Thread.cpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799
  1. #include <AK/Demangle.h>
  2. #include <AK/StringBuilder.h>
  3. #include <Kernel/FileSystem/FileDescription.h>
  4. #include <Kernel/Process.h>
  5. #include <Kernel/Scheduler.h>
  6. #include <Kernel/Thread.h>
  7. #include <Kernel/VM/MemoryManager.h>
  8. #include <LibC/signal_numbers.h>
  9. #include <LibELF/ELFLoader.h>
  10. //#define SIGNAL_DEBUG
  11. static FPUState s_clean_fpu_state;
  12. u16 thread_specific_selector()
  13. {
  14. static u16 selector;
  15. if (!selector) {
  16. selector = gdt_alloc_entry();
  17. auto& descriptor = get_gdt_entry(selector);
  18. descriptor.dpl = 3;
  19. descriptor.segment_present = 1;
  20. descriptor.granularity = 0;
  21. descriptor.zero = 0;
  22. descriptor.operation_size = 1;
  23. descriptor.descriptor_type = 1;
  24. descriptor.type = 2;
  25. }
  26. return selector;
  27. }
  28. Descriptor& thread_specific_descriptor()
  29. {
  30. return get_gdt_entry(thread_specific_selector());
  31. }
  32. HashTable<Thread*>& thread_table()
  33. {
  34. ASSERT_INTERRUPTS_DISABLED();
  35. static HashTable<Thread*>* table;
  36. if (!table)
  37. table = new HashTable<Thread*>;
  38. return *table;
  39. }
  40. Thread::Thread(Process& process)
  41. : m_process(process)
  42. , m_name(process.name())
  43. {
  44. if (m_process.m_thread_count == 0) {
  45. // First thread gets TID == PID
  46. m_tid = process.pid();
  47. } else {
  48. m_tid = Process::allocate_pid();
  49. }
  50. process.m_thread_count++;
  51. dbgprintf("Thread{%p}: New thread TID=%u in %s(%u)\n", this, m_tid, process.name().characters(), process.pid());
  52. set_default_signal_dispositions();
  53. m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16);
  54. memcpy(m_fpu_state, &s_clean_fpu_state, sizeof(FPUState));
  55. memset(&m_tss, 0, sizeof(m_tss));
  56. m_tss.iomapbase = sizeof(TSS32);
  57. // Only IF is set when a process boots.
  58. m_tss.eflags = 0x0202;
  59. u16 cs, ds, ss, gs;
  60. if (m_process.is_ring0()) {
  61. cs = 0x08;
  62. ds = 0x10;
  63. ss = 0x10;
  64. gs = 0;
  65. } else {
  66. cs = 0x1b;
  67. ds = 0x23;
  68. ss = 0x23;
  69. gs = thread_specific_selector() | 3;
  70. }
  71. m_tss.ds = ds;
  72. m_tss.es = ds;
  73. m_tss.fs = ds;
  74. m_tss.gs = gs;
  75. m_tss.ss = ss;
  76. m_tss.cs = cs;
  77. m_tss.cr3 = m_process.page_directory().cr3();
  78. if (m_process.is_ring0()) {
  79. m_kernel_stack_region = MM.allocate_kernel_region(default_kernel_stack_size, String::format("Kernel Stack (Thread %d)", m_tid), Region::Access::Read | Region::Access::Write, false, true);
  80. m_kernel_stack_region->set_stack(true);
  81. m_kernel_stack_base = m_kernel_stack_region->vaddr().get();
  82. m_kernel_stack_top = m_kernel_stack_region->vaddr().offset(default_kernel_stack_size).get() & 0xfffffff8u;
  83. m_tss.esp = m_kernel_stack_top;
  84. } else {
  85. // Ring3 processes need a separate stack for Ring0.
  86. m_kernel_stack_region = MM.allocate_kernel_region(default_kernel_stack_size, String::format("Kernel Stack (Thread %d)", m_tid), Region::Access::Read | Region::Access::Write, false, true);
  87. m_kernel_stack_region->set_stack(true);
  88. m_kernel_stack_base = m_kernel_stack_region->vaddr().get();
  89. m_kernel_stack_top = m_kernel_stack_region->vaddr().offset(default_kernel_stack_size).get() & 0xfffffff8u;
  90. m_tss.ss0 = 0x10;
  91. m_tss.esp0 = m_kernel_stack_top;
  92. }
  93. // HACK: Ring2 SS in the TSS is the current PID.
  94. m_tss.ss2 = m_process.pid();
  95. m_far_ptr.offset = 0x98765432;
  96. if (m_process.pid() != 0) {
  97. InterruptDisabler disabler;
  98. thread_table().set(this);
  99. Scheduler::init_thread(*this);
  100. }
  101. }
  102. Thread::~Thread()
  103. {
  104. dbgprintf("~Thread{%p}\n", this);
  105. kfree_aligned(m_fpu_state);
  106. {
  107. InterruptDisabler disabler;
  108. thread_table().remove(this);
  109. }
  110. if (selector())
  111. gdt_free_entry(selector());
  112. if (m_userspace_stack_region)
  113. m_process.deallocate_region(*m_userspace_stack_region);
  114. ASSERT(m_process.m_thread_count);
  115. m_process.m_thread_count--;
  116. }
  117. void Thread::unblock()
  118. {
  119. if (current == this) {
  120. set_state(Thread::Running);
  121. return;
  122. }
  123. ASSERT(m_state != Thread::Runnable && m_state != Thread::Running);
  124. set_state(Thread::Runnable);
  125. }
  126. void Thread::set_should_die()
  127. {
  128. if (m_should_die) {
  129. dbgprintf("Should already die (%u)\n", m_tid);
  130. return;
  131. }
  132. InterruptDisabler disabler;
  133. // Remember that we should die instead of returning to
  134. // the userspace.
  135. m_should_die = true;
  136. if (is_blocked()) {
  137. ASSERT(in_kernel());
  138. ASSERT(m_blocker != nullptr);
  139. // We're blocked in the kernel. Pretend to have
  140. // been interrupted by a signal (perhaps that is
  141. // what has actually killed us).
  142. m_blocker->set_interrupted_by_signal();
  143. unblock();
  144. } else if (!in_kernel()) {
  145. // We're executing in userspace (and we're clearly
  146. // not the current thread). No need to unwind, so
  147. // set the state to dying right away. This also
  148. // makes sure we won't be scheduled anymore.
  149. set_state(Thread::State::Dying);
  150. }
  151. }
  152. void Thread::die_if_needed()
  153. {
  154. ASSERT(current == this);
  155. if (!m_should_die)
  156. return;
  157. m_process.big_lock().unlock_if_locked();
  158. InterruptDisabler disabler;
  159. set_state(Thread::State::Dying);
  160. if (!Scheduler::is_active())
  161. Scheduler::pick_next_and_switch_now();
  162. }
  163. void Thread::yield_without_holding_big_lock()
  164. {
  165. bool did_unlock = process().big_lock().unlock_if_locked();
  166. Scheduler::yield();
  167. if (did_unlock)
  168. process().big_lock().lock();
  169. }
  170. bool Thread::unlock_process_if_locked()
  171. {
  172. return process().big_lock().unlock_if_locked();
  173. }
  174. void Thread::relock_process()
  175. {
  176. process().big_lock().lock();
  177. }
  178. u64 Thread::sleep(u32 ticks)
  179. {
  180. ASSERT(state() == Thread::Running);
  181. u64 wakeup_time = g_uptime + ticks;
  182. auto ret = current->block<Thread::SleepBlocker>(wakeup_time);
  183. if (wakeup_time > g_uptime) {
  184. ASSERT(ret == Thread::BlockResult::InterruptedBySignal);
  185. }
  186. return wakeup_time;
  187. }
  188. u64 Thread::sleep_until(u64 wakeup_time)
  189. {
  190. ASSERT(state() == Thread::Running);
  191. auto ret = current->block<Thread::SleepBlocker>(wakeup_time);
  192. if (wakeup_time > g_uptime)
  193. ASSERT(ret == Thread::BlockResult::InterruptedBySignal);
  194. return wakeup_time;
  195. }
  196. const char* Thread::state_string() const
  197. {
  198. switch (state()) {
  199. case Thread::Invalid:
  200. return "Invalid";
  201. case Thread::Runnable:
  202. return "Runnable";
  203. case Thread::Running:
  204. return "Running";
  205. case Thread::Dying:
  206. return "Dying";
  207. case Thread::Dead:
  208. return "Dead";
  209. case Thread::Stopped:
  210. return "Stopped";
  211. case Thread::Skip1SchedulerPass:
  212. return "Skip1";
  213. case Thread::Skip0SchedulerPasses:
  214. return "Skip0";
  215. case Thread::Queued:
  216. return "Queued";
  217. case Thread::Blocked:
  218. ASSERT(m_blocker != nullptr);
  219. return m_blocker->state_string();
  220. }
  221. kprintf("Thread::state_string(): Invalid state: %u\n", state());
  222. ASSERT_NOT_REACHED();
  223. return nullptr;
  224. }
  225. void Thread::finalize()
  226. {
  227. ASSERT(current == g_finalizer);
  228. dbgprintf("Finalizing Thread %u in %s(%u)\n", tid(), m_process.name().characters(), pid());
  229. set_state(Thread::State::Dead);
  230. if (m_joiner) {
  231. ASSERT(m_joiner->m_joinee == this);
  232. static_cast<JoinBlocker*>(m_joiner->m_blocker)->set_joinee_exit_value(m_exit_value);
  233. m_joiner->m_joinee = nullptr;
  234. // NOTE: We clear the joiner pointer here as well, to be tidy.
  235. m_joiner = nullptr;
  236. }
  237. if (m_dump_backtrace_on_finalization)
  238. dbg() << backtrace_impl();
  239. }
  240. void Thread::finalize_dying_threads()
  241. {
  242. ASSERT(current == g_finalizer);
  243. Vector<Thread*, 32> dying_threads;
  244. {
  245. InterruptDisabler disabler;
  246. for_each_in_state(Thread::State::Dying, [&](Thread& thread) {
  247. dying_threads.append(&thread);
  248. return IterationDecision::Continue;
  249. });
  250. }
  251. dbgprintf("Finalizing %u dying threads\n", dying_threads.size());
  252. for (auto* thread : dying_threads) {
  253. auto& process = thread->process();
  254. thread->finalize();
  255. delete thread;
  256. if (process.m_thread_count == 0)
  257. process.finalize();
  258. }
  259. dbgprintf("Done\n");
  260. }
  261. bool Thread::tick()
  262. {
  263. ++m_ticks;
  264. if (tss().cs & 3)
  265. ++m_process.m_ticks_in_user;
  266. else
  267. ++m_process.m_ticks_in_kernel;
  268. return --m_ticks_left;
  269. }
  270. void Thread::send_signal(u8 signal, Process* sender)
  271. {
  272. ASSERT(signal < 32);
  273. InterruptDisabler disabler;
  274. // FIXME: Figure out what to do for masked signals. Should we also ignore them here?
  275. if (should_ignore_signal(signal)) {
  276. dbg() << "signal " << signal << " was ignored by " << process();
  277. return;
  278. }
  279. if (sender)
  280. dbgprintf("signal: %s(%u) sent %d to %s(%u)\n", sender->name().characters(), sender->pid(), signal, process().name().characters(), pid());
  281. else
  282. dbgprintf("signal: kernel sent %d to %s(%u)\n", signal, process().name().characters(), pid());
  283. m_pending_signals |= 1 << (signal - 1);
  284. }
  285. // Certain exceptions, such as SIGSEGV and SIGILL, put a
  286. // thread into a state where the signal handler must be
  287. // invoked immediately, otherwise it will continue to fault.
  288. // This function should be used in an exception handler to
  289. // ensure that when the thread resumes, it's executing in
  290. // the appropriate signal handler.
  291. void Thread::send_urgent_signal_to_self(u8 signal)
  292. {
  293. // FIXME: because of a bug in dispatch_signal we can't
  294. // setup a signal while we are the current thread. Because of
  295. // this we use a work-around where we send the signal and then
  296. // block, allowing the scheduler to properly dispatch the signal
  297. // before the thread is next run.
  298. send_signal(signal, &process());
  299. (void)block<SemiPermanentBlocker>(SemiPermanentBlocker::Reason::Signal);
  300. }
  301. bool Thread::has_unmasked_pending_signals() const
  302. {
  303. return m_pending_signals & ~m_signal_mask;
  304. }
  305. ShouldUnblockThread Thread::dispatch_one_pending_signal()
  306. {
  307. ASSERT_INTERRUPTS_DISABLED();
  308. u32 signal_candidates = m_pending_signals & ~m_signal_mask;
  309. ASSERT(signal_candidates);
  310. u8 signal = 1;
  311. for (; signal < 32; ++signal) {
  312. if (signal_candidates & (1 << (signal - 1))) {
  313. break;
  314. }
  315. }
  316. return dispatch_signal(signal);
  317. }
  318. enum class DefaultSignalAction {
  319. Terminate,
  320. Ignore,
  321. DumpCore,
  322. Stop,
  323. Continue,
  324. };
  325. DefaultSignalAction default_signal_action(u8 signal)
  326. {
  327. ASSERT(signal && signal < NSIG);
  328. switch (signal) {
  329. case SIGHUP:
  330. case SIGINT:
  331. case SIGKILL:
  332. case SIGPIPE:
  333. case SIGALRM:
  334. case SIGUSR1:
  335. case SIGUSR2:
  336. case SIGVTALRM:
  337. case SIGSTKFLT:
  338. case SIGIO:
  339. case SIGPROF:
  340. case SIGTERM:
  341. case SIGPWR:
  342. return DefaultSignalAction::Terminate;
  343. case SIGCHLD:
  344. case SIGURG:
  345. case SIGWINCH:
  346. return DefaultSignalAction::Ignore;
  347. case SIGQUIT:
  348. case SIGILL:
  349. case SIGTRAP:
  350. case SIGABRT:
  351. case SIGBUS:
  352. case SIGFPE:
  353. case SIGSEGV:
  354. case SIGXCPU:
  355. case SIGXFSZ:
  356. case SIGSYS:
  357. return DefaultSignalAction::DumpCore;
  358. case SIGCONT:
  359. return DefaultSignalAction::Continue;
  360. case SIGSTOP:
  361. case SIGTSTP:
  362. case SIGTTIN:
  363. case SIGTTOU:
  364. return DefaultSignalAction::Stop;
  365. }
  366. ASSERT_NOT_REACHED();
  367. }
  368. bool Thread::should_ignore_signal(u8 signal) const
  369. {
  370. ASSERT(signal < 32);
  371. auto& action = m_signal_action_data[signal];
  372. if (action.handler_or_sigaction.is_null())
  373. return default_signal_action(signal) == DefaultSignalAction::Ignore;
  374. if (action.handler_or_sigaction.as_ptr() == SIG_IGN)
  375. return true;
  376. return false;
  377. }
  378. bool Thread::has_signal_handler(u8 signal) const
  379. {
  380. ASSERT(signal < 32);
  381. auto& action = m_signal_action_data[signal];
  382. return !action.handler_or_sigaction.is_null();
  383. }
  384. static void push_value_on_user_stack(u32* stack, u32 data)
  385. {
  386. *stack -= 4;
  387. *(u32*)*stack = data;
  388. }
  389. ShouldUnblockThread Thread::dispatch_signal(u8 signal)
  390. {
  391. ASSERT_INTERRUPTS_DISABLED();
  392. ASSERT(signal > 0 && signal <= 32);
  393. ASSERT(!process().is_ring0());
  394. #ifdef SIGNAL_DEBUG
  395. kprintf("dispatch_signal %s(%u) <- %u\n", process().name().characters(), pid(), signal);
  396. #endif
  397. auto& action = m_signal_action_data[signal];
  398. // FIXME: Implement SA_SIGINFO signal handlers.
  399. ASSERT(!(action.flags & SA_SIGINFO));
  400. // Mark this signal as handled.
  401. m_pending_signals &= ~(1 << (signal - 1));
  402. if (signal == SIGSTOP) {
  403. set_state(Stopped);
  404. return ShouldUnblockThread::No;
  405. }
  406. if (signal == SIGCONT && state() == Stopped)
  407. set_state(Runnable);
  408. auto handler_vaddr = action.handler_or_sigaction;
  409. if (handler_vaddr.is_null()) {
  410. switch (default_signal_action(signal)) {
  411. case DefaultSignalAction::Stop:
  412. set_state(Stopped);
  413. return ShouldUnblockThread::No;
  414. case DefaultSignalAction::DumpCore:
  415. process().for_each_thread([](auto& thread) {
  416. thread.set_dump_backtrace_on_finalization();
  417. return IterationDecision::Continue;
  418. });
  419. [[fallthrough]];
  420. case DefaultSignalAction::Terminate:
  421. m_process.terminate_due_to_signal(signal);
  422. return ShouldUnblockThread::No;
  423. case DefaultSignalAction::Ignore:
  424. ASSERT_NOT_REACHED();
  425. case DefaultSignalAction::Continue:
  426. return ShouldUnblockThread::Yes;
  427. }
  428. ASSERT_NOT_REACHED();
  429. }
  430. if (handler_vaddr.as_ptr() == SIG_IGN) {
  431. #ifdef SIGNAL_DEBUG
  432. kprintf("%s(%u) ignored signal %u\n", process().name().characters(), pid(), signal);
  433. #endif
  434. return ShouldUnblockThread::Yes;
  435. }
  436. ProcessPagingScope paging_scope(m_process);
  437. u32 old_signal_mask = m_signal_mask;
  438. u32 new_signal_mask = action.mask;
  439. if (action.flags & SA_NODEFER)
  440. new_signal_mask &= ~(1 << (signal - 1));
  441. else
  442. new_signal_mask |= 1 << (signal - 1);
  443. m_signal_mask |= new_signal_mask;
  444. auto setup_stack = [&]<typename ThreadState>(ThreadState state, u32 * stack)
  445. {
  446. u32 old_esp = *stack;
  447. u32 ret_eip = state.eip;
  448. u32 ret_eflags = state.eflags;
  449. // Align the stack to 16 bytes.
  450. // Note that we push 56 bytes (4 * 14) on to the stack,
  451. // so we need to account for this here.
  452. u32 stack_alignment = (*stack - 56) % 16;
  453. *stack -= stack_alignment;
  454. push_value_on_user_stack(stack, ret_eflags);
  455. push_value_on_user_stack(stack, ret_eip);
  456. push_value_on_user_stack(stack, state.eax);
  457. push_value_on_user_stack(stack, state.ecx);
  458. push_value_on_user_stack(stack, state.edx);
  459. push_value_on_user_stack(stack, state.ebx);
  460. push_value_on_user_stack(stack, old_esp);
  461. push_value_on_user_stack(stack, state.ebp);
  462. push_value_on_user_stack(stack, state.esi);
  463. push_value_on_user_stack(stack, state.edi);
  464. // PUSH old_signal_mask
  465. push_value_on_user_stack(stack, old_signal_mask);
  466. push_value_on_user_stack(stack, signal);
  467. push_value_on_user_stack(stack, handler_vaddr.get());
  468. push_value_on_user_stack(stack, 0); //push fake return address
  469. ASSERT((*stack % 16) == 0);
  470. };
  471. // We now place the thread state on the userspace stack.
  472. // Note that when we are in the kernel (ie. blocking) we cannot use the
  473. // tss, as that will contain kernel state; instead, we use a RegisterDump.
  474. // Conversely, when the thread isn't blocking the RegisterDump may not be
  475. // valid (fork, exec etc) but the tss will, so we use that instead.
  476. if (!in_kernel()) {
  477. u32* stack = &m_tss.esp;
  478. setup_stack(m_tss, stack);
  479. Scheduler::prepare_to_modify_tss(*this);
  480. m_tss.cs = 0x1b;
  481. m_tss.ds = 0x23;
  482. m_tss.es = 0x23;
  483. m_tss.fs = 0x23;
  484. m_tss.gs = thread_specific_selector() | 3;
  485. m_tss.eip = g_return_to_ring3_from_signal_trampoline.get();
  486. // FIXME: This state is such a hack. It avoids trouble if 'current' is the process receiving a signal.
  487. set_state(Skip1SchedulerPass);
  488. } else {
  489. auto& regs = get_register_dump_from_stack();
  490. u32* stack = &regs.esp_if_crossRing;
  491. setup_stack(regs, stack);
  492. regs.eip = g_return_to_ring3_from_signal_trampoline.get();
  493. }
  494. #ifdef SIGNAL_DEBUG
  495. kprintf("signal: Okay, %s(%u) {%s} has been primed with signal handler %w:%x\n", process().name().characters(), pid(), state_string(), m_tss.cs, m_tss.eip);
  496. #endif
  497. return ShouldUnblockThread::Yes;
  498. }
  499. void Thread::set_default_signal_dispositions()
  500. {
  501. // FIXME: Set up all the right default actions. See signal(7).
  502. memset(&m_signal_action_data, 0, sizeof(m_signal_action_data));
  503. m_signal_action_data[SIGCHLD].handler_or_sigaction = VirtualAddress((u32)SIG_IGN);
  504. m_signal_action_data[SIGWINCH].handler_or_sigaction = VirtualAddress((u32)SIG_IGN);
  505. }
  506. void Thread::push_value_on_stack(u32 value)
  507. {
  508. m_tss.esp -= 4;
  509. u32* stack_ptr = (u32*)m_tss.esp;
  510. *stack_ptr = value;
  511. }
  512. RegisterDump& Thread::get_register_dump_from_stack()
  513. {
  514. // The userspace registers should be stored at the top of the stack
  515. // We have to subtract 2 because the processor decrements the kernel
  516. // stack before pushing the args.
  517. return *(RegisterDump*)(kernel_stack_top() - sizeof(RegisterDump));
  518. }
  519. u32 Thread::make_userspace_stack_for_main_thread(Vector<String> arguments, Vector<String> environment)
  520. {
  521. auto* region = m_process.allocate_region(VirtualAddress(), default_userspace_stack_size, "Stack (Main thread)", PROT_READ | PROT_WRITE, false);
  522. ASSERT(region);
  523. region->set_stack(true);
  524. u32 new_esp = region->vaddr().offset(default_userspace_stack_size).get();
  525. // FIXME: This is weird, we put the argument contents at the base of the stack,
  526. // and the argument pointers at the top? Why?
  527. char* stack_base = (char*)region->vaddr().get();
  528. int argc = arguments.size();
  529. char** argv = (char**)stack_base;
  530. char** env = argv + arguments.size() + 1;
  531. char* bufptr = stack_base + (sizeof(char*) * (arguments.size() + 1)) + (sizeof(char*) * (environment.size() + 1));
  532. for (int i = 0; i < arguments.size(); ++i) {
  533. argv[i] = bufptr;
  534. memcpy(bufptr, arguments[i].characters(), arguments[i].length());
  535. bufptr += arguments[i].length();
  536. *(bufptr++) = '\0';
  537. }
  538. argv[arguments.size()] = nullptr;
  539. for (int i = 0; i < environment.size(); ++i) {
  540. env[i] = bufptr;
  541. memcpy(bufptr, environment[i].characters(), environment[i].length());
  542. bufptr += environment[i].length();
  543. *(bufptr++) = '\0';
  544. }
  545. env[environment.size()] = nullptr;
  546. auto push_on_new_stack = [&new_esp](u32 value) {
  547. new_esp -= 4;
  548. u32* stack_ptr = (u32*)new_esp;
  549. *stack_ptr = value;
  550. };
  551. // NOTE: The stack needs to be 16-byte aligned.
  552. push_on_new_stack((u32)env);
  553. push_on_new_stack((u32)argv);
  554. push_on_new_stack((u32)argc);
  555. push_on_new_stack(0);
  556. return new_esp;
  557. }
  558. Thread* Thread::clone(Process& process)
  559. {
  560. auto* clone = new Thread(process);
  561. memcpy(clone->m_signal_action_data, m_signal_action_data, sizeof(m_signal_action_data));
  562. clone->m_signal_mask = m_signal_mask;
  563. memcpy(clone->m_fpu_state, m_fpu_state, sizeof(FPUState));
  564. clone->m_thread_specific_data = m_thread_specific_data;
  565. return clone;
  566. }
  567. void Thread::initialize()
  568. {
  569. Scheduler::initialize();
  570. asm volatile("fninit");
  571. asm volatile("fxsave %0"
  572. : "=m"(s_clean_fpu_state));
  573. }
  574. Vector<Thread*> Thread::all_threads()
  575. {
  576. Vector<Thread*> threads;
  577. InterruptDisabler disabler;
  578. threads.ensure_capacity(thread_table().size());
  579. for (auto* thread : thread_table())
  580. threads.unchecked_append(thread);
  581. return threads;
  582. }
  583. bool Thread::is_thread(void* ptr)
  584. {
  585. ASSERT_INTERRUPTS_DISABLED();
  586. return thread_table().contains((Thread*)ptr);
  587. }
  588. void Thread::set_state(State new_state)
  589. {
  590. InterruptDisabler disabler;
  591. if (new_state == m_state)
  592. return;
  593. if (new_state == Blocked) {
  594. // we should always have a Blocker while blocked
  595. ASSERT(m_blocker != nullptr);
  596. }
  597. m_state = new_state;
  598. if (m_process.pid() != 0) {
  599. Scheduler::update_state_for_thread(*this);
  600. }
  601. if (new_state == Dying)
  602. g_finalizer_wait_queue->wake_all();
  603. }
  604. String Thread::backtrace(ProcessInspectionHandle&) const
  605. {
  606. return backtrace_impl();
  607. }
  608. String Thread::backtrace_impl() const
  609. {
  610. auto& process = const_cast<Process&>(this->process());
  611. ProcessPagingScope paging_scope(process);
  612. struct RecognizedSymbol {
  613. u32 address;
  614. const KSym* ksym;
  615. };
  616. StringBuilder builder;
  617. Vector<RecognizedSymbol, 64> recognized_symbols;
  618. recognized_symbols.append({ tss().eip, ksymbolicate(tss().eip) });
  619. for (u32* stack_ptr = (u32*)frame_ptr(); process.validate_read_from_kernel(VirtualAddress((u32)stack_ptr), sizeof(void*) * 2); stack_ptr = (u32*)*stack_ptr) {
  620. u32 retaddr = stack_ptr[1];
  621. recognized_symbols.append({ retaddr, ksymbolicate(retaddr) });
  622. }
  623. for (auto& symbol : recognized_symbols) {
  624. if (!symbol.address)
  625. break;
  626. if (!symbol.ksym) {
  627. if (!Scheduler::is_active() && process.elf_loader() && process.elf_loader()->has_symbols())
  628. builder.appendf("%p %s\n", symbol.address, process.elf_loader()->symbolicate(symbol.address).characters());
  629. else
  630. builder.appendf("%p\n", symbol.address);
  631. continue;
  632. }
  633. unsigned offset = symbol.address - symbol.ksym->address;
  634. if (symbol.ksym->address == ksym_highest_address && offset > 4096)
  635. builder.appendf("%p\n", symbol.address);
  636. else
  637. builder.appendf("%p %s +%u\n", symbol.address, demangle(symbol.ksym->name).characters(), offset);
  638. }
  639. return builder.to_string();
  640. }
  641. Vector<u32> Thread::raw_backtrace(u32 ebp) const
  642. {
  643. auto& process = const_cast<Process&>(this->process());
  644. ProcessPagingScope paging_scope(process);
  645. Vector<u32> backtrace;
  646. backtrace.append(ebp);
  647. for (u32* stack_ptr = (u32*)ebp; process.validate_read_from_kernel(VirtualAddress((u32)stack_ptr), sizeof(void*) * 2); stack_ptr = (u32*)*stack_ptr) {
  648. u32 retaddr = stack_ptr[1];
  649. backtrace.append(retaddr);
  650. }
  651. return backtrace;
  652. }
  653. void Thread::make_thread_specific_region(Badge<Process>)
  654. {
  655. size_t thread_specific_region_alignment = max(process().m_master_tls_alignment, alignof(ThreadSpecificData));
  656. size_t thread_specific_region_size = align_up_to(process().m_master_tls_size, thread_specific_region_alignment) + sizeof(ThreadSpecificData);
  657. auto* region = process().allocate_region({}, thread_specific_region_size, "Thread-specific", PROT_READ | PROT_WRITE, true);
  658. auto* thread_specific_data = (ThreadSpecificData*)region->vaddr().offset(align_up_to(process().m_master_tls_size, thread_specific_region_alignment)).as_ptr();
  659. auto* thread_local_storage = (u8*)((u8*)thread_specific_data) - align_up_to(process().m_master_tls_size, process().m_master_tls_alignment);
  660. m_thread_specific_data = VirtualAddress((u32)thread_specific_data);
  661. thread_specific_data->self = thread_specific_data;
  662. if (process().m_master_tls_size)
  663. memcpy(thread_local_storage, process().m_master_tls_region->vaddr().as_ptr(), process().m_master_tls_size);
  664. }
  665. const LogStream& operator<<(const LogStream& stream, const Thread& value)
  666. {
  667. return stream << value.process().name() << "(" << value.pid() << ":" << value.tid() << ")";
  668. }
  669. void Thread::wait_on(WaitQueue& queue, Thread* beneficiary, const char* reason)
  670. {
  671. bool did_unlock = unlock_process_if_locked();
  672. cli();
  673. set_state(State::Queued);
  674. queue.enqueue(*current);
  675. // Yield and wait for the queue to wake us up again.
  676. if (beneficiary)
  677. Scheduler::donate_to(beneficiary, reason);
  678. else
  679. Scheduler::yield();
  680. // We've unblocked, relock the process if needed and carry on.
  681. if (did_unlock)
  682. relock_process();
  683. }
  684. void Thread::wake_from_queue()
  685. {
  686. ASSERT(state() == State::Queued);
  687. set_state(State::Runnable);
  688. }
  689. Thread* Thread::from_tid(int tid)
  690. {
  691. ASSERT_INTERRUPTS_DISABLED();
  692. Thread* found_thread = nullptr;
  693. Thread::for_each([&](auto& thread) {
  694. if (thread.tid() == tid)
  695. found_thread = &thread;
  696. return IterationDecision::Continue;
  697. });
  698. return found_thread;
  699. }