Path.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Function.h>
  7. #include <AK/HashTable.h>
  8. #include <AK/Math.h>
  9. #include <AK/QuickSort.h>
  10. #include <AK/StringBuilder.h>
  11. #include <AK/TypeCasts.h>
  12. #include <LibGfx/BoundingBox.h>
  13. #include <LibGfx/Font/ScaledFont.h>
  14. #include <LibGfx/Painter.h>
  15. #include <LibGfx/Path.h>
  16. #include <LibGfx/TextLayout.h>
  17. namespace Gfx {
  18. void Path::approximate_elliptical_arc_with_cubic_beziers(FloatPoint center, FloatSize radii, float x_axis_rotation, float theta, float theta_delta)
  19. {
  20. float sin_x_rotation;
  21. float cos_x_rotation;
  22. AK::sincos(x_axis_rotation, sin_x_rotation, cos_x_rotation);
  23. auto arc_point_and_derivative = [&](float t, FloatPoint& point, FloatPoint& derivative) {
  24. float sin_angle;
  25. float cos_angle;
  26. AK::sincos(t, sin_angle, cos_angle);
  27. point = FloatPoint {
  28. center.x()
  29. + radii.width() * cos_x_rotation * cos_angle
  30. - radii.height() * sin_x_rotation * sin_angle,
  31. center.y()
  32. + radii.width() * sin_x_rotation * cos_angle
  33. + radii.height() * cos_x_rotation * sin_angle,
  34. };
  35. derivative = FloatPoint {
  36. -radii.width() * cos_x_rotation * sin_angle
  37. - radii.height() * sin_x_rotation * cos_angle,
  38. -radii.width() * sin_x_rotation * sin_angle
  39. + radii.height() * cos_x_rotation * cos_angle,
  40. };
  41. };
  42. auto approximate_arc_between = [&](float start_angle, float end_angle) {
  43. auto t = AK::tan((end_angle - start_angle) / 2);
  44. auto alpha = AK::sin(end_angle - start_angle) * ((AK::sqrt(4 + 3 * t * t) - 1) / 3);
  45. FloatPoint p1, d1;
  46. FloatPoint p2, d2;
  47. arc_point_and_derivative(start_angle, p1, d1);
  48. arc_point_and_derivative(end_angle, p2, d2);
  49. auto q1 = p1 + d1.scaled(alpha, alpha);
  50. auto q2 = p2 - d2.scaled(alpha, alpha);
  51. cubic_bezier_curve_to(q1, q2, p2);
  52. };
  53. // FIXME: Come up with a more mathematically sound step size (using some error calculation).
  54. auto step = theta_delta;
  55. int step_count = 1;
  56. while (fabs(step) > AK::Pi<float> / 4) {
  57. step /= 2;
  58. step_count *= 2;
  59. }
  60. float prev = theta;
  61. float t = prev + step;
  62. for (int i = 0; i < step_count; i++, prev = t, t += step)
  63. approximate_arc_between(prev, t);
  64. }
  65. void Path::elliptical_arc_to(FloatPoint point, FloatSize radii, float x_axis_rotation, bool large_arc, bool sweep)
  66. {
  67. auto next_point = point;
  68. double rx = radii.width();
  69. double ry = radii.height();
  70. double x_axis_rotation_s;
  71. double x_axis_rotation_c;
  72. AK::sincos(static_cast<double>(x_axis_rotation), x_axis_rotation_s, x_axis_rotation_c);
  73. FloatPoint last_point = this->last_point();
  74. // Step 1 of out-of-range radii correction
  75. if (rx == 0.0 || ry == 0.0) {
  76. append_segment<LineSegment>(next_point);
  77. return;
  78. }
  79. // Step 2 of out-of-range radii correction
  80. if (rx < 0)
  81. rx *= -1.0;
  82. if (ry < 0)
  83. ry *= -1.0;
  84. // POSSIBLY HACK: Handle the case where both points are the same.
  85. auto same_endpoints = next_point == last_point;
  86. if (same_endpoints) {
  87. if (!large_arc) {
  88. // Nothing is going to be drawn anyway.
  89. return;
  90. }
  91. // Move the endpoint by a small amount to avoid division by zero.
  92. next_point.translate_by(0.01f, 0.01f);
  93. }
  94. // Find (cx, cy), theta_1, theta_delta
  95. // Step 1: Compute (x1', y1')
  96. auto x_avg = static_cast<double>(last_point.x() - next_point.x()) / 2.0;
  97. auto y_avg = static_cast<double>(last_point.y() - next_point.y()) / 2.0;
  98. auto x1p = x_axis_rotation_c * x_avg + x_axis_rotation_s * y_avg;
  99. auto y1p = -x_axis_rotation_s * x_avg + x_axis_rotation_c * y_avg;
  100. // Step 2: Compute (cx', cy')
  101. double x1p_sq = x1p * x1p;
  102. double y1p_sq = y1p * y1p;
  103. double rx_sq = rx * rx;
  104. double ry_sq = ry * ry;
  105. // Step 3 of out-of-range radii correction
  106. double lambda = x1p_sq / rx_sq + y1p_sq / ry_sq;
  107. double multiplier;
  108. if (lambda > 1.0) {
  109. auto lambda_sqrt = AK::sqrt(lambda);
  110. rx *= lambda_sqrt;
  111. ry *= lambda_sqrt;
  112. multiplier = 0.0;
  113. } else {
  114. double numerator = rx_sq * ry_sq - rx_sq * y1p_sq - ry_sq * x1p_sq;
  115. double denominator = rx_sq * y1p_sq + ry_sq * x1p_sq;
  116. multiplier = AK::sqrt(numerator / denominator);
  117. }
  118. if (large_arc == sweep)
  119. multiplier *= -1.0;
  120. double cxp = multiplier * rx * y1p / ry;
  121. double cyp = multiplier * -ry * x1p / rx;
  122. // Step 3: Compute (cx, cy) from (cx', cy')
  123. x_avg = (last_point.x() + next_point.x()) / 2.0f;
  124. y_avg = (last_point.y() + next_point.y()) / 2.0f;
  125. double cx = x_axis_rotation_c * cxp - x_axis_rotation_s * cyp + x_avg;
  126. double cy = x_axis_rotation_s * cxp + x_axis_rotation_c * cyp + y_avg;
  127. double theta_1 = AK::atan2((y1p - cyp) / ry, (x1p - cxp) / rx);
  128. double theta_2 = AK::atan2((-y1p - cyp) / ry, (-x1p - cxp) / rx);
  129. auto theta_delta = theta_2 - theta_1;
  130. if (!sweep && theta_delta > 0.0) {
  131. theta_delta -= 2 * AK::Pi<double>;
  132. } else if (sweep && theta_delta < 0) {
  133. theta_delta += 2 * AK::Pi<double>;
  134. }
  135. approximate_elliptical_arc_with_cubic_beziers(
  136. { cx, cy },
  137. { rx, ry },
  138. x_axis_rotation,
  139. theta_1,
  140. theta_delta);
  141. }
  142. void Path::text(Utf8View text, Font const& font)
  143. {
  144. if (!is<ScaledFont>(font)) {
  145. // FIXME: This API only accepts Gfx::Font for ease of use.
  146. dbgln("Cannot path-ify bitmap fonts!");
  147. return;
  148. }
  149. auto& scaled_font = static_cast<ScaledFont const&>(font);
  150. for_each_glyph_position(
  151. last_point(), text, font, [&](DrawGlyphOrEmoji glyph_or_emoji) {
  152. if (glyph_or_emoji.has<DrawGlyph>()) {
  153. auto& glyph = glyph_or_emoji.get<DrawGlyph>();
  154. move_to(glyph.position);
  155. auto glyph_id = scaled_font.glyph_id_for_code_point(glyph.code_point);
  156. scaled_font.append_glyph_path_to(*this, glyph_id);
  157. }
  158. },
  159. IncludeLeftBearing::Yes);
  160. }
  161. FloatPoint Path::last_point()
  162. {
  163. FloatPoint last_point { 0, 0 };
  164. if (!m_segments.is_empty())
  165. last_point = m_segments.last()->point();
  166. return last_point;
  167. }
  168. void Path::close()
  169. {
  170. if (m_segments.size() <= 1)
  171. return;
  172. auto last_point = m_segments.last()->point();
  173. for (ssize_t i = m_segments.size() - 1; i >= 0; --i) {
  174. auto& segment = m_segments[i];
  175. if (segment->type() == Segment::Type::MoveTo) {
  176. if (last_point == segment->point())
  177. return;
  178. append_segment<LineSegment>(segment->point());
  179. invalidate_split_lines();
  180. return;
  181. }
  182. }
  183. }
  184. void Path::close_all_subpaths()
  185. {
  186. if (m_segments.size() <= 1)
  187. return;
  188. invalidate_split_lines();
  189. Optional<FloatPoint> cursor, start_of_subpath;
  190. bool is_first_point_in_subpath { false };
  191. auto close_previous_subpath = [&] {
  192. if (cursor.has_value() && !is_first_point_in_subpath) {
  193. // This is a move from a subpath to another
  194. // connect the two ends of this subpath before
  195. // moving on to the next one
  196. VERIFY(start_of_subpath.has_value());
  197. append_segment<MoveSegment>(cursor.value());
  198. append_segment<LineSegment>(start_of_subpath.value());
  199. }
  200. };
  201. auto segment_count = m_segments.size();
  202. for (size_t i = 0; i < segment_count; i++) {
  203. // Note: We need to use m_segments[i] as append_segment() may invalidate any references.
  204. switch (m_segments[i]->type()) {
  205. case Segment::Type::MoveTo: {
  206. close_previous_subpath();
  207. is_first_point_in_subpath = true;
  208. cursor = m_segments[i]->point();
  209. break;
  210. }
  211. case Segment::Type::LineTo:
  212. case Segment::Type::QuadraticBezierCurveTo:
  213. case Segment::Type::CubicBezierCurveTo:
  214. if (is_first_point_in_subpath) {
  215. start_of_subpath = cursor;
  216. is_first_point_in_subpath = false;
  217. }
  218. cursor = m_segments[i]->point();
  219. break;
  220. case Segment::Type::Invalid:
  221. VERIFY_NOT_REACHED();
  222. break;
  223. }
  224. }
  225. if (m_segments.last()->type() != Segment::Type::MoveTo)
  226. close_previous_subpath();
  227. }
  228. DeprecatedString Path::to_deprecated_string() const
  229. {
  230. StringBuilder builder;
  231. builder.append("Path { "sv);
  232. for (auto& segment : m_segments) {
  233. switch (segment->type()) {
  234. case Segment::Type::MoveTo:
  235. builder.append("MoveTo"sv);
  236. break;
  237. case Segment::Type::LineTo:
  238. builder.append("LineTo"sv);
  239. break;
  240. case Segment::Type::QuadraticBezierCurveTo:
  241. builder.append("QuadraticBezierCurveTo"sv);
  242. break;
  243. case Segment::Type::CubicBezierCurveTo:
  244. builder.append("CubicBezierCurveTo"sv);
  245. break;
  246. case Segment::Type::Invalid:
  247. builder.append("Invalid"sv);
  248. break;
  249. }
  250. builder.appendff("({}", segment->point());
  251. switch (segment->type()) {
  252. case Segment::Type::QuadraticBezierCurveTo:
  253. builder.append(", "sv);
  254. builder.append(static_cast<QuadraticBezierCurveSegment const&>(*segment).through().to_deprecated_string());
  255. break;
  256. case Segment::Type::CubicBezierCurveTo:
  257. builder.append(", "sv);
  258. builder.append(static_cast<CubicBezierCurveSegment const&>(*segment).through_0().to_deprecated_string());
  259. builder.append(", "sv);
  260. builder.append(static_cast<CubicBezierCurveSegment const&>(*segment).through_1().to_deprecated_string());
  261. break;
  262. default:
  263. break;
  264. }
  265. builder.append(") "sv);
  266. }
  267. builder.append('}');
  268. return builder.to_deprecated_string();
  269. }
  270. void Path::segmentize_path()
  271. {
  272. Vector<FloatLine> segments;
  273. FloatBoundingBox bounding_box;
  274. auto add_line = [&](auto const& p0, auto const& p1) {
  275. segments.append({ p0, p1 });
  276. bounding_box.add_point(p1);
  277. };
  278. FloatPoint cursor { 0, 0 };
  279. for (auto& segment : m_segments) {
  280. switch (segment->type()) {
  281. case Segment::Type::MoveTo:
  282. bounding_box.add_point(segment->point());
  283. cursor = segment->point();
  284. break;
  285. case Segment::Type::LineTo: {
  286. add_line(cursor, segment->point());
  287. cursor = segment->point();
  288. break;
  289. }
  290. case Segment::Type::QuadraticBezierCurveTo: {
  291. auto control = static_cast<QuadraticBezierCurveSegment const&>(*segment).through();
  292. Painter::for_each_line_segment_on_bezier_curve(control, cursor, segment->point(), [&](FloatPoint p0, FloatPoint p1) {
  293. add_line(p0, p1);
  294. });
  295. cursor = segment->point();
  296. break;
  297. }
  298. case Segment::Type::CubicBezierCurveTo: {
  299. auto& curve = static_cast<CubicBezierCurveSegment const&>(*segment);
  300. auto control_0 = curve.through_0();
  301. auto control_1 = curve.through_1();
  302. Painter::for_each_line_segment_on_cubic_bezier_curve(control_0, control_1, cursor, segment->point(), [&](FloatPoint p0, FloatPoint p1) {
  303. add_line(p0, p1);
  304. });
  305. cursor = segment->point();
  306. break;
  307. }
  308. case Segment::Type::Invalid:
  309. VERIFY_NOT_REACHED();
  310. }
  311. }
  312. m_split_lines = move(segments);
  313. m_bounding_box = bounding_box;
  314. }
  315. Path Path::copy_transformed(Gfx::AffineTransform const& transform) const
  316. {
  317. Path result;
  318. for (auto const& segment : m_segments) {
  319. switch (segment->type()) {
  320. case Segment::Type::MoveTo:
  321. result.move_to(transform.map(segment->point()));
  322. break;
  323. case Segment::Type::LineTo: {
  324. result.line_to(transform.map(segment->point()));
  325. break;
  326. }
  327. case Segment::Type::QuadraticBezierCurveTo: {
  328. auto const& quadratic_segment = static_cast<QuadraticBezierCurveSegment const&>(*segment);
  329. result.quadratic_bezier_curve_to(transform.map(quadratic_segment.through()), transform.map(segment->point()));
  330. break;
  331. }
  332. case Segment::Type::CubicBezierCurveTo: {
  333. auto const& cubic_segment = static_cast<CubicBezierCurveSegment const&>(*segment);
  334. result.cubic_bezier_curve_to(transform.map(cubic_segment.through_0()), transform.map(cubic_segment.through_1()), transform.map(segment->point()));
  335. break;
  336. }
  337. case Segment::Type::Invalid:
  338. VERIFY_NOT_REACHED();
  339. }
  340. }
  341. return result;
  342. }
  343. void Path::add_path(Path const& other)
  344. {
  345. m_segments.extend(other.m_segments);
  346. invalidate_split_lines();
  347. }
  348. void Path::ensure_subpath(FloatPoint point)
  349. {
  350. if (m_need_new_subpath && m_segments.is_empty()) {
  351. move_to(point);
  352. m_need_new_subpath = false;
  353. }
  354. }
  355. template<typename T>
  356. struct RoundTrip {
  357. RoundTrip(ReadonlySpan<T> span)
  358. : m_span(span)
  359. {
  360. }
  361. size_t size() const
  362. {
  363. return m_span.size() * 2 - 1;
  364. }
  365. T const& operator[](size_t index) const
  366. {
  367. // Follow the path:
  368. if (index < m_span.size())
  369. return m_span[index];
  370. // Then in reverse:
  371. if (index < size())
  372. return m_span[size() - index - 1];
  373. // Then wrap around again:
  374. return m_span[index - size() + 1];
  375. }
  376. private:
  377. ReadonlySpan<T> m_span;
  378. };
  379. Path Path::stroke_to_fill(float thickness) const
  380. {
  381. // Note: This convolves a polygon with the path using the algorithm described
  382. // in https://keithp.com/~keithp/talks/cairo2003.pdf (3.1 Stroking Splines via Convolution)
  383. VERIFY(thickness > 0);
  384. auto& lines = split_lines();
  385. if (lines.is_empty())
  386. return Path {};
  387. // Paths can be disconnected, which a pain to deal with, so split it up.
  388. Vector<Vector<FloatPoint>> segments;
  389. segments.append({ lines.first().a() });
  390. for (auto& line : lines) {
  391. if (line.a() == segments.last().last()) {
  392. segments.last().append(line.b());
  393. } else {
  394. segments.append({ line.a(), line.b() });
  395. }
  396. }
  397. // Note: This is the same as the tolerance from bezier curve splitting.
  398. constexpr auto flatness = 0.015f;
  399. auto pen_vertex_count = max(
  400. static_cast<int>(ceilf(AK::Pi<float> / acosf(1 - (2 * flatness) / thickness))), 4);
  401. if (pen_vertex_count % 2 == 1)
  402. pen_vertex_count += 1;
  403. Vector<FloatPoint, 128> pen_vertices;
  404. pen_vertices.ensure_capacity(pen_vertex_count);
  405. // Generate vertices for the pen (going counterclockwise). The pen does not necessarily need
  406. // to be a circle (or an approximation of one), but other shapes are untested.
  407. float theta = 0;
  408. float theta_delta = (AK::Pi<float> * 2) / pen_vertex_count;
  409. for (int i = 0; i < pen_vertex_count; i++) {
  410. float sin_theta;
  411. float cos_theta;
  412. AK::sincos(theta, sin_theta, cos_theta);
  413. pen_vertices.unchecked_append({ cos_theta * thickness / 2, sin_theta * thickness / 2 });
  414. theta -= theta_delta;
  415. }
  416. auto wrapping_index = [](auto& vertices, auto index) {
  417. return vertices[(index + vertices.size()) % vertices.size()];
  418. };
  419. auto angle_between = [](auto p1, auto p2) {
  420. auto delta = p2 - p1;
  421. return atan2f(delta.y(), delta.x());
  422. };
  423. struct ActiveRange {
  424. float start;
  425. float end;
  426. bool in_range(float angle) const
  427. {
  428. // Note: Since active ranges go counterclockwise start > end unless we wrap around at 180 degrees
  429. return ((angle <= start && angle >= end)
  430. || (start < end && angle <= start)
  431. || (start < end && angle >= end));
  432. }
  433. };
  434. Vector<ActiveRange, 128> active_ranges;
  435. active_ranges.ensure_capacity(pen_vertices.size());
  436. for (auto i = 0; i < pen_vertex_count; i++) {
  437. active_ranges.unchecked_append({ angle_between(wrapping_index(pen_vertices, i - 1), pen_vertices[i]),
  438. angle_between(pen_vertices[i], wrapping_index(pen_vertices, i + 1)) });
  439. }
  440. auto clockwise = [](float current_angle, float target_angle) {
  441. if (target_angle < 0)
  442. target_angle += AK::Pi<float> * 2;
  443. if (current_angle < 0)
  444. current_angle += AK::Pi<float> * 2;
  445. if (target_angle < current_angle)
  446. target_angle += AK::Pi<float> * 2;
  447. return (target_angle - current_angle) <= AK::Pi<float>;
  448. };
  449. Path convolution;
  450. for (auto& segment : segments) {
  451. RoundTrip<FloatPoint> shape { segment };
  452. bool first = true;
  453. auto add_vertex = [&](auto v) {
  454. if (first) {
  455. convolution.move_to(v);
  456. first = false;
  457. } else {
  458. convolution.line_to(v);
  459. }
  460. };
  461. auto shape_idx = 0u;
  462. auto slope = [&] {
  463. return angle_between(shape[shape_idx], shape[shape_idx + 1]);
  464. };
  465. auto start_slope = slope();
  466. // Note: At least one range must be active.
  467. auto active = *active_ranges.find_first_index_if([&](auto& range) {
  468. return range.in_range(start_slope);
  469. });
  470. while (shape_idx < shape.size()) {
  471. add_vertex(shape[shape_idx] + pen_vertices[active]);
  472. auto slope_now = slope();
  473. auto range = active_ranges[active];
  474. if (range.in_range(slope_now)) {
  475. shape_idx++;
  476. } else {
  477. if (clockwise(slope_now, range.end)) {
  478. if (active == static_cast<size_t>(pen_vertex_count - 1))
  479. active = 0;
  480. else
  481. active++;
  482. } else {
  483. if (active == 0)
  484. active = pen_vertex_count - 1;
  485. else
  486. active--;
  487. }
  488. }
  489. }
  490. }
  491. return convolution;
  492. }
  493. }