StdLib.cpp 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Assertions.h>
  7. #include <AK/MemMem.h>
  8. #include <AK/String.h>
  9. #include <AK/Types.h>
  10. #include <Kernel/Arch/SmapDisabler.h>
  11. #include <Kernel/Heap/kmalloc.h>
  12. #include <Kernel/Memory/MemoryManager.h>
  13. #include <Kernel/StdLib.h>
  14. ErrorOr<NonnullOwnPtr<Kernel::KString>> try_copy_kstring_from_user(Userspace<const char*> user_str, size_t user_str_size)
  15. {
  16. bool is_user = Kernel::Memory::is_user_range(user_str.vaddr(), user_str_size);
  17. if (!is_user)
  18. return EFAULT;
  19. Kernel::SmapDisabler disabler;
  20. void* fault_at;
  21. ssize_t length = Kernel::safe_strnlen(user_str.unsafe_userspace_ptr(), user_str_size, fault_at);
  22. if (length < 0) {
  23. dbgln("copy_kstring_from_user({:p}, {}) failed at {} (strnlen)", static_cast<const void*>(user_str.unsafe_userspace_ptr()), user_str_size, VirtualAddress { fault_at });
  24. return EFAULT;
  25. }
  26. char* buffer;
  27. auto new_string = TRY(Kernel::KString::try_create_uninitialized(length, buffer));
  28. buffer[length] = '\0';
  29. if (length == 0)
  30. return new_string;
  31. if (!Kernel::safe_memcpy(buffer, user_str.unsafe_userspace_ptr(), (size_t)length, fault_at)) {
  32. dbgln("copy_kstring_from_user({:p}, {}) failed at {} (memcpy)", static_cast<const void*>(user_str.unsafe_userspace_ptr()), user_str_size, VirtualAddress { fault_at });
  33. return EFAULT;
  34. }
  35. return new_string;
  36. }
  37. ErrorOr<Time> copy_time_from_user(timespec const* ts_user)
  38. {
  39. timespec ts {};
  40. TRY(copy_from_user(&ts, ts_user, sizeof(timespec)));
  41. return Time::from_timespec(ts);
  42. }
  43. ErrorOr<Time> copy_time_from_user(timeval const* tv_user)
  44. {
  45. timeval tv {};
  46. TRY(copy_from_user(&tv, tv_user, sizeof(timeval)));
  47. return Time::from_timeval(tv);
  48. }
  49. template<>
  50. ErrorOr<Time> copy_time_from_user<const timeval>(Userspace<timeval const*> src) { return copy_time_from_user(src.unsafe_userspace_ptr()); }
  51. template<>
  52. ErrorOr<Time> copy_time_from_user<timeval>(Userspace<timeval*> src) { return copy_time_from_user(src.unsafe_userspace_ptr()); }
  53. template<>
  54. ErrorOr<Time> copy_time_from_user<const timespec>(Userspace<timespec const*> src) { return copy_time_from_user(src.unsafe_userspace_ptr()); }
  55. template<>
  56. ErrorOr<Time> copy_time_from_user<timespec>(Userspace<timespec*> src) { return copy_time_from_user(src.unsafe_userspace_ptr()); }
  57. Optional<u32> user_atomic_fetch_add_relaxed(volatile u32* var, u32 val)
  58. {
  59. if (FlatPtr(var) & 3)
  60. return {}; // not aligned!
  61. bool is_user = Kernel::Memory::is_user_range(VirtualAddress(FlatPtr(var)), sizeof(*var));
  62. if (!is_user)
  63. return {};
  64. Kernel::SmapDisabler disabler;
  65. return Kernel::safe_atomic_fetch_add_relaxed(var, val);
  66. }
  67. Optional<u32> user_atomic_exchange_relaxed(volatile u32* var, u32 val)
  68. {
  69. if (FlatPtr(var) & 3)
  70. return {}; // not aligned!
  71. bool is_user = Kernel::Memory::is_user_range(VirtualAddress(FlatPtr(var)), sizeof(*var));
  72. if (!is_user)
  73. return {};
  74. Kernel::SmapDisabler disabler;
  75. return Kernel::safe_atomic_exchange_relaxed(var, val);
  76. }
  77. Optional<u32> user_atomic_load_relaxed(volatile u32* var)
  78. {
  79. if (FlatPtr(var) & 3)
  80. return {}; // not aligned!
  81. bool is_user = Kernel::Memory::is_user_range(VirtualAddress(FlatPtr(var)), sizeof(*var));
  82. if (!is_user)
  83. return {};
  84. Kernel::SmapDisabler disabler;
  85. return Kernel::safe_atomic_load_relaxed(var);
  86. }
  87. bool user_atomic_store_relaxed(volatile u32* var, u32 val)
  88. {
  89. if (FlatPtr(var) & 3)
  90. return false; // not aligned!
  91. bool is_user = Kernel::Memory::is_user_range(VirtualAddress(FlatPtr(var)), sizeof(*var));
  92. if (!is_user)
  93. return false;
  94. Kernel::SmapDisabler disabler;
  95. return Kernel::safe_atomic_store_relaxed(var, val);
  96. }
  97. Optional<bool> user_atomic_compare_exchange_relaxed(volatile u32* var, u32& expected, u32 val)
  98. {
  99. if (FlatPtr(var) & 3)
  100. return {}; // not aligned!
  101. VERIFY(!Kernel::Memory::is_user_range(VirtualAddress(&expected), sizeof(expected)));
  102. bool is_user = Kernel::Memory::is_user_range(VirtualAddress(FlatPtr(var)), sizeof(*var));
  103. if (!is_user)
  104. return {};
  105. Kernel::SmapDisabler disabler;
  106. return Kernel::safe_atomic_compare_exchange_relaxed(var, expected, val);
  107. }
  108. Optional<u32> user_atomic_fetch_and_relaxed(volatile u32* var, u32 val)
  109. {
  110. if (FlatPtr(var) & 3)
  111. return {}; // not aligned!
  112. bool is_user = Kernel::Memory::is_user_range(VirtualAddress(FlatPtr(var)), sizeof(*var));
  113. if (!is_user)
  114. return {};
  115. Kernel::SmapDisabler disabler;
  116. return Kernel::safe_atomic_fetch_and_relaxed(var, val);
  117. }
  118. Optional<u32> user_atomic_fetch_and_not_relaxed(volatile u32* var, u32 val)
  119. {
  120. if (FlatPtr(var) & 3)
  121. return {}; // not aligned!
  122. bool is_user = Kernel::Memory::is_user_range(VirtualAddress(FlatPtr(var)), sizeof(*var));
  123. if (!is_user)
  124. return {};
  125. Kernel::SmapDisabler disabler;
  126. return Kernel::safe_atomic_fetch_and_not_relaxed(var, val);
  127. }
  128. Optional<u32> user_atomic_fetch_or_relaxed(volatile u32* var, u32 val)
  129. {
  130. if (FlatPtr(var) & 3)
  131. return {}; // not aligned!
  132. bool is_user = Kernel::Memory::is_user_range(VirtualAddress(FlatPtr(var)), sizeof(*var));
  133. if (!is_user)
  134. return {};
  135. Kernel::SmapDisabler disabler;
  136. return Kernel::safe_atomic_fetch_or_relaxed(var, val);
  137. }
  138. Optional<u32> user_atomic_fetch_xor_relaxed(volatile u32* var, u32 val)
  139. {
  140. if (FlatPtr(var) & 3)
  141. return {}; // not aligned!
  142. bool is_user = Kernel::Memory::is_user_range(VirtualAddress(FlatPtr(var)), sizeof(*var));
  143. if (!is_user)
  144. return {};
  145. Kernel::SmapDisabler disabler;
  146. return Kernel::safe_atomic_fetch_xor_relaxed(var, val);
  147. }
  148. ErrorOr<void> copy_to_user(void* dest_ptr, void const* src_ptr, size_t n)
  149. {
  150. if (!Kernel::Memory::is_user_range(VirtualAddress(dest_ptr), n))
  151. return EFAULT;
  152. VERIFY(!Kernel::Memory::is_user_range(VirtualAddress(src_ptr), n));
  153. Kernel::SmapDisabler disabler;
  154. void* fault_at;
  155. if (!Kernel::safe_memcpy(dest_ptr, src_ptr, n, fault_at)) {
  156. VERIFY(VirtualAddress(fault_at) >= VirtualAddress(dest_ptr) && VirtualAddress(fault_at) <= VirtualAddress((FlatPtr)dest_ptr + n));
  157. dbgln("copy_to_user({:p}, {:p}, {}) failed at {}", dest_ptr, src_ptr, n, VirtualAddress { fault_at });
  158. return EFAULT;
  159. }
  160. return {};
  161. }
  162. ErrorOr<void> copy_from_user(void* dest_ptr, void const* src_ptr, size_t n)
  163. {
  164. if (!Kernel::Memory::is_user_range(VirtualAddress(src_ptr), n))
  165. return EFAULT;
  166. VERIFY(!Kernel::Memory::is_user_range(VirtualAddress(dest_ptr), n));
  167. Kernel::SmapDisabler disabler;
  168. void* fault_at;
  169. if (!Kernel::safe_memcpy(dest_ptr, src_ptr, n, fault_at)) {
  170. VERIFY(VirtualAddress(fault_at) >= VirtualAddress(src_ptr) && VirtualAddress(fault_at) <= VirtualAddress((FlatPtr)src_ptr + n));
  171. dbgln("copy_from_user({:p}, {:p}, {}) failed at {}", dest_ptr, src_ptr, n, VirtualAddress { fault_at });
  172. return EFAULT;
  173. }
  174. return {};
  175. }
  176. ErrorOr<void> memset_user(void* dest_ptr, int c, size_t n)
  177. {
  178. bool is_user = Kernel::Memory::is_user_range(VirtualAddress(dest_ptr), n);
  179. if (!is_user)
  180. return EFAULT;
  181. Kernel::SmapDisabler disabler;
  182. void* fault_at;
  183. if (!Kernel::safe_memset(dest_ptr, c, n, fault_at)) {
  184. dbgln("memset_user({:p}, {}, {}) failed at {}", dest_ptr, c, n, VirtualAddress { fault_at });
  185. return EFAULT;
  186. }
  187. return {};
  188. }
  189. #if defined(__clang__) && defined(ENABLE_KERNEL_LTO)
  190. // Due to a chicken-and-egg situation, certain linker-defined symbols that are added on-demand (like the GOT)
  191. // need to be present before LTO bitcode files are compiled. And since we don't link to any native object files,
  192. // the linker does not know that _GLOBAL_OFFSET_TABLE_ is needed, so it doesn't define it, so linking as a PIE fails.
  193. // See https://bugs.llvm.org/show_bug.cgi?id=39634
  194. FlatPtr missing_got_workaround()
  195. {
  196. extern volatile FlatPtr _GLOBAL_OFFSET_TABLE_;
  197. return _GLOBAL_OFFSET_TABLE_;
  198. }
  199. #endif
  200. extern "C" {
  201. const void* memmem(const void* haystack, size_t haystack_length, const void* needle, size_t needle_length)
  202. {
  203. return AK::memmem(haystack, haystack_length, needle, needle_length);
  204. }
  205. size_t strnlen(const char* str, size_t maxlen)
  206. {
  207. size_t len = 0;
  208. for (; len < maxlen && *str; str++)
  209. len++;
  210. return len;
  211. }
  212. int strcmp(const char* s1, const char* s2)
  213. {
  214. for (; *s1 == *s2; ++s1, ++s2) {
  215. if (*s1 == 0)
  216. return 0;
  217. }
  218. return *(const u8*)s1 < *(const u8*)s2 ? -1 : 1;
  219. }
  220. int memcmp(const void* v1, const void* v2, size_t n)
  221. {
  222. auto* s1 = (const u8*)v1;
  223. auto* s2 = (const u8*)v2;
  224. while (n-- > 0) {
  225. if (*s1++ != *s2++)
  226. return s1[-1] < s2[-1] ? -1 : 1;
  227. }
  228. return 0;
  229. }
  230. int strncmp(const char* s1, const char* s2, size_t n)
  231. {
  232. if (!n)
  233. return 0;
  234. do {
  235. if (*s1 != *s2++)
  236. return *(const unsigned char*)s1 - *(const unsigned char*)--s2;
  237. if (*s1++ == 0)
  238. break;
  239. } while (--n);
  240. return 0;
  241. }
  242. char* strstr(const char* haystack, const char* needle)
  243. {
  244. char nch;
  245. char hch;
  246. if ((nch = *needle++) != 0) {
  247. size_t len = strlen(needle);
  248. do {
  249. do {
  250. if ((hch = *haystack++) == 0)
  251. return nullptr;
  252. } while (hch != nch);
  253. } while (strncmp(haystack, needle, len) != 0);
  254. --haystack;
  255. }
  256. return const_cast<char*>(haystack);
  257. }
  258. // Functions that are automatically called by the C++ compiler.
  259. // Declare them first, to tell the silly compiler that they are indeed being used.
  260. [[noreturn]] void __stack_chk_fail() __attribute__((used));
  261. [[noreturn]] void __stack_chk_fail_local() __attribute__((used));
  262. extern "C" int __cxa_atexit(void (*)(void*), void*, void*);
  263. [[noreturn]] void __cxa_pure_virtual();
  264. [[noreturn]] void __stack_chk_fail()
  265. {
  266. VERIFY_NOT_REACHED();
  267. }
  268. [[noreturn]] void __stack_chk_fail_local()
  269. {
  270. VERIFY_NOT_REACHED();
  271. }
  272. extern "C" int __cxa_atexit(void (*)(void*), void*, void*)
  273. {
  274. VERIFY_NOT_REACHED();
  275. return 0;
  276. }
  277. [[noreturn]] void __cxa_pure_virtual()
  278. {
  279. VERIFY_NOT_REACHED();
  280. }
  281. }