MemoryManager.cpp 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Assertions.h>
  7. #include <AK/Memory.h>
  8. #include <AK/StringView.h>
  9. #include <Kernel/Arch/x86/CPU.h>
  10. #include <Kernel/CMOS.h>
  11. #include <Kernel/FileSystem/Inode.h>
  12. #include <Kernel/Heap/kmalloc.h>
  13. #include <Kernel/Multiboot.h>
  14. #include <Kernel/Process.h>
  15. #include <Kernel/StdLib.h>
  16. #include <Kernel/VM/AnonymousVMObject.h>
  17. #include <Kernel/VM/ContiguousVMObject.h>
  18. #include <Kernel/VM/MemoryManager.h>
  19. #include <Kernel/VM/PageDirectory.h>
  20. #include <Kernel/VM/PhysicalRegion.h>
  21. #include <Kernel/VM/SharedInodeVMObject.h>
  22. extern u8* start_of_kernel_image;
  23. extern u8* end_of_kernel_image;
  24. extern FlatPtr start_of_kernel_text;
  25. extern FlatPtr start_of_kernel_data;
  26. extern FlatPtr end_of_kernel_bss;
  27. extern FlatPtr start_of_ro_after_init;
  28. extern FlatPtr end_of_ro_after_init;
  29. extern FlatPtr start_of_unmap_after_init;
  30. extern FlatPtr end_of_unmap_after_init;
  31. extern multiboot_module_entry_t multiboot_copy_boot_modules_array[16];
  32. extern size_t multiboot_copy_boot_modules_count;
  33. // Treat the super pages as logically separate from .bss
  34. __attribute__((section(".super_pages"))) static u8 super_pages[1 * MiB];
  35. namespace Kernel {
  36. // NOTE: We can NOT use AK::Singleton for this class, because
  37. // MemoryManager::initialize is called *before* global constructors are
  38. // run. If we do, then AK::Singleton would get re-initialized, causing
  39. // the memory manager to be initialized twice!
  40. static MemoryManager* s_the;
  41. RecursiveSpinLock s_mm_lock;
  42. MemoryManager& MM
  43. {
  44. return *s_the;
  45. }
  46. bool MemoryManager::is_initialized()
  47. {
  48. return s_the != nullptr;
  49. }
  50. UNMAP_AFTER_INIT MemoryManager::MemoryManager()
  51. {
  52. ScopedSpinLock lock(s_mm_lock);
  53. m_kernel_page_directory = PageDirectory::create_kernel_page_directory();
  54. parse_memory_map();
  55. write_cr3(kernel_page_directory().cr3());
  56. protect_kernel_image();
  57. // We're temporarily "committing" to two pages that we need to allocate below
  58. if (!commit_user_physical_pages(2))
  59. VERIFY_NOT_REACHED();
  60. m_shared_zero_page = allocate_committed_user_physical_page();
  61. // We're wasting a page here, we just need a special tag (physical
  62. // address) so that we know when we need to lazily allocate a page
  63. // that we should be drawing this page from the committed pool rather
  64. // than potentially failing if no pages are available anymore.
  65. // By using a tag we don't have to query the VMObject for every page
  66. // whether it was committed or not
  67. m_lazy_committed_page = allocate_committed_user_physical_page();
  68. }
  69. UNMAP_AFTER_INIT MemoryManager::~MemoryManager()
  70. {
  71. }
  72. UNMAP_AFTER_INIT void MemoryManager::protect_kernel_image()
  73. {
  74. ScopedSpinLock page_lock(kernel_page_directory().get_lock());
  75. // Disable writing to the kernel text and rodata segments.
  76. for (auto i = (FlatPtr)&start_of_kernel_text; i < (FlatPtr)&start_of_kernel_data; i += PAGE_SIZE) {
  77. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  78. pte.set_writable(false);
  79. }
  80. if (Processor::current().has_feature(CPUFeature::NX)) {
  81. // Disable execution of the kernel data, bss and heap segments.
  82. for (auto i = (FlatPtr)&start_of_kernel_data; i < (FlatPtr)&end_of_kernel_image; i += PAGE_SIZE) {
  83. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  84. pte.set_execute_disabled(true);
  85. }
  86. }
  87. }
  88. UNMAP_AFTER_INIT void MemoryManager::protect_readonly_after_init_memory()
  89. {
  90. ScopedSpinLock mm_lock(s_mm_lock);
  91. ScopedSpinLock page_lock(kernel_page_directory().get_lock());
  92. // Disable writing to the .ro_after_init section
  93. for (auto i = (FlatPtr)&start_of_ro_after_init; i < (FlatPtr)&end_of_ro_after_init; i += PAGE_SIZE) {
  94. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  95. pte.set_writable(false);
  96. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  97. }
  98. }
  99. void MemoryManager::unmap_memory_after_init()
  100. {
  101. ScopedSpinLock mm_lock(s_mm_lock);
  102. ScopedSpinLock page_lock(kernel_page_directory().get_lock());
  103. auto start = page_round_down((FlatPtr)&start_of_unmap_after_init);
  104. auto end = page_round_up((FlatPtr)&end_of_unmap_after_init);
  105. // Unmap the entire .unmap_after_init section
  106. for (auto i = start; i < end; i += PAGE_SIZE) {
  107. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  108. pte.clear();
  109. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  110. }
  111. dmesgln("Unmapped {} KiB of kernel text after init! :^)", (end - start) / KiB);
  112. //Processor::halt();
  113. }
  114. UNMAP_AFTER_INIT void MemoryManager::register_reserved_ranges()
  115. {
  116. VERIFY(!m_physical_memory_ranges.is_empty());
  117. ContiguousReservedMemoryRange range;
  118. for (auto& current_range : m_physical_memory_ranges) {
  119. if (current_range.type != PhysicalMemoryRangeType::Reserved) {
  120. if (range.start.is_null())
  121. continue;
  122. m_reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, current_range.start.get() - range.start.get() });
  123. range.start.set((FlatPtr) nullptr);
  124. continue;
  125. }
  126. if (!range.start.is_null()) {
  127. continue;
  128. }
  129. range.start = current_range.start;
  130. }
  131. if (m_physical_memory_ranges.last().type != PhysicalMemoryRangeType::Reserved)
  132. return;
  133. if (range.start.is_null())
  134. return;
  135. m_reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, m_physical_memory_ranges.last().start.get() + m_physical_memory_ranges.last().length - range.start.get() });
  136. }
  137. bool MemoryManager::is_allowed_to_mmap_to_userspace(PhysicalAddress start_address, const Range& range) const
  138. {
  139. VERIFY(!m_reserved_memory_ranges.is_empty());
  140. for (auto& current_range : m_reserved_memory_ranges) {
  141. if (!(current_range.start <= start_address))
  142. continue;
  143. if (!(current_range.start.offset(current_range.length) > start_address))
  144. continue;
  145. if (current_range.length < range.size())
  146. return false;
  147. return true;
  148. }
  149. return false;
  150. }
  151. UNMAP_AFTER_INIT void MemoryManager::parse_memory_map()
  152. {
  153. RefPtr<PhysicalRegion> physical_region;
  154. // Register used memory regions that we know of.
  155. m_used_memory_ranges.ensure_capacity(4);
  156. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::LowMemory, PhysicalAddress(0x00000000), PhysicalAddress(1 * MiB) });
  157. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::Kernel, PhysicalAddress(virtual_to_low_physical(FlatPtr(&start_of_kernel_image))), PhysicalAddress(page_round_up(virtual_to_low_physical(FlatPtr(&end_of_kernel_image)))) });
  158. if (multiboot_info_ptr->flags & 0x4) {
  159. auto* bootmods_start = multiboot_copy_boot_modules_array;
  160. auto* bootmods_end = bootmods_start + multiboot_copy_boot_modules_count;
  161. for (auto* bootmod = bootmods_start; bootmod < bootmods_end; bootmod++) {
  162. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::BootModule, PhysicalAddress(bootmod->start), PhysicalAddress(bootmod->end) });
  163. }
  164. }
  165. auto* mmap_begin = reinterpret_cast<multiboot_memory_map_t*>(low_physical_to_virtual(multiboot_info_ptr->mmap_addr));
  166. auto* mmap_end = reinterpret_cast<multiboot_memory_map_t*>(low_physical_to_virtual(multiboot_info_ptr->mmap_addr) + multiboot_info_ptr->mmap_length);
  167. for (auto& used_range : m_used_memory_ranges) {
  168. dmesgln("MM: {} range @ {} - {}", UserMemoryRangeTypeNames[static_cast<int>(used_range.type)], used_range.start, used_range.end);
  169. }
  170. for (auto* mmap = mmap_begin; mmap < mmap_end; mmap++) {
  171. dmesgln("MM: Multiboot mmap: address={:p}, length={}, type={}", mmap->addr, mmap->len, mmap->type);
  172. auto start_address = PhysicalAddress(mmap->addr);
  173. auto length = static_cast<size_t>(mmap->len);
  174. switch (mmap->type) {
  175. case (MULTIBOOT_MEMORY_AVAILABLE):
  176. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Usable, start_address, length });
  177. break;
  178. case (MULTIBOOT_MEMORY_RESERVED):
  179. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Reserved, start_address, length });
  180. break;
  181. case (MULTIBOOT_MEMORY_ACPI_RECLAIMABLE):
  182. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_Reclaimable, start_address, length });
  183. break;
  184. case (MULTIBOOT_MEMORY_NVS):
  185. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_NVS, start_address, length });
  186. break;
  187. case (MULTIBOOT_MEMORY_BADRAM):
  188. dmesgln("MM: Warning, detected bad memory range!");
  189. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::BadMemory, start_address, length });
  190. break;
  191. default:
  192. dbgln("MM: Unknown range!");
  193. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Unknown, start_address, length });
  194. break;
  195. }
  196. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  197. continue;
  198. if ((mmap->addr + mmap->len) > 0xffffffff)
  199. continue;
  200. // Fix up unaligned memory regions.
  201. auto diff = (FlatPtr)mmap->addr % PAGE_SIZE;
  202. if (diff != 0) {
  203. dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting {:p} by {} bytes", mmap->addr, diff);
  204. diff = PAGE_SIZE - diff;
  205. mmap->addr += diff;
  206. mmap->len -= diff;
  207. }
  208. if ((mmap->len % PAGE_SIZE) != 0) {
  209. dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting length {} by {} bytes", mmap->len, mmap->len % PAGE_SIZE);
  210. mmap->len -= mmap->len % PAGE_SIZE;
  211. }
  212. if (mmap->len < PAGE_SIZE) {
  213. dmesgln("MM: Memory physical_region from bootloader is too small; we want >= {} bytes, but got {} bytes", PAGE_SIZE, mmap->len);
  214. continue;
  215. }
  216. for (size_t page_base = mmap->addr; page_base <= (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
  217. auto addr = PhysicalAddress(page_base);
  218. // Skip used memory ranges.
  219. bool should_skip = false;
  220. for (auto& used_range : m_used_memory_ranges) {
  221. if (addr.get() >= used_range.start.get() && addr.get() <= used_range.end.get()) {
  222. should_skip = true;
  223. break;
  224. }
  225. }
  226. if (should_skip)
  227. continue;
  228. // Assign page to user physical physical_region.
  229. if (physical_region.is_null() || physical_region->upper().offset(PAGE_SIZE) != addr) {
  230. m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
  231. physical_region = m_user_physical_regions.last();
  232. } else {
  233. physical_region->expand(physical_region->lower(), addr);
  234. }
  235. }
  236. }
  237. // Append statically-allocated super physical physical_region.
  238. m_super_physical_regions.append(PhysicalRegion::create(
  239. PhysicalAddress(virtual_to_low_physical(FlatPtr(super_pages))),
  240. PhysicalAddress(virtual_to_low_physical(FlatPtr(super_pages + sizeof(super_pages))))));
  241. for (auto& region : m_super_physical_regions) {
  242. m_super_physical_pages += region.finalize_capacity();
  243. dmesgln("MM: Super physical region: {} - {}", region.lower(), region.upper());
  244. }
  245. for (auto& region : m_user_physical_regions) {
  246. m_user_physical_pages += region.finalize_capacity();
  247. dmesgln("MM: User physical region: {} - {}", region.lower(), region.upper());
  248. }
  249. VERIFY(m_super_physical_pages > 0);
  250. VERIFY(m_user_physical_pages > 0);
  251. // We start out with no committed pages
  252. m_user_physical_pages_uncommitted = m_user_physical_pages.load();
  253. register_reserved_ranges();
  254. for (auto& range : m_reserved_memory_ranges) {
  255. dmesgln("MM: Contiguous reserved range from {}, length is {}", range.start, range.length);
  256. }
  257. }
  258. PageTableEntry* MemoryManager::pte(PageDirectory& page_directory, VirtualAddress vaddr)
  259. {
  260. VERIFY_INTERRUPTS_DISABLED();
  261. VERIFY(s_mm_lock.own_lock());
  262. VERIFY(page_directory.get_lock().own_lock());
  263. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  264. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  265. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  266. auto* pd = quickmap_pd(const_cast<PageDirectory&>(page_directory), page_directory_table_index);
  267. const PageDirectoryEntry& pde = pd[page_directory_index];
  268. if (!pde.is_present())
  269. return nullptr;
  270. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  271. }
  272. PageTableEntry* MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  273. {
  274. VERIFY_INTERRUPTS_DISABLED();
  275. VERIFY(s_mm_lock.own_lock());
  276. VERIFY(page_directory.get_lock().own_lock());
  277. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  278. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  279. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  280. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  281. PageDirectoryEntry& pde = pd[page_directory_index];
  282. if (!pde.is_present()) {
  283. bool did_purge = false;
  284. auto page_table = allocate_user_physical_page(ShouldZeroFill::Yes, &did_purge);
  285. if (!page_table) {
  286. dbgln("MM: Unable to allocate page table to map {}", vaddr);
  287. return nullptr;
  288. }
  289. if (did_purge) {
  290. // If any memory had to be purged, ensure_pte may have been called as part
  291. // of the purging process. So we need to re-map the pd in this case to ensure
  292. // we're writing to the correct underlying physical page
  293. pd = quickmap_pd(page_directory, page_directory_table_index);
  294. VERIFY(&pde == &pd[page_directory_index]); // Sanity check
  295. VERIFY(!pde.is_present()); // Should have not changed
  296. }
  297. pde.set_page_table_base(page_table->paddr().get());
  298. pde.set_user_allowed(true);
  299. pde.set_present(true);
  300. pde.set_writable(true);
  301. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  302. // Use page_directory_table_index and page_directory_index as key
  303. // This allows us to release the page table entry when no longer needed
  304. auto result = page_directory.m_page_tables.set(vaddr.get() & ~0x1fffff, move(page_table));
  305. VERIFY(result == AK::HashSetResult::InsertedNewEntry);
  306. }
  307. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  308. }
  309. void MemoryManager::release_pte(PageDirectory& page_directory, VirtualAddress vaddr, bool is_last_release)
  310. {
  311. VERIFY_INTERRUPTS_DISABLED();
  312. VERIFY(s_mm_lock.own_lock());
  313. VERIFY(page_directory.get_lock().own_lock());
  314. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  315. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  316. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  317. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  318. PageDirectoryEntry& pde = pd[page_directory_index];
  319. if (pde.is_present()) {
  320. auto* page_table = quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()));
  321. auto& pte = page_table[page_table_index];
  322. pte.clear();
  323. if (is_last_release || page_table_index == 0x1ff) {
  324. // If this is the last PTE in a region or the last PTE in a page table then
  325. // check if we can also release the page table
  326. bool all_clear = true;
  327. for (u32 i = 0; i <= 0x1ff; i++) {
  328. if (!page_table[i].is_null()) {
  329. all_clear = false;
  330. break;
  331. }
  332. }
  333. if (all_clear) {
  334. pde.clear();
  335. auto result = page_directory.m_page_tables.remove(vaddr.get() & ~0x1fffff);
  336. VERIFY(result);
  337. }
  338. }
  339. }
  340. }
  341. UNMAP_AFTER_INIT void MemoryManager::initialize(u32 cpu)
  342. {
  343. auto mm_data = new MemoryManagerData;
  344. Processor::current().set_mm_data(*mm_data);
  345. if (cpu == 0) {
  346. s_the = new MemoryManager;
  347. kmalloc_enable_expand();
  348. }
  349. }
  350. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  351. {
  352. ScopedSpinLock lock(s_mm_lock);
  353. for (auto& region : MM.m_kernel_regions) {
  354. if (region.contains(vaddr))
  355. return &region;
  356. }
  357. return nullptr;
  358. }
  359. Region* MemoryManager::find_user_region_from_vaddr(Space& space, VirtualAddress vaddr)
  360. {
  361. ScopedSpinLock lock(space.get_lock());
  362. return space.find_region_containing({ vaddr, 1 });
  363. }
  364. Region* MemoryManager::find_region_from_vaddr(Space& space, VirtualAddress vaddr)
  365. {
  366. ScopedSpinLock lock(s_mm_lock);
  367. if (auto* region = find_user_region_from_vaddr(space, vaddr))
  368. return region;
  369. return kernel_region_from_vaddr(vaddr);
  370. }
  371. Region* MemoryManager::find_region_from_vaddr(VirtualAddress vaddr)
  372. {
  373. ScopedSpinLock lock(s_mm_lock);
  374. if (auto* region = kernel_region_from_vaddr(vaddr))
  375. return region;
  376. auto page_directory = PageDirectory::find_by_cr3(read_cr3());
  377. if (!page_directory)
  378. return nullptr;
  379. VERIFY(page_directory->space());
  380. return find_user_region_from_vaddr(*page_directory->space(), vaddr);
  381. }
  382. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  383. {
  384. VERIFY_INTERRUPTS_DISABLED();
  385. ScopedSpinLock lock(s_mm_lock);
  386. if (Processor::current().in_irq()) {
  387. dbgln("CPU[{}] BUG! Page fault while handling IRQ! code={}, vaddr={}, irq level: {}",
  388. Processor::id(), fault.code(), fault.vaddr(), Processor::current().in_irq());
  389. dump_kernel_regions();
  390. return PageFaultResponse::ShouldCrash;
  391. }
  392. dbgln_if(PAGE_FAULT_DEBUG, "MM: CPU[{}] handle_page_fault({:#04x}) at {}", Processor::id(), fault.code(), fault.vaddr());
  393. auto* region = find_region_from_vaddr(fault.vaddr());
  394. if (!region) {
  395. return PageFaultResponse::ShouldCrash;
  396. }
  397. return region->handle_fault(fault, lock);
  398. }
  399. OwnPtr<Region> MemoryManager::allocate_contiguous_kernel_region(size_t size, StringView name, Region::Access access, size_t physical_alignment, Region::Cacheable cacheable)
  400. {
  401. VERIFY(!(size % PAGE_SIZE));
  402. ScopedSpinLock lock(s_mm_lock);
  403. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  404. if (!range.has_value())
  405. return {};
  406. auto vmobject = ContiguousVMObject::create_with_size(size, physical_alignment);
  407. return allocate_kernel_region_with_vmobject(range.value(), vmobject, name, access, cacheable);
  408. }
  409. OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, StringView name, Region::Access access, AllocationStrategy strategy, Region::Cacheable cacheable)
  410. {
  411. VERIFY(!(size % PAGE_SIZE));
  412. auto vm_object = AnonymousVMObject::create_with_size(size, strategy);
  413. if (!vm_object)
  414. return {};
  415. ScopedSpinLock lock(s_mm_lock);
  416. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  417. if (!range.has_value())
  418. return {};
  419. return allocate_kernel_region_with_vmobject(range.value(), vm_object.release_nonnull(), name, access, cacheable);
  420. }
  421. OwnPtr<Region> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  422. {
  423. auto vm_object = AnonymousVMObject::create_for_physical_range(paddr, size);
  424. if (!vm_object)
  425. return {};
  426. VERIFY(!(size % PAGE_SIZE));
  427. ScopedSpinLock lock(s_mm_lock);
  428. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  429. if (!range.has_value())
  430. return {};
  431. return allocate_kernel_region_with_vmobject(range.value(), *vm_object, name, access, cacheable);
  432. }
  433. OwnPtr<Region> MemoryManager::allocate_kernel_region_identity(PhysicalAddress paddr, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  434. {
  435. auto vm_object = AnonymousVMObject::create_for_physical_range(paddr, size);
  436. if (!vm_object)
  437. return {};
  438. VERIFY(!(size % PAGE_SIZE));
  439. ScopedSpinLock lock(s_mm_lock);
  440. auto range = kernel_page_directory().identity_range_allocator().allocate_specific(VirtualAddress(paddr.get()), size);
  441. if (!range.has_value())
  442. return {};
  443. return allocate_kernel_region_with_vmobject(range.value(), *vm_object, name, access, cacheable);
  444. }
  445. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(const Range& range, VMObject& vmobject, StringView name, Region::Access access, Region::Cacheable cacheable)
  446. {
  447. ScopedSpinLock lock(s_mm_lock);
  448. auto region = Region::create_kernel_only(range, vmobject, 0, KString::try_create(name), access, cacheable);
  449. if (region)
  450. region->map(kernel_page_directory());
  451. return region;
  452. }
  453. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  454. {
  455. VERIFY(!(size % PAGE_SIZE));
  456. ScopedSpinLock lock(s_mm_lock);
  457. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  458. if (!range.has_value())
  459. return {};
  460. return allocate_kernel_region_with_vmobject(range.value(), vmobject, name, access, cacheable);
  461. }
  462. bool MemoryManager::commit_user_physical_pages(size_t page_count)
  463. {
  464. VERIFY(page_count > 0);
  465. ScopedSpinLock lock(s_mm_lock);
  466. if (m_user_physical_pages_uncommitted < page_count)
  467. return false;
  468. m_user_physical_pages_uncommitted -= page_count;
  469. m_user_physical_pages_committed += page_count;
  470. return true;
  471. }
  472. void MemoryManager::uncommit_user_physical_pages(size_t page_count)
  473. {
  474. VERIFY(page_count > 0);
  475. ScopedSpinLock lock(s_mm_lock);
  476. VERIFY(m_user_physical_pages_committed >= page_count);
  477. m_user_physical_pages_uncommitted += page_count;
  478. m_user_physical_pages_committed -= page_count;
  479. }
  480. void MemoryManager::deallocate_user_physical_page(const PhysicalPage& page)
  481. {
  482. ScopedSpinLock lock(s_mm_lock);
  483. for (auto& region : m_user_physical_regions) {
  484. if (!region.contains(page))
  485. continue;
  486. region.return_page(page);
  487. --m_user_physical_pages_used;
  488. // Always return pages to the uncommitted pool. Pages that were
  489. // committed and allocated are only freed upon request. Once
  490. // returned there is no guarantee being able to get them back.
  491. ++m_user_physical_pages_uncommitted;
  492. return;
  493. }
  494. dmesgln("MM: deallocate_user_physical_page couldn't figure out region for user page @ {}", page.paddr());
  495. VERIFY_NOT_REACHED();
  496. }
  497. RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page(bool committed)
  498. {
  499. VERIFY(s_mm_lock.is_locked());
  500. RefPtr<PhysicalPage> page;
  501. if (committed) {
  502. // Draw from the committed pages pool. We should always have these pages available
  503. VERIFY(m_user_physical_pages_committed > 0);
  504. m_user_physical_pages_committed--;
  505. } else {
  506. // We need to make sure we don't touch pages that we have committed to
  507. if (m_user_physical_pages_uncommitted == 0)
  508. return {};
  509. m_user_physical_pages_uncommitted--;
  510. }
  511. for (auto& region : m_user_physical_regions) {
  512. page = region.take_free_page(false);
  513. if (!page.is_null()) {
  514. ++m_user_physical_pages_used;
  515. break;
  516. }
  517. }
  518. VERIFY(!committed || !page.is_null());
  519. return page;
  520. }
  521. NonnullRefPtr<PhysicalPage> MemoryManager::allocate_committed_user_physical_page(ShouldZeroFill should_zero_fill)
  522. {
  523. ScopedSpinLock lock(s_mm_lock);
  524. auto page = find_free_user_physical_page(true);
  525. if (should_zero_fill == ShouldZeroFill::Yes) {
  526. auto* ptr = quickmap_page(*page);
  527. memset(ptr, 0, PAGE_SIZE);
  528. unquickmap_page();
  529. }
  530. return page.release_nonnull();
  531. }
  532. RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill, bool* did_purge)
  533. {
  534. ScopedSpinLock lock(s_mm_lock);
  535. auto page = find_free_user_physical_page(false);
  536. bool purged_pages = false;
  537. if (!page) {
  538. // We didn't have a single free physical page. Let's try to free something up!
  539. // First, we look for a purgeable VMObject in the volatile state.
  540. for_each_vmobject([&](auto& vmobject) {
  541. if (!vmobject.is_anonymous())
  542. return IterationDecision::Continue;
  543. int purged_page_count = static_cast<AnonymousVMObject&>(vmobject).purge_with_interrupts_disabled({});
  544. if (purged_page_count) {
  545. dbgln("MM: Purge saved the day! Purged {} pages from AnonymousVMObject", purged_page_count);
  546. page = find_free_user_physical_page(false);
  547. purged_pages = true;
  548. VERIFY(page);
  549. return IterationDecision::Break;
  550. }
  551. return IterationDecision::Continue;
  552. });
  553. if (!page) {
  554. dmesgln("MM: no user physical pages available");
  555. return {};
  556. }
  557. }
  558. if (should_zero_fill == ShouldZeroFill::Yes) {
  559. auto* ptr = quickmap_page(*page);
  560. memset(ptr, 0, PAGE_SIZE);
  561. unquickmap_page();
  562. }
  563. if (did_purge)
  564. *did_purge = purged_pages;
  565. return page;
  566. }
  567. void MemoryManager::deallocate_supervisor_physical_page(const PhysicalPage& page)
  568. {
  569. ScopedSpinLock lock(s_mm_lock);
  570. for (auto& region : m_super_physical_regions) {
  571. if (!region.contains(page)) {
  572. dbgln("MM: deallocate_supervisor_physical_page: {} not in {} - {}", page.paddr(), region.lower(), region.upper());
  573. continue;
  574. }
  575. region.return_page(page);
  576. --m_super_physical_pages_used;
  577. return;
  578. }
  579. dbgln("MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ {}", page.paddr());
  580. VERIFY_NOT_REACHED();
  581. }
  582. NonnullRefPtrVector<PhysicalPage> MemoryManager::allocate_contiguous_supervisor_physical_pages(size_t size, size_t physical_alignment)
  583. {
  584. VERIFY(!(size % PAGE_SIZE));
  585. ScopedSpinLock lock(s_mm_lock);
  586. size_t count = ceil_div(size, static_cast<size_t>(PAGE_SIZE));
  587. NonnullRefPtrVector<PhysicalPage> physical_pages;
  588. for (auto& region : m_super_physical_regions) {
  589. physical_pages = region.take_contiguous_free_pages(count, true, physical_alignment);
  590. if (!physical_pages.is_empty())
  591. continue;
  592. }
  593. if (physical_pages.is_empty()) {
  594. if (m_super_physical_regions.is_empty()) {
  595. dmesgln("MM: no super physical regions available (?)");
  596. }
  597. dmesgln("MM: no super physical pages available");
  598. VERIFY_NOT_REACHED();
  599. return {};
  600. }
  601. auto cleanup_region = MM.allocate_kernel_region(physical_pages[0].paddr(), PAGE_SIZE * count, "MemoryManager Allocation Sanitization", Region::Access::Read | Region::Access::Write);
  602. fast_u32_fill((u32*)cleanup_region->vaddr().as_ptr(), 0, (PAGE_SIZE * count) / sizeof(u32));
  603. m_super_physical_pages_used += count;
  604. return physical_pages;
  605. }
  606. RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  607. {
  608. ScopedSpinLock lock(s_mm_lock);
  609. RefPtr<PhysicalPage> page;
  610. for (auto& region : m_super_physical_regions) {
  611. page = region.take_free_page(true);
  612. if (!page.is_null())
  613. break;
  614. }
  615. if (!page) {
  616. if (m_super_physical_regions.is_empty()) {
  617. dmesgln("MM: no super physical regions available (?)");
  618. }
  619. dmesgln("MM: no super physical pages available");
  620. VERIFY_NOT_REACHED();
  621. return {};
  622. }
  623. fast_u32_fill((u32*)page->paddr().offset(0xc0000000).as_ptr(), 0, PAGE_SIZE / sizeof(u32));
  624. ++m_super_physical_pages_used;
  625. return page;
  626. }
  627. void MemoryManager::enter_process_paging_scope(Process& process)
  628. {
  629. enter_space(process.space());
  630. }
  631. void MemoryManager::enter_space(Space& space)
  632. {
  633. auto current_thread = Thread::current();
  634. VERIFY(current_thread != nullptr);
  635. ScopedSpinLock lock(s_mm_lock);
  636. current_thread->tss().cr3 = space.page_directory().cr3();
  637. write_cr3(space.page_directory().cr3());
  638. }
  639. void MemoryManager::flush_tlb_local(VirtualAddress vaddr, size_t page_count)
  640. {
  641. Processor::flush_tlb_local(vaddr, page_count);
  642. }
  643. void MemoryManager::flush_tlb(const PageDirectory* page_directory, VirtualAddress vaddr, size_t page_count)
  644. {
  645. Processor::flush_tlb(page_directory, vaddr, page_count);
  646. }
  647. extern "C" PageTableEntry boot_pd3_pt1023[1024];
  648. PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
  649. {
  650. VERIFY(s_mm_lock.own_lock());
  651. auto& mm_data = get_data();
  652. auto& pte = boot_pd3_pt1023[4];
  653. auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
  654. if (pte.physical_page_base() != pd_paddr.as_ptr()) {
  655. pte.set_physical_page_base(pd_paddr.get());
  656. pte.set_present(true);
  657. pte.set_writable(true);
  658. pte.set_user_allowed(false);
  659. // Because we must continue to hold the MM lock while we use this
  660. // mapping, it is sufficient to only flush on the current CPU. Other
  661. // CPUs trying to use this API must wait on the MM lock anyway
  662. flush_tlb_local(VirtualAddress(0xffe04000));
  663. } else {
  664. // Even though we don't allow this to be called concurrently, it's
  665. // possible that this PD was mapped on a different CPU and we don't
  666. // broadcast the flush. If so, we still need to flush the TLB.
  667. if (mm_data.m_last_quickmap_pd != pd_paddr)
  668. flush_tlb_local(VirtualAddress(0xffe04000));
  669. }
  670. mm_data.m_last_quickmap_pd = pd_paddr;
  671. return (PageDirectoryEntry*)0xffe04000;
  672. }
  673. PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
  674. {
  675. VERIFY(s_mm_lock.own_lock());
  676. auto& mm_data = get_data();
  677. auto& pte = boot_pd3_pt1023[0];
  678. if (pte.physical_page_base() != pt_paddr.as_ptr()) {
  679. pte.set_physical_page_base(pt_paddr.get());
  680. pte.set_present(true);
  681. pte.set_writable(true);
  682. pte.set_user_allowed(false);
  683. // Because we must continue to hold the MM lock while we use this
  684. // mapping, it is sufficient to only flush on the current CPU. Other
  685. // CPUs trying to use this API must wait on the MM lock anyway
  686. flush_tlb_local(VirtualAddress(0xffe00000));
  687. } else {
  688. // Even though we don't allow this to be called concurrently, it's
  689. // possible that this PT was mapped on a different CPU and we don't
  690. // broadcast the flush. If so, we still need to flush the TLB.
  691. if (mm_data.m_last_quickmap_pt != pt_paddr)
  692. flush_tlb_local(VirtualAddress(0xffe00000));
  693. }
  694. mm_data.m_last_quickmap_pt = pt_paddr;
  695. return (PageTableEntry*)0xffe00000;
  696. }
  697. u8* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  698. {
  699. VERIFY_INTERRUPTS_DISABLED();
  700. auto& mm_data = get_data();
  701. mm_data.m_quickmap_prev_flags = mm_data.m_quickmap_in_use.lock();
  702. ScopedSpinLock lock(s_mm_lock);
  703. u32 pte_idx = 8 + Processor::id();
  704. VirtualAddress vaddr(0xffe00000 + pte_idx * PAGE_SIZE);
  705. auto& pte = boot_pd3_pt1023[pte_idx];
  706. if (pte.physical_page_base() != physical_page.paddr().as_ptr()) {
  707. pte.set_physical_page_base(physical_page.paddr().get());
  708. pte.set_present(true);
  709. pte.set_writable(true);
  710. pte.set_user_allowed(false);
  711. flush_tlb_local(vaddr);
  712. }
  713. return vaddr.as_ptr();
  714. }
  715. void MemoryManager::unquickmap_page()
  716. {
  717. VERIFY_INTERRUPTS_DISABLED();
  718. ScopedSpinLock lock(s_mm_lock);
  719. auto& mm_data = get_data();
  720. VERIFY(mm_data.m_quickmap_in_use.is_locked());
  721. u32 pte_idx = 8 + Processor::id();
  722. VirtualAddress vaddr(0xffe00000 + pte_idx * PAGE_SIZE);
  723. auto& pte = boot_pd3_pt1023[pte_idx];
  724. pte.clear();
  725. flush_tlb_local(vaddr);
  726. mm_data.m_quickmap_in_use.unlock(mm_data.m_quickmap_prev_flags);
  727. }
  728. bool MemoryManager::validate_user_stack(const Process& process, VirtualAddress vaddr) const
  729. {
  730. if (!is_user_address(vaddr))
  731. return false;
  732. ScopedSpinLock lock(s_mm_lock);
  733. auto* region = find_user_region_from_vaddr(const_cast<Process&>(process).space(), vaddr);
  734. return region && region->is_user() && region->is_stack();
  735. }
  736. void MemoryManager::register_vmobject(VMObject& vmobject)
  737. {
  738. ScopedSpinLock lock(s_mm_lock);
  739. m_vmobjects.append(vmobject);
  740. }
  741. void MemoryManager::unregister_vmobject(VMObject& vmobject)
  742. {
  743. ScopedSpinLock lock(s_mm_lock);
  744. m_vmobjects.remove(vmobject);
  745. }
  746. void MemoryManager::register_region(Region& region)
  747. {
  748. ScopedSpinLock lock(s_mm_lock);
  749. if (region.is_kernel())
  750. m_kernel_regions.append(region);
  751. else
  752. m_user_regions.append(region);
  753. }
  754. void MemoryManager::unregister_region(Region& region)
  755. {
  756. ScopedSpinLock lock(s_mm_lock);
  757. if (region.is_kernel())
  758. m_kernel_regions.remove(region);
  759. else
  760. m_user_regions.remove(region);
  761. }
  762. void MemoryManager::dump_kernel_regions()
  763. {
  764. dbgln("Kernel regions:");
  765. dbgln("BEGIN END SIZE ACCESS NAME");
  766. ScopedSpinLock lock(s_mm_lock);
  767. for (auto& region : m_kernel_regions) {
  768. dbgln("{:08x} -- {:08x} {:08x} {:c}{:c}{:c}{:c}{:c}{:c} {}",
  769. region.vaddr().get(),
  770. region.vaddr().offset(region.size() - 1).get(),
  771. region.size(),
  772. region.is_readable() ? 'R' : ' ',
  773. region.is_writable() ? 'W' : ' ',
  774. region.is_executable() ? 'X' : ' ',
  775. region.is_shared() ? 'S' : ' ',
  776. region.is_stack() ? 'T' : ' ',
  777. region.is_syscall_region() ? 'C' : ' ',
  778. region.name());
  779. }
  780. }
  781. void MemoryManager::set_page_writable_direct(VirtualAddress vaddr, bool writable)
  782. {
  783. ScopedSpinLock lock(s_mm_lock);
  784. ScopedSpinLock page_lock(kernel_page_directory().get_lock());
  785. auto* pte = ensure_pte(kernel_page_directory(), vaddr);
  786. VERIFY(pte);
  787. if (pte->is_writable() == writable)
  788. return;
  789. pte->set_writable(writable);
  790. flush_tlb(&kernel_page_directory(), vaddr);
  791. }
  792. }