NetworkTask.cpp 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327
  1. #include <Kernel/E1000NetworkAdapter.h>
  2. #include <Kernel/EthernetFrameHeader.h>
  3. #include <Kernel/ARP.h>
  4. #include <Kernel/ICMP.h>
  5. #include <Kernel/UDP.h>
  6. #include <Kernel/TCP.h>
  7. #include <Kernel/IPv4.h>
  8. #include <Kernel/IPv4Socket.h>
  9. #include <Kernel/TCPSocket.h>
  10. #include <Kernel/UDPSocket.h>
  11. #include <Kernel/Process.h>
  12. #include <Kernel/EtherType.h>
  13. #include <AK/Lock.h>
  14. //#define ETHERNET_DEBUG
  15. #define IPV4_DEBUG
  16. //#define ICMP_DEBUG
  17. #define UDP_DEBUG
  18. #define TCP_DEBUG
  19. static void handle_arp(const EthernetFrameHeader&, int frame_size);
  20. static void handle_ipv4(const EthernetFrameHeader&, int frame_size);
  21. static void handle_icmp(const EthernetFrameHeader&, int frame_size);
  22. static void handle_udp(const EthernetFrameHeader&, int frame_size);
  23. static void handle_tcp(const EthernetFrameHeader&, int frame_size);
  24. Lockable<HashMap<IPv4Address, MACAddress>>& arp_table()
  25. {
  26. static Lockable<HashMap<IPv4Address, MACAddress>>* the;
  27. if (!the)
  28. the = new Lockable<HashMap<IPv4Address, MACAddress>>;
  29. return *the;
  30. }
  31. void NetworkTask_main()
  32. {
  33. auto* e1000_ptr = E1000NetworkAdapter::the();
  34. ASSERT(e1000_ptr);
  35. auto& e1000 = *e1000_ptr;
  36. e1000.set_ipv4_address(IPv4Address(192, 168, 5, 2));
  37. kprintf("NetworkTask: Enter main loop.\n");
  38. for (;;) {
  39. auto packet = e1000.dequeue_packet();
  40. if (packet.is_null()) {
  41. sleep(100);
  42. continue;
  43. }
  44. if (packet.size() < (int)(sizeof(EthernetFrameHeader))) {
  45. kprintf("NetworkTask: Packet is too small to be an Ethernet packet! (%d)\n", packet.size());
  46. continue;
  47. }
  48. auto& eth = *(const EthernetFrameHeader*)packet.pointer();
  49. #ifdef ETHERNET_DEBUG
  50. kprintf("NetworkTask: From %s to %s, ether_type=%w, packet_length=%u\n",
  51. eth.source().to_string().characters(),
  52. eth.destination().to_string().characters(),
  53. eth.ether_type(),
  54. packet.size()
  55. );
  56. #endif
  57. switch (eth.ether_type()) {
  58. case EtherType::ARP:
  59. handle_arp(eth, packet.size());
  60. break;
  61. case EtherType::IPv4:
  62. handle_ipv4(eth, packet.size());
  63. break;
  64. }
  65. }
  66. }
  67. void handle_arp(const EthernetFrameHeader& eth, int frame_size)
  68. {
  69. constexpr int minimum_arp_frame_size = sizeof(EthernetFrameHeader) + sizeof(ARPPacket);
  70. if (frame_size < minimum_arp_frame_size) {
  71. kprintf("handle_arp: Frame too small (%d, need %d)\n", frame_size, minimum_arp_frame_size);
  72. return;
  73. }
  74. auto& packet = *static_cast<const ARPPacket*>(eth.payload());
  75. if (packet.hardware_type() != 1 || packet.hardware_address_length() != sizeof(MACAddress)) {
  76. kprintf("handle_arp: Hardware type not ethernet (%w, len=%u)\n",
  77. packet.hardware_type(),
  78. packet.hardware_address_length()
  79. );
  80. return;
  81. }
  82. if (packet.protocol_type() != EtherType::IPv4 || packet.protocol_address_length() != sizeof(IPv4Address)) {
  83. kprintf("handle_arp: Protocol type not IPv4 (%w, len=%u)\n",
  84. packet.hardware_type(),
  85. packet.protocol_address_length()
  86. );
  87. return;
  88. }
  89. #ifdef ARP_DEBUG
  90. kprintf("handle_arp: operation=%w, sender=%s/%s, target=%s/%s\n",
  91. packet.operation(),
  92. packet.sender_hardware_address().to_string().characters(),
  93. packet.sender_protocol_address().to_string().characters(),
  94. packet.target_hardware_address().to_string().characters(),
  95. packet.target_protocol_address().to_string().characters()
  96. );
  97. #endif
  98. if (packet.operation() == ARPOperation::Request) {
  99. // Who has this IP address?
  100. if (auto* adapter = NetworkAdapter::from_ipv4_address(packet.target_protocol_address())) {
  101. // We do!
  102. kprintf("handle_arp: Responding to ARP request for my IPv4 address (%s)\n",
  103. adapter->ipv4_address().to_string().characters());
  104. ARPPacket response;
  105. response.set_operation(ARPOperation::Response);
  106. response.set_target_hardware_address(packet.sender_hardware_address());
  107. response.set_target_protocol_address(packet.sender_protocol_address());
  108. response.set_sender_hardware_address(adapter->mac_address());
  109. response.set_sender_protocol_address(adapter->ipv4_address());
  110. adapter->send(packet.sender_hardware_address(), response);
  111. }
  112. return;
  113. }
  114. if (packet.operation() == ARPOperation::Response) {
  115. // Someone has this IPv4 address. I guess we can try to remember that.
  116. // FIXME: Protect against ARP spamming.
  117. // FIXME: Support static ARP table entries.
  118. LOCKER(arp_table().lock());
  119. arp_table().resource().set(packet.sender_protocol_address(), packet.sender_hardware_address());
  120. kprintf("ARP table (%d entries):\n", arp_table().resource().size());
  121. for (auto& it : arp_table().resource()) {
  122. kprintf("%s :: %s\n", it.value.to_string().characters(), it.key.to_string().characters());
  123. }
  124. }
  125. }
  126. void handle_ipv4(const EthernetFrameHeader& eth, int frame_size)
  127. {
  128. constexpr int minimum_ipv4_frame_size = sizeof(EthernetFrameHeader) + sizeof(IPv4Packet);
  129. if (frame_size < minimum_ipv4_frame_size) {
  130. kprintf("handle_ipv4: Frame too small (%d, need %d)\n", frame_size, minimum_ipv4_frame_size);
  131. return;
  132. }
  133. auto& packet = *static_cast<const IPv4Packet*>(eth.payload());
  134. #ifdef IPV4_DEBUG
  135. kprintf("handle_ipv4: source=%s, target=%s\n",
  136. packet.source().to_string().characters(),
  137. packet.destination().to_string().characters()
  138. );
  139. #endif
  140. switch ((IPv4Protocol)packet.protocol()) {
  141. case IPv4Protocol::ICMP:
  142. return handle_icmp(eth, frame_size);
  143. case IPv4Protocol::UDP:
  144. return handle_udp(eth, frame_size);
  145. case IPv4Protocol::TCP:
  146. return handle_tcp(eth, frame_size);
  147. default:
  148. kprintf("handle_ipv4: Unhandled protocol %u\n", packet.protocol());
  149. break;
  150. }
  151. }
  152. void handle_icmp(const EthernetFrameHeader& eth, int frame_size)
  153. {
  154. (void)frame_size;
  155. auto& ipv4_packet = *static_cast<const IPv4Packet*>(eth.payload());
  156. auto& icmp_header = *static_cast<const ICMPHeader*>(ipv4_packet.payload());
  157. #ifdef ICMP_DEBUG
  158. kprintf("handle_icmp: source=%s, destination=%s, type=%b, code=%b\n",
  159. ipv4_packet.source().to_string().characters(),
  160. ipv4_packet.destination().to_string().characters(),
  161. icmp_header.type(),
  162. icmp_header.code()
  163. );
  164. #endif
  165. {
  166. LOCKER(IPv4Socket::all_sockets().lock());
  167. for (RetainPtr<IPv4Socket> socket : IPv4Socket::all_sockets().resource()) {
  168. LOCKER(socket->lock());
  169. if (socket->protocol() != (unsigned)IPv4Protocol::ICMP)
  170. continue;
  171. socket->did_receive(ByteBuffer::copy((const byte*)&ipv4_packet, sizeof(IPv4Packet) + ipv4_packet.payload_size()));
  172. }
  173. }
  174. auto* adapter = NetworkAdapter::from_ipv4_address(ipv4_packet.destination());
  175. if (!adapter)
  176. return;
  177. if (icmp_header.type() == ICMPType::EchoRequest) {
  178. auto& request = reinterpret_cast<const ICMPEchoPacket&>(icmp_header);
  179. kprintf("handle_icmp: EchoRequest from %s: id=%u, seq=%u\n",
  180. ipv4_packet.source().to_string().characters(),
  181. (word)request.identifier,
  182. (word)request.sequence_number
  183. );
  184. size_t icmp_packet_size = ipv4_packet.payload_size();
  185. auto buffer = ByteBuffer::create_zeroed(icmp_packet_size);
  186. auto& response = *(ICMPEchoPacket*)buffer.pointer();
  187. response.header.set_type(ICMPType::EchoReply);
  188. response.header.set_code(0);
  189. response.identifier = request.identifier;
  190. response.sequence_number = request.sequence_number;
  191. if (size_t icmp_payload_size = icmp_packet_size - sizeof(ICMPEchoPacket))
  192. memcpy(response.payload(), request.payload(), icmp_payload_size);
  193. response.header.set_checksum(internet_checksum(&response, icmp_packet_size));
  194. adapter->send_ipv4(eth.source(), ipv4_packet.source(), IPv4Protocol::ICMP, move(buffer));
  195. }
  196. }
  197. void handle_udp(const EthernetFrameHeader& eth, int frame_size)
  198. {
  199. (void)frame_size;
  200. auto& ipv4_packet = *static_cast<const IPv4Packet*>(eth.payload());
  201. auto* adapter = NetworkAdapter::from_ipv4_address(ipv4_packet.destination());
  202. if (!adapter) {
  203. kprintf("handle_udp: this packet is not for me, it's for %s\n", ipv4_packet.destination().to_string().characters());
  204. return;
  205. }
  206. auto& udp_packet = *static_cast<const UDPPacket*>(ipv4_packet.payload());
  207. #ifdef UDP_DEBUG
  208. kprintf("handle_udp: source=%s:%u, destination=%s:%u length=%u\n",
  209. ipv4_packet.source().to_string().characters(),
  210. udp_packet.source_port(),
  211. ipv4_packet.destination().to_string().characters(),
  212. udp_packet.destination_port(),
  213. udp_packet.length()
  214. );
  215. #endif
  216. auto socket = UDPSocket::from_port(udp_packet.destination_port());
  217. if (!socket) {
  218. kprintf("handle_udp: No UDP socket for port %u\n", udp_packet.destination_port());
  219. return;
  220. }
  221. ASSERT(socket->type() == SOCK_DGRAM);
  222. ASSERT(socket->source_port() == udp_packet.destination_port());
  223. socket->did_receive(ByteBuffer::copy((const byte*)&ipv4_packet, sizeof(IPv4Packet) + ipv4_packet.payload_size()));
  224. }
  225. void handle_tcp(const EthernetFrameHeader& eth, int frame_size)
  226. {
  227. (void)frame_size;
  228. auto& ipv4_packet = *static_cast<const IPv4Packet*>(eth.payload());
  229. auto* adapter = NetworkAdapter::from_ipv4_address(ipv4_packet.destination());
  230. if (!adapter) {
  231. kprintf("handle_tcp: this packet is not for me, it's for %s\n", ipv4_packet.destination().to_string().characters());
  232. return;
  233. }
  234. auto& tcp_packet = *static_cast<const TCPPacket*>(ipv4_packet.payload());
  235. size_t payload_size = ipv4_packet.payload_size() - tcp_packet.header_size();
  236. #ifdef TCP_DEBUG
  237. kprintf("handle_tcp: source=%s:%u, destination=%s:%u seq_no=%u, ack_no=%u, flags=%w (%s %s), window_size=%u, payload_size=%u\n",
  238. ipv4_packet.source().to_string().characters(),
  239. tcp_packet.source_port(),
  240. ipv4_packet.destination().to_string().characters(),
  241. tcp_packet.destination_port(),
  242. tcp_packet.sequence_number(),
  243. tcp_packet.ack_number(),
  244. tcp_packet.flags(),
  245. tcp_packet.has_syn() ? "SYN" : "",
  246. tcp_packet.has_ack() ? "ACK" : "",
  247. tcp_packet.window_size(),
  248. payload_size
  249. );
  250. #endif
  251. auto socket = TCPSocket::from_port(tcp_packet.destination_port());
  252. if (!socket) {
  253. kprintf("handle_tcp: No TCP socket for port %u\n", tcp_packet.destination_port());
  254. return;
  255. }
  256. ASSERT(socket->type() == SOCK_STREAM);
  257. ASSERT(socket->source_port() == tcp_packet.destination_port());
  258. if (tcp_packet.ack_number() != socket->sequence_number()) {
  259. kprintf("handle_tcp: ack/seq mismatch: got %u, wanted %u\n", tcp_packet.ack_number(), socket->sequence_number());
  260. return;
  261. }
  262. if (tcp_packet.has_syn() && tcp_packet.has_ack()) {
  263. socket->set_ack_number(tcp_packet.sequence_number() + payload_size + 1);
  264. socket->send_tcp_packet(TCPFlags::ACK);
  265. socket->set_connected(true);
  266. kprintf("handle_tcp: Connection established!\n");
  267. socket->set_state(TCPSocket::State::Connected);
  268. return;
  269. }
  270. if (tcp_packet.has_fin()) {
  271. kprintf("handle_tcp: Got FIN, payload_size=%u\n", payload_size);
  272. if (payload_size != 0)
  273. socket->did_receive(ByteBuffer::copy((const byte*)&ipv4_packet, sizeof(IPv4Packet) + ipv4_packet.payload_size()));
  274. socket->set_ack_number(tcp_packet.sequence_number() + payload_size + 1);
  275. socket->send_tcp_packet(TCPFlags::FIN | TCPFlags::ACK);
  276. socket->set_state(TCPSocket::State::Disconnecting);
  277. return;
  278. }
  279. socket->set_ack_number(tcp_packet.sequence_number() + payload_size);
  280. kprintf("Got packet with ack_no=%u, seq_no=%u, payload_size=%u, acking it with new ack_no=%u, seq_no=%u\n",
  281. tcp_packet.ack_number(),
  282. tcp_packet.sequence_number(),
  283. payload_size,
  284. socket->ack_number(),
  285. socket->sequence_number()
  286. );
  287. socket->send_tcp_packet(TCPFlags::ACK);
  288. if (payload_size != 0)
  289. socket->did_receive(ByteBuffer::copy((const byte*)&ipv4_packet, sizeof(IPv4Packet) + ipv4_packet.payload_size()));
  290. }