Scheduler.cpp 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628
  1. #include <AK/TemporaryChange.h>
  2. #include <Kernel/Arch/i386/PIT.h>
  3. #include <Kernel/Devices/PCSpeaker.h>
  4. #include <Kernel/FileSystem/FileDescription.h>
  5. #include <Kernel/Process.h>
  6. #include <Kernel/RTC.h>
  7. #include <Kernel/Scheduler.h>
  8. SchedulerData* g_scheduler_data;
  9. void Scheduler::init_thread(Thread& thread)
  10. {
  11. g_scheduler_data->m_nonrunnable_threads.append(thread);
  12. }
  13. void Scheduler::update_state_for_thread(Thread& thread)
  14. {
  15. auto& list = g_scheduler_data->thread_list_for_state(thread.state());
  16. if (list.contains(thread))
  17. return;
  18. list.append(thread);
  19. }
  20. //#define LOG_EVERY_CONTEXT_SWITCH
  21. //#define SCHEDULER_DEBUG
  22. //#define SCHEDULER_RUNNABLE_DEBUG
  23. static u32 time_slice_for(ThreadPriority priority)
  24. {
  25. // One time slice unit == 1ms
  26. switch (priority) {
  27. case ThreadPriority::High:
  28. return 50;
  29. case ThreadPriority::Normal:
  30. return 15;
  31. case ThreadPriority::Low:
  32. return 5;
  33. case ThreadPriority::Idle:
  34. return 1;
  35. }
  36. ASSERT_NOT_REACHED();
  37. }
  38. Thread* current;
  39. Thread* g_last_fpu_thread;
  40. Thread* g_finalizer;
  41. static Process* s_colonel_process;
  42. u64 g_uptime;
  43. static u64 s_beep_timeout;
  44. struct TaskRedirectionData {
  45. u16 selector;
  46. TSS32 tss;
  47. };
  48. static TaskRedirectionData s_redirection;
  49. static bool s_active;
  50. bool Scheduler::is_active()
  51. {
  52. return s_active;
  53. }
  54. void Scheduler::beep()
  55. {
  56. PCSpeaker::tone_on(440);
  57. s_beep_timeout = g_uptime + 100;
  58. }
  59. Thread::JoinBlocker::JoinBlocker(Thread& joinee, void*& joinee_exit_value)
  60. : m_joinee(joinee)
  61. , m_joinee_exit_value(joinee_exit_value)
  62. {
  63. ASSERT(m_joinee.m_joiner == nullptr);
  64. m_joinee.m_joiner = current;
  65. current->m_joinee = &joinee;
  66. }
  67. bool Thread::JoinBlocker::should_unblock(Thread& joiner, time_t, long)
  68. {
  69. return !joiner.m_joinee;
  70. }
  71. Thread::WaitQueueBlocker::WaitQueueBlocker(WaitQueue& queue)
  72. : m_queue(queue)
  73. {
  74. m_queue.enqueue(*current);
  75. }
  76. bool Thread::WaitQueueBlocker::should_unblock(Thread&, time_t, long)
  77. {
  78. // Someone else will have to unblock us by calling wake_one() or wake_all() on the queue.
  79. return false;
  80. }
  81. Thread::FileDescriptionBlocker::FileDescriptionBlocker(const FileDescription& description)
  82. : m_blocked_description(description)
  83. {
  84. }
  85. const FileDescription& Thread::FileDescriptionBlocker::blocked_description() const
  86. {
  87. return m_blocked_description;
  88. }
  89. Thread::AcceptBlocker::AcceptBlocker(const FileDescription& description)
  90. : FileDescriptionBlocker(description)
  91. {
  92. }
  93. bool Thread::AcceptBlocker::should_unblock(Thread&, time_t, long)
  94. {
  95. auto& socket = *blocked_description().socket();
  96. return socket.can_accept();
  97. }
  98. Thread::ReceiveBlocker::ReceiveBlocker(const FileDescription& description)
  99. : FileDescriptionBlocker(description)
  100. {
  101. }
  102. bool Thread::ReceiveBlocker::should_unblock(Thread&, time_t now_sec, long now_usec)
  103. {
  104. auto& socket = *blocked_description().socket();
  105. // FIXME: Block until the amount of data wanted is available.
  106. bool timed_out = now_sec > socket.receive_deadline().tv_sec || (now_sec == socket.receive_deadline().tv_sec && now_usec >= socket.receive_deadline().tv_usec);
  107. if (timed_out || blocked_description().can_read())
  108. return true;
  109. return false;
  110. }
  111. Thread::ConnectBlocker::ConnectBlocker(const FileDescription& description)
  112. : FileDescriptionBlocker(description)
  113. {
  114. }
  115. bool Thread::ConnectBlocker::should_unblock(Thread&, time_t, long)
  116. {
  117. auto& socket = *blocked_description().socket();
  118. return socket.setup_state() == Socket::SetupState::Completed;
  119. }
  120. Thread::WriteBlocker::WriteBlocker(const FileDescription& description)
  121. : FileDescriptionBlocker(description)
  122. {
  123. }
  124. bool Thread::WriteBlocker::should_unblock(Thread&, time_t, long)
  125. {
  126. return blocked_description().can_write();
  127. }
  128. Thread::ReadBlocker::ReadBlocker(const FileDescription& description)
  129. : FileDescriptionBlocker(description)
  130. {
  131. }
  132. bool Thread::ReadBlocker::should_unblock(Thread&, time_t, long)
  133. {
  134. // FIXME: Block until the amount of data wanted is available.
  135. return blocked_description().can_read();
  136. }
  137. Thread::ConditionBlocker::ConditionBlocker(const char* state_string, Function<bool()>&& condition)
  138. : m_block_until_condition(move(condition))
  139. , m_state_string(state_string)
  140. {
  141. ASSERT(m_block_until_condition);
  142. }
  143. bool Thread::ConditionBlocker::should_unblock(Thread&, time_t, long)
  144. {
  145. return m_block_until_condition();
  146. }
  147. Thread::SleepBlocker::SleepBlocker(u64 wakeup_time)
  148. : m_wakeup_time(wakeup_time)
  149. {
  150. }
  151. bool Thread::SleepBlocker::should_unblock(Thread&, time_t, long)
  152. {
  153. return m_wakeup_time <= g_uptime;
  154. }
  155. Thread::SelectBlocker::SelectBlocker(const timeval& tv, bool select_has_timeout, const FDVector& read_fds, const FDVector& write_fds, const FDVector& except_fds)
  156. : m_select_timeout(tv)
  157. , m_select_has_timeout(select_has_timeout)
  158. , m_select_read_fds(read_fds)
  159. , m_select_write_fds(write_fds)
  160. , m_select_exceptional_fds(except_fds)
  161. {
  162. }
  163. bool Thread::SelectBlocker::should_unblock(Thread& thread, time_t now_sec, long now_usec)
  164. {
  165. if (m_select_has_timeout) {
  166. if (now_sec > m_select_timeout.tv_sec || (now_sec == m_select_timeout.tv_sec && now_usec >= m_select_timeout.tv_usec))
  167. return true;
  168. }
  169. auto& process = thread.process();
  170. for (int fd : m_select_read_fds) {
  171. if (process.m_fds[fd].description->can_read())
  172. return true;
  173. }
  174. for (int fd : m_select_write_fds) {
  175. if (process.m_fds[fd].description->can_write())
  176. return true;
  177. }
  178. return false;
  179. }
  180. Thread::WaitBlocker::WaitBlocker(int wait_options, pid_t& waitee_pid)
  181. : m_wait_options(wait_options)
  182. , m_waitee_pid(waitee_pid)
  183. {
  184. }
  185. bool Thread::WaitBlocker::should_unblock(Thread& thread, time_t, long)
  186. {
  187. bool should_unblock = false;
  188. if (m_waitee_pid != -1) {
  189. auto* peer = Process::from_pid(m_waitee_pid);
  190. if (!peer)
  191. return true;
  192. }
  193. thread.process().for_each_child([&](Process& child) {
  194. if (m_waitee_pid != -1 && m_waitee_pid != child.pid())
  195. return IterationDecision::Continue;
  196. bool child_exited = child.is_dead();
  197. bool child_stopped = child.main_thread().state() == Thread::State::Stopped;
  198. bool wait_finished = ((m_wait_options & WEXITED) && child_exited)
  199. || ((m_wait_options & WSTOPPED) && child_stopped);
  200. if (!wait_finished)
  201. return IterationDecision::Continue;
  202. m_waitee_pid = child.pid();
  203. should_unblock = true;
  204. return IterationDecision::Break;
  205. });
  206. return should_unblock;
  207. }
  208. Thread::SemiPermanentBlocker::SemiPermanentBlocker(Reason reason)
  209. : m_reason(reason)
  210. {
  211. }
  212. bool Thread::SemiPermanentBlocker::should_unblock(Thread&, time_t, long)
  213. {
  214. // someone else has to unblock us
  215. return false;
  216. }
  217. // Called by the scheduler on threads that are blocked for some reason.
  218. // Make a decision as to whether to unblock them or not.
  219. void Thread::consider_unblock(time_t now_sec, long now_usec)
  220. {
  221. switch (state()) {
  222. case Thread::Invalid:
  223. case Thread::Runnable:
  224. case Thread::Running:
  225. case Thread::Dead:
  226. case Thread::Stopped:
  227. /* don't know, don't care */
  228. return;
  229. case Thread::Blocked:
  230. ASSERT(m_blocker != nullptr);
  231. if (m_blocker->should_unblock(*this, now_sec, now_usec))
  232. unblock();
  233. return;
  234. case Thread::Skip1SchedulerPass:
  235. set_state(Thread::Skip0SchedulerPasses);
  236. return;
  237. case Thread::Skip0SchedulerPasses:
  238. set_state(Thread::Runnable);
  239. return;
  240. case Thread::Dying:
  241. ASSERT(g_finalizer);
  242. if (g_finalizer->is_blocked())
  243. g_finalizer->unblock();
  244. return;
  245. }
  246. }
  247. bool Scheduler::pick_next()
  248. {
  249. ASSERT_INTERRUPTS_DISABLED();
  250. ASSERT(!s_active);
  251. TemporaryChange<bool> change(s_active, true);
  252. ASSERT(s_active);
  253. if (!current) {
  254. // XXX: The first ever context_switch() goes to the idle process.
  255. // This to setup a reliable place we can return to.
  256. return context_switch(s_colonel_process->main_thread());
  257. }
  258. struct timeval now;
  259. kgettimeofday(now);
  260. auto now_sec = now.tv_sec;
  261. auto now_usec = now.tv_usec;
  262. // Check and unblock threads whose wait conditions have been met.
  263. Scheduler::for_each_nonrunnable([&](Thread& thread) {
  264. thread.consider_unblock(now_sec, now_usec);
  265. return IterationDecision::Continue;
  266. });
  267. Process::for_each([&](Process& process) {
  268. if (process.is_dead()) {
  269. if (current != &process.main_thread() && (!process.ppid() || !Process::from_pid(process.ppid()))) {
  270. auto name = process.name();
  271. auto pid = process.pid();
  272. auto exit_status = Process::reap(process);
  273. dbgprintf("reaped unparented process %s(%u), exit status: %u\n", name.characters(), pid, exit_status);
  274. }
  275. return IterationDecision::Continue;
  276. }
  277. if (process.m_alarm_deadline && g_uptime > process.m_alarm_deadline) {
  278. process.m_alarm_deadline = 0;
  279. process.send_signal(SIGALRM, nullptr);
  280. }
  281. return IterationDecision::Continue;
  282. });
  283. // Dispatch any pending signals.
  284. // FIXME: Do we really need this to be a separate pass over the process list?
  285. Thread::for_each_living([](Thread& thread) -> IterationDecision {
  286. if (!thread.has_unmasked_pending_signals())
  287. return IterationDecision::Continue;
  288. // FIXME: It would be nice if the Scheduler didn't have to worry about who is "current"
  289. // For now, avoid dispatching signals to "current" and do it in a scheduling pass
  290. // while some other process is interrupted. Otherwise a mess will be made.
  291. if (&thread == current)
  292. return IterationDecision::Continue;
  293. // We know how to interrupt blocked processes, but if they are just executing
  294. // at some random point in the kernel, let them continue. They'll be in userspace
  295. // sooner or later and we can deliver the signal then.
  296. // FIXME: Maybe we could check when returning from a syscall if there's a pending
  297. // signal and dispatch it then and there? Would that be doable without the
  298. // syscall effectively being "interrupted" despite having completed?
  299. if (thread.in_kernel() && !thread.is_blocked() && !thread.is_stopped())
  300. return IterationDecision::Continue;
  301. // NOTE: dispatch_one_pending_signal() may unblock the process.
  302. bool was_blocked = thread.is_blocked();
  303. if (thread.dispatch_one_pending_signal() == ShouldUnblockThread::No)
  304. return IterationDecision::Continue;
  305. if (was_blocked) {
  306. dbgprintf("Unblock %s(%u) due to signal\n", thread.process().name().characters(), thread.pid());
  307. ASSERT(thread.m_blocker != nullptr);
  308. thread.m_blocker->set_interrupted_by_signal();
  309. thread.unblock();
  310. }
  311. return IterationDecision::Continue;
  312. });
  313. #ifdef SCHEDULER_RUNNABLE_DEBUG
  314. dbgprintf("Non-runnables:\n");
  315. Scheduler::for_each_nonrunnable([](Thread& thread) -> IterationDecision {
  316. auto& process = thread.process();
  317. dbgprintf("[K%x] %-12s %s(%u:%u) @ %w:%x\n", &process, thread.state_string(), process.name().characters(), process.pid(), thread.tid(), thread.tss().cs, thread.tss().eip);
  318. return IterationDecision::Continue;
  319. });
  320. dbgprintf("Runnables:\n");
  321. Scheduler::for_each_runnable([](Thread& thread) -> IterationDecision {
  322. auto& process = thread.process();
  323. dbgprintf("[K%x] %-12s %s(%u:%u) @ %w:%x\n", &process, thread.state_string(), process.name().characters(), process.pid(), thread.tid(), thread.tss().cs, thread.tss().eip);
  324. return IterationDecision::Continue;
  325. });
  326. #endif
  327. auto& runnable_list = g_scheduler_data->m_runnable_threads;
  328. if (runnable_list.is_empty())
  329. return context_switch(s_colonel_process->main_thread());
  330. auto* previous_head = runnable_list.first();
  331. for (;;) {
  332. // Move head to tail.
  333. runnable_list.append(*runnable_list.first());
  334. auto* thread = runnable_list.first();
  335. if (!thread->process().is_being_inspected() && (thread->state() == Thread::Runnable || thread->state() == Thread::Running)) {
  336. #ifdef SCHEDULER_DEBUG
  337. dbgprintf("switch to %s(%u:%u) @ %w:%x\n", thread->process().name().characters(), thread->process().pid(), thread->tid(), thread->tss().cs, thread->tss().eip);
  338. #endif
  339. return context_switch(*thread);
  340. }
  341. if (thread == previous_head) {
  342. // Back at process_head, nothing wants to run. Send in the colonel!
  343. return context_switch(s_colonel_process->main_thread());
  344. }
  345. }
  346. }
  347. bool Scheduler::donate_to(Thread* beneficiary, const char* reason)
  348. {
  349. InterruptDisabler disabler;
  350. if (!Thread::is_thread(beneficiary))
  351. return false;
  352. (void)reason;
  353. unsigned ticks_left = current->ticks_left();
  354. if (!beneficiary || beneficiary->state() != Thread::Runnable || ticks_left <= 1)
  355. return yield();
  356. unsigned ticks_to_donate = min(ticks_left - 1, time_slice_for(beneficiary->priority()));
  357. #ifdef SCHEDULER_DEBUG
  358. dbgprintf("%s(%u:%u) donating %u ticks to %s(%u:%u), reason=%s\n", current->process().name().characters(), current->pid(), current->tid(), ticks_to_donate, beneficiary->process().name().characters(), beneficiary->pid(), beneficiary->tid(), reason);
  359. #endif
  360. context_switch(*beneficiary);
  361. beneficiary->set_ticks_left(ticks_to_donate);
  362. switch_now();
  363. return false;
  364. }
  365. bool Scheduler::yield()
  366. {
  367. InterruptDisabler disabler;
  368. ASSERT(current);
  369. // dbgprintf("%s(%u:%u) yield()\n", current->process().name().characters(), current->pid(), current->tid());
  370. if (!pick_next())
  371. return false;
  372. // dbgprintf("yield() jumping to new process: sel=%x, %s(%u:%u)\n", current->far_ptr().selector, current->process().name().characters(), current->pid(), current->tid());
  373. switch_now();
  374. return true;
  375. }
  376. void Scheduler::pick_next_and_switch_now()
  377. {
  378. bool someone_wants_to_run = pick_next();
  379. ASSERT(someone_wants_to_run);
  380. switch_now();
  381. }
  382. void Scheduler::switch_now()
  383. {
  384. Descriptor& descriptor = get_gdt_entry(current->selector());
  385. descriptor.type = 9;
  386. flush_gdt();
  387. asm("sti\n"
  388. "ljmp *(%%eax)\n" ::"a"(&current->far_ptr()));
  389. }
  390. bool Scheduler::context_switch(Thread& thread)
  391. {
  392. thread.set_ticks_left(time_slice_for(thread.priority()));
  393. thread.did_schedule();
  394. if (current == &thread)
  395. return false;
  396. if (current) {
  397. // If the last process hasn't blocked (still marked as running),
  398. // mark it as runnable for the next round.
  399. if (current->state() == Thread::Running)
  400. current->set_state(Thread::Runnable);
  401. #ifdef LOG_EVERY_CONTEXT_SWITCH
  402. dbgprintf("Scheduler: %s(%u:%u) -> %s(%u:%u) %w:%x\n",
  403. current->process().name().characters(), current->process().pid(), current->tid(),
  404. thread.process().name().characters(), thread.process().pid(), thread.tid(),
  405. thread.tss().cs, thread.tss().eip);
  406. #endif
  407. }
  408. current = &thread;
  409. thread.set_state(Thread::Running);
  410. if (!thread.selector()) {
  411. thread.set_selector(gdt_alloc_entry());
  412. auto& descriptor = get_gdt_entry(thread.selector());
  413. descriptor.set_base(&thread.tss());
  414. descriptor.set_limit(0xffff);
  415. descriptor.dpl = 0;
  416. descriptor.segment_present = 1;
  417. descriptor.granularity = 1;
  418. descriptor.zero = 0;
  419. descriptor.operation_size = 1;
  420. descriptor.descriptor_type = 0;
  421. }
  422. if (!thread.thread_specific_data().is_null()) {
  423. auto& descriptor = thread_specific_descriptor();
  424. descriptor.set_base(thread.thread_specific_data().as_ptr());
  425. descriptor.set_limit(sizeof(ThreadSpecificData*));
  426. }
  427. auto& descriptor = get_gdt_entry(thread.selector());
  428. descriptor.type = 11; // Busy TSS
  429. flush_gdt();
  430. return true;
  431. }
  432. static void initialize_redirection()
  433. {
  434. auto& descriptor = get_gdt_entry(s_redirection.selector);
  435. descriptor.set_base(&s_redirection.tss);
  436. descriptor.set_limit(0xffff);
  437. descriptor.dpl = 0;
  438. descriptor.segment_present = 1;
  439. descriptor.granularity = 1;
  440. descriptor.zero = 0;
  441. descriptor.operation_size = 1;
  442. descriptor.descriptor_type = 0;
  443. descriptor.type = 9;
  444. flush_gdt();
  445. }
  446. void Scheduler::prepare_for_iret_to_new_process()
  447. {
  448. auto& descriptor = get_gdt_entry(s_redirection.selector);
  449. descriptor.type = 9;
  450. s_redirection.tss.backlink = current->selector();
  451. load_task_register(s_redirection.selector);
  452. }
  453. void Scheduler::prepare_to_modify_tss(Thread& thread)
  454. {
  455. // This ensures that a currently running process modifying its own TSS
  456. // in order to yield() and end up somewhere else doesn't just end up
  457. // right after the yield().
  458. if (current == &thread)
  459. load_task_register(s_redirection.selector);
  460. }
  461. Process* Scheduler::colonel()
  462. {
  463. return s_colonel_process;
  464. }
  465. void Scheduler::initialize()
  466. {
  467. g_scheduler_data = new SchedulerData;
  468. s_redirection.selector = gdt_alloc_entry();
  469. initialize_redirection();
  470. s_colonel_process = Process::create_kernel_process("colonel", nullptr);
  471. // Make sure the colonel uses a smallish time slice.
  472. s_colonel_process->main_thread().set_priority(ThreadPriority::Idle);
  473. load_task_register(s_redirection.selector);
  474. }
  475. void Scheduler::timer_tick(RegisterDump& regs)
  476. {
  477. if (!current)
  478. return;
  479. ++g_uptime;
  480. if (s_beep_timeout && g_uptime > s_beep_timeout) {
  481. PCSpeaker::tone_off();
  482. s_beep_timeout = 0;
  483. }
  484. if (current->tick())
  485. return;
  486. auto& outgoing_tss = current->tss();
  487. if (!pick_next())
  488. return;
  489. outgoing_tss.gs = regs.gs;
  490. outgoing_tss.fs = regs.fs;
  491. outgoing_tss.es = regs.es;
  492. outgoing_tss.ds = regs.ds;
  493. outgoing_tss.edi = regs.edi;
  494. outgoing_tss.esi = regs.esi;
  495. outgoing_tss.ebp = regs.ebp;
  496. outgoing_tss.ebx = regs.ebx;
  497. outgoing_tss.edx = regs.edx;
  498. outgoing_tss.ecx = regs.ecx;
  499. outgoing_tss.eax = regs.eax;
  500. outgoing_tss.eip = regs.eip;
  501. outgoing_tss.cs = regs.cs;
  502. outgoing_tss.eflags = regs.eflags;
  503. // Compute process stack pointer.
  504. // Add 16 for CS, EIP, EFLAGS, exception code (interrupt mechanic)
  505. outgoing_tss.esp = regs.esp + 16;
  506. outgoing_tss.ss = regs.ss;
  507. if ((outgoing_tss.cs & 3) != 0) {
  508. outgoing_tss.ss = regs.ss_if_crossRing;
  509. outgoing_tss.esp = regs.esp_if_crossRing;
  510. }
  511. prepare_for_iret_to_new_process();
  512. // Set the NT (nested task) flag.
  513. asm(
  514. "pushf\n"
  515. "orl $0x00004000, (%esp)\n"
  516. "popf\n");
  517. }
  518. static bool s_should_stop_idling = false;
  519. void Scheduler::stop_idling()
  520. {
  521. if (current != &s_colonel_process->main_thread())
  522. return;
  523. s_should_stop_idling = true;
  524. }
  525. void Scheduler::idle_loop()
  526. {
  527. for (;;) {
  528. asm("hlt");
  529. if (s_should_stop_idling) {
  530. s_should_stop_idling = false;
  531. yield();
  532. }
  533. }
  534. }