ::Initialize ? "Initialize"
  953. : m_initialization_mode == InitializationMode::Set ? "Set"
  954. : "InitializeOrSet";
  955. auto mode_string = m_mode == EnvironmentMode::Lexical ? "Lexical" : "Variable";
  956. return String::formatted("SetVariable env:{} init:{} {} ({})", mode_string, initialization_mode_name, m_identifier, executable.identifier_table->get(m_identifier));
  957. }
  958. String PutById::to_string_impl(Bytecode::Executable const& executable) const
  959. {
  960. auto kind = m_kind == PropertyKind::Getter
  961. ? "getter"
  962. : m_kind == PropertyKind::Setter
  963. ? "setter"
  964. : "property";
  965. return String::formatted("PutById kind:{} base:{}, property:{} ({})", kind, m_base, m_property, executable.identifier_table->get(m_property));
  966. }
  967. String GetById::to_string_impl(Bytecode::Executable const& executable) const
  968. {
  969. return String::formatted("GetById {} ({})", m_property, executable.identifier_table->get(m_property));
  970. }
  971. String DeleteById::to_string_impl(Bytecode::Executable const& executable) const
  972. {
  973. return String::formatted("DeleteById {} ({})", m_property, executable.identifier_table->get(m_property));
  974. }
  975. String Jump::to_string_impl(Bytecode::Executable const&) const
  976. {
  977. if (m_true_target.has_value())
  978. return String::formatted("Jump {}", *m_true_target);
  979. return String::formatted("Jump <empty>");
  980. }
  981. String JumpConditional::to_string_impl(Bytecode::Executable const&) const
  982. {
  983. auto true_string = m_true_target.has_value() ? String::formatted("{}", *m_true_target) : "<empty>";
  984. auto false_string = m_false_target.has_value() ? String::formatted("{}", *m_false_target) : "<empty>";
  985. return String::formatted("JumpConditional true:{} false:{}", true_string, false_string);
  986. }
  987. String JumpNullish::to_string_impl(Bytecode::Executable const&) const
  988. {
  989. auto true_string = m_true_target.has_value() ? String::formatted("{}", *m_true_target) : "<empty>";
  990. auto false_string = m_false_target.has_value() ? String::formatted("{}", *m_false_target) : "<empty>";
  991. return String::formatted("JumpNullish null:{} nonnull:{}", true_string, false_string);
  992. }
  993. String JumpUndefined::to_string_impl(Bytecode::Executable const&) const
  994. {
  995. auto true_string = m_true_target.has_value() ? String::formatted("{}", *m_true_target) : "<empty>";
  996. auto false_string = m_false_target.has_value() ? String::formatted("{}", *m_false_target) : "<empty>";
  997. return String::formatted("JumpUndefined undefined:{} not undefined:{}", true_string, false_string);
  998. }
  999. String Call::to_string_impl(Bytecode::Executable const& executable) const
  1000. {
  1001. if (m_expression_string.has_value())
  1002. return String::formatted("Call callee:{}, this:{}, arguments:[...acc] ({})", m_callee, m_this_value, executable.get_string(m_expression_string.value()));
  1003. return String::formatted("Call callee:{}, this:{}, arguments:[...acc]", m_callee, m_this_value);
  1004. }
  1005. String SuperCall::to_string_impl(Bytecode::Executable const&) const
  1006. {
  1007. return "SuperCall arguments:[...acc]"sv;
  1008. }
  1009. String NewFunction::to_string_impl(Bytecode::Executable const&) const
  1010. {
  1011. return "NewFunction";
  1012. }
  1013. String NewClass::to_string_impl(Bytecode::Executable const&) const
  1014. {
  1015. auto name = m_class_expression.name();
  1016. return String::formatted("NewClass '{}'", name.is_null() ? ""sv : name);
  1017. }
  1018. String Return::to_string_impl(Bytecode::Executable const&) const
  1019. {
  1020. return "Return";
  1021. }
  1022. String Increment::to_string_impl(Bytecode::Executable const&) const
  1023. {
  1024. return "Increment";
  1025. }
  1026. String Decrement::to_string_impl(Bytecode::Executable const&) const
  1027. {
  1028. return "Decrement";
  1029. }
  1030. String Throw::to_string_impl(Bytecode::Executable const&) const
  1031. {
  1032. return "Throw";
  1033. }
  1034. String EnterUnwindContext::to_string_impl(Bytecode::Executable const&) const
  1035. {
  1036. auto handler_string = m_handler_target.has_value() ? String::formatted("{}", *m_handler_target) : "<empty>";
  1037. auto finalizer_string = m_finalizer_target.has_value() ? String::formatted("{}", *m_finalizer_target) : "<empty>";
  1038. return String::formatted("EnterUnwindContext handler:{} finalizer:{} entry:{}", handler_string, finalizer_string, m_entry_point);
  1039. }
  1040. String FinishUnwind::to_string_impl(Bytecode::Executable const&) const
  1041. {
  1042. return String::formatted("FinishUnwind next:{}", m_next_target);
  1043. }
  1044. String LeaveEnvironment::to_string_impl(Bytecode::Executable const&) const
  1045. {
  1046. auto mode_string = m_mode == EnvironmentMode::Lexical
  1047. ? "Lexical"
  1048. : "Variable";
  1049. return String::formatted("LeaveEnvironment env:{}", mode_string);
  1050. }
  1051. String LeaveUnwindContext::to_string_impl(Bytecode::Executable const&) const
  1052. {
  1053. return "LeaveUnwindContext";
  1054. }
  1055. String ContinuePendingUnwind::to_string_impl(Bytecode::Executable const&) const
  1056. {
  1057. return String::formatted("ContinuePendingUnwind resume:{}", m_resume_target);
  1058. }
  1059. String PushDeclarativeEnvironment::to_string_impl(Bytecode::Executable const& executable) const
  1060. {
  1061. StringBuilder builder;
  1062. builder.append("PushDeclarativeEnvironment"sv);
  1063. if (!m_variables.is_empty()) {
  1064. builder.append(" {"sv);
  1065. Vector<String> names;
  1066. for (auto& it : m_variables)
  1067. names.append(executable.get_string(it.key));
  1068. builder.append('}');
  1069. builder.join(", "sv, names);
  1070. }
  1071. return builder.to_string();
  1072. }
  1073. String Yield::to_string_impl(Bytecode::Executable const&) const
  1074. {
  1075. if (m_continuation_label.has_value())
  1076. return String::formatted("Yield continuation:@{}", m_continuation_label->block().name());
  1077. return String::formatted("Yield return");
  1078. }
  1079. String GetByValue::to_string_impl(Bytecode::Executable const&) const
  1080. {
  1081. return String::formatted("GetByValue base:{}", m_base);
  1082. }
  1083. String PutByValue::to_string_impl(Bytecode::Executable const&) const
  1084. {
  1085. auto kind = m_kind == PropertyKind::Getter
  1086. ? "getter"
  1087. : m_kind == PropertyKind::Setter
  1088. ? "setter"
  1089. : "property";
  1090. return String::formatted("PutByValue kind:{} base:{}, property:{}", kind, m_base, m_property);
  1091. }
  1092. String DeleteByValue::to_string_impl(Bytecode::Executable const&) const
  1093. {
  1094. return String::formatted("DeleteByValue base:{}", m_base);
  1095. }
  1096. String GetIterator::to_string_impl(Executable const&) const
  1097. {
  1098. return "GetIterator";
  1099. }
  1100. String GetObjectPropertyIterator::to_string_impl(Bytecode::Executable const&) const
  1101. {
  1102. return "GetObjectPropertyIterator";
  1103. }
  1104. String IteratorNext::to_string_impl(Executable const&) const
  1105. {
  1106. return "IteratorNext";
  1107. }
  1108. String IteratorResultDone::to_string_impl(Executable const&) const
  1109. {
  1110. return "IteratorResultDone";
  1111. }
  1112. String IteratorResultValue::to_string_impl(Executable const&) const
  1113. {
  1114. return "IteratorResultValue";
  1115. }
  1116. String ResolveThisBinding::to_string_impl(Bytecode::Executable const&) const
  1117. {
  1118. return "ResolveThisBinding"sv;
  1119. }
  1120. String GetNewTarget::to_string_impl(Bytecode::Executable const&) const
  1121. {
  1122. return "GetNewTarget"sv;
  1123. }
  1124. String TypeofVariable::to_string_impl(Bytecode::Executable const& executable) const
  1125. {
  1126. return String::formatted("TypeofVariable {} ({})", m_identifier, executable.identifier_table->get(m_identifier));
  1127. }
  1128. }