MathObject.cpp 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627
  1. /*
  2. * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2020-2022, Linus Groh <linusg@serenityos.org>
  4. * Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org>
  5. *
  6. * SPDX-License-Identifier: BSD-2-Clause
  7. */
  8. #include <AK/BuiltinWrappers.h>
  9. #include <AK/Function.h>
  10. #include <AK/Random.h>
  11. #include <LibJS/Runtime/GlobalObject.h>
  12. #include <LibJS/Runtime/MathObject.h>
  13. #include <math.h>
  14. namespace JS {
  15. MathObject::MathObject(Realm& realm)
  16. : Object(*realm.intrinsics().object_prototype())
  17. {
  18. }
  19. void MathObject::initialize(Realm& realm)
  20. {
  21. auto& vm = this->vm();
  22. Object::initialize(realm);
  23. u8 attr = Attribute::Writable | Attribute::Configurable;
  24. define_native_function(realm, vm.names.abs, abs, 1, attr);
  25. define_native_function(realm, vm.names.random, random, 0, attr);
  26. define_native_function(realm, vm.names.sqrt, sqrt, 1, attr);
  27. define_native_function(realm, vm.names.floor, floor, 1, attr);
  28. define_native_function(realm, vm.names.ceil, ceil, 1, attr);
  29. define_native_function(realm, vm.names.round, round, 1, attr);
  30. define_native_function(realm, vm.names.max, max, 2, attr);
  31. define_native_function(realm, vm.names.min, min, 2, attr);
  32. define_native_function(realm, vm.names.trunc, trunc, 1, attr);
  33. define_native_function(realm, vm.names.sin, sin, 1, attr);
  34. define_native_function(realm, vm.names.cos, cos, 1, attr);
  35. define_native_function(realm, vm.names.tan, tan, 1, attr);
  36. define_native_function(realm, vm.names.pow, pow, 2, attr);
  37. define_native_function(realm, vm.names.exp, exp, 1, attr);
  38. define_native_function(realm, vm.names.expm1, expm1, 1, attr);
  39. define_native_function(realm, vm.names.sign, sign, 1, attr);
  40. define_native_function(realm, vm.names.clz32, clz32, 1, attr);
  41. define_native_function(realm, vm.names.acos, acos, 1, attr);
  42. define_native_function(realm, vm.names.acosh, acosh, 1, attr);
  43. define_native_function(realm, vm.names.asin, asin, 1, attr);
  44. define_native_function(realm, vm.names.asinh, asinh, 1, attr);
  45. define_native_function(realm, vm.names.atan, atan, 1, attr);
  46. define_native_function(realm, vm.names.atanh, atanh, 1, attr);
  47. define_native_function(realm, vm.names.log1p, log1p, 1, attr);
  48. define_native_function(realm, vm.names.cbrt, cbrt, 1, attr);
  49. define_native_function(realm, vm.names.atan2, atan2, 2, attr);
  50. define_native_function(realm, vm.names.fround, fround, 1, attr);
  51. define_native_function(realm, vm.names.hypot, hypot, 2, attr);
  52. define_native_function(realm, vm.names.imul, imul, 2, attr);
  53. define_native_function(realm, vm.names.log, log, 1, attr);
  54. define_native_function(realm, vm.names.log2, log2, 1, attr);
  55. define_native_function(realm, vm.names.log10, log10, 1, attr);
  56. define_native_function(realm, vm.names.sinh, sinh, 1, attr);
  57. define_native_function(realm, vm.names.cosh, cosh, 1, attr);
  58. define_native_function(realm, vm.names.tanh, tanh, 1, attr);
  59. // 21.3.1 Value Properties of the Math Object, https://tc39.es/ecma262/#sec-value-properties-of-the-math-object
  60. define_direct_property(vm.names.E, Value(M_E), 0);
  61. define_direct_property(vm.names.LN2, Value(M_LN2), 0);
  62. define_direct_property(vm.names.LN10, Value(M_LN10), 0);
  63. define_direct_property(vm.names.LOG2E, Value(::log2(M_E)), 0);
  64. define_direct_property(vm.names.LOG10E, Value(::log10(M_E)), 0);
  65. define_direct_property(vm.names.PI, Value(M_PI), 0);
  66. define_direct_property(vm.names.SQRT1_2, Value(M_SQRT1_2), 0);
  67. define_direct_property(vm.names.SQRT2, Value(M_SQRT2), 0);
  68. // 21.3.1.9 Math [ @@toStringTag ], https://tc39.es/ecma262/#sec-math-@@tostringtag
  69. define_direct_property(*vm.well_known_symbol_to_string_tag(), js_string(vm, vm.names.Math.as_string()), Attribute::Configurable);
  70. }
  71. // 21.3.2.1 Math.abs ( x ), https://tc39.es/ecma262/#sec-math.abs
  72. JS_DEFINE_NATIVE_FUNCTION(MathObject::abs)
  73. {
  74. auto number = TRY(vm.argument(0).to_number(vm));
  75. if (number.is_nan())
  76. return js_nan();
  77. if (number.is_negative_zero())
  78. return Value(0);
  79. if (number.is_negative_infinity())
  80. return js_infinity();
  81. return Value(number.as_double() < 0 ? -number.as_double() : number.as_double());
  82. }
  83. // 21.3.2.27 Math.random ( ), https://tc39.es/ecma262/#sec-math.random
  84. JS_DEFINE_NATIVE_FUNCTION(MathObject::random)
  85. {
  86. double r = (double)get_random<u32>() / (double)UINT32_MAX;
  87. return Value(r);
  88. }
  89. // 21.3.2.32 Math.sqrt ( x ), https://tc39.es/ecma262/#sec-math.sqrt
  90. JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
  91. {
  92. auto number = TRY(vm.argument(0).to_number(vm));
  93. if (number.is_nan())
  94. return js_nan();
  95. return Value(::sqrt(number.as_double()));
  96. }
  97. // 21.3.2.16 Math.floor ( x ), https://tc39.es/ecma262/#sec-math.floor
  98. JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
  99. {
  100. auto number = TRY(vm.argument(0).to_number(vm));
  101. if (number.is_nan())
  102. return js_nan();
  103. return Value(::floor(number.as_double()));
  104. }
  105. // 21.3.2.10 Math.ceil ( x ), https://tc39.es/ecma262/#sec-math.ceil
  106. JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
  107. {
  108. auto number = TRY(vm.argument(0).to_number(vm));
  109. if (number.is_nan())
  110. return js_nan();
  111. auto number_double = number.as_double();
  112. if (number_double < 0 && number_double > -1)
  113. return Value(-0.f);
  114. return Value(::ceil(number.as_double()));
  115. }
  116. // 21.3.2.28 Math.round ( x ), https://tc39.es/ecma262/#sec-math.round
  117. JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
  118. {
  119. auto value = TRY(vm.argument(0).to_number(vm)).as_double();
  120. double integer = ::ceil(value);
  121. if (integer - 0.5 > value)
  122. integer--;
  123. return Value(integer);
  124. }
  125. // 21.3.2.24 Math.max ( ...args ), https://tc39.es/ecma262/#sec-math.max
  126. JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
  127. {
  128. Vector<Value> coerced;
  129. for (size_t i = 0; i < vm.argument_count(); ++i)
  130. coerced.append(TRY(vm.argument(i).to_number(vm)));
  131. auto highest = js_negative_infinity();
  132. for (auto& number : coerced) {
  133. if (number.is_nan())
  134. return js_nan();
  135. if ((number.is_positive_zero() && highest.is_negative_zero()) || number.as_double() > highest.as_double())
  136. highest = number;
  137. }
  138. return highest;
  139. }
  140. // 21.3.2.25 Math.min ( ...args ), https://tc39.es/ecma262/#sec-math.min
  141. JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
  142. {
  143. Vector<Value> coerced;
  144. for (size_t i = 0; i < vm.argument_count(); ++i)
  145. coerced.append(TRY(vm.argument(i).to_number(vm)));
  146. auto lowest = js_infinity();
  147. for (auto& number : coerced) {
  148. if (number.is_nan())
  149. return js_nan();
  150. if ((number.is_negative_zero() && lowest.is_positive_zero()) || number.as_double() < lowest.as_double())
  151. lowest = number;
  152. }
  153. return lowest;
  154. }
  155. // 21.3.2.35 Math.trunc ( x ), https://tc39.es/ecma262/#sec-math.trunc
  156. JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
  157. {
  158. auto number = TRY(vm.argument(0).to_number(vm));
  159. if (number.is_nan())
  160. return js_nan();
  161. if (number.as_double() < 0)
  162. return MathObject::ceil(vm);
  163. return MathObject::floor(vm);
  164. }
  165. // 21.3.2.30 Math.sin ( x ), https://tc39.es/ecma262/#sec-math.sin
  166. JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
  167. {
  168. // 1. Let n be ? ToNumber(x).
  169. auto number = TRY(vm.argument(0).to_number(vm));
  170. // 2. If n is NaN, n is +0𝔽, or n is -0𝔽, return n.
  171. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  172. return number;
  173. // 3. If n is +∞𝔽 or n is -∞𝔽, return NaN.
  174. if (number.is_infinity())
  175. return js_nan();
  176. // 4. Return an implementation-approximated Number value representing the result of the sine of ℝ(n).
  177. return Value(::sin(number.as_double()));
  178. }
  179. // 21.3.2.12 Math.cos ( x ), https://tc39.es/ecma262/#sec-math.cos
  180. JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
  181. {
  182. // 1. Let n be ? ToNumber(x).
  183. auto number = TRY(vm.argument(0).to_number(vm));
  184. // 2. If n is NaN, n is +∞𝔽, or n is -∞𝔽, return NaN.
  185. if (number.is_nan() || number.is_infinity())
  186. return js_nan();
  187. // 3. If n is +0𝔽 or n is -0𝔽, return 1𝔽.
  188. if (number.is_positive_zero() || number.is_negative_zero())
  189. return Value(1);
  190. // 4. Return an implementation-approximated Number value representing the result of the cosine of ℝ(n).
  191. return Value(::cos(number.as_double()));
  192. }
  193. // 21.3.2.33 Math.tan ( x ), https://tc39.es/ecma262/#sec-math.tan
  194. JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
  195. {
  196. // Let n be ? ToNumber(x).
  197. auto number = TRY(vm.argument(0).to_number(vm));
  198. // 2. If n is NaN, n is +0𝔽, or n is -0𝔽, return n.
  199. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  200. return number;
  201. // 3. If n is +∞𝔽, or n is -∞𝔽, return NaN.
  202. if (number.is_infinity())
  203. return js_nan();
  204. // 4. Return an implementation-approximated Number value representing the result of the tangent of ℝ(n).
  205. return Value(::tan(number.as_double()));
  206. }
  207. // 21.3.2.26 Math.pow ( base, exponent ), https://tc39.es/ecma262/#sec-math.pow
  208. JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
  209. {
  210. auto base = TRY(vm.argument(0).to_number(vm));
  211. auto exponent = TRY(vm.argument(1).to_number(vm));
  212. return JS::exp(vm, base, exponent);
  213. }
  214. // 21.3.2.14 Math.exp ( x ), https://tc39.es/ecma262/#sec-math.exp
  215. JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
  216. {
  217. auto number = TRY(vm.argument(0).to_number(vm));
  218. if (number.is_nan())
  219. return js_nan();
  220. return Value(::exp(number.as_double()));
  221. }
  222. // 21.3.2.15 Math.expm1 ( x ), https://tc39.es/ecma262/#sec-math.expm1
  223. JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
  224. {
  225. auto number = TRY(vm.argument(0).to_number(vm));
  226. if (number.is_nan())
  227. return js_nan();
  228. return Value(::expm1(number.as_double()));
  229. }
  230. // 21.3.2.29 Math.sign ( x ), https://tc39.es/ecma262/#sec-math.sign
  231. JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
  232. {
  233. auto number = TRY(vm.argument(0).to_number(vm));
  234. if (number.is_positive_zero())
  235. return Value(0);
  236. if (number.is_negative_zero())
  237. return Value(-0.0);
  238. if (number.as_double() > 0)
  239. return Value(1);
  240. if (number.as_double() < 0)
  241. return Value(-1);
  242. return js_nan();
  243. }
  244. // 21.3.2.11 Math.clz32 ( x ), https://tc39.es/ecma262/#sec-math.clz32
  245. JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
  246. {
  247. auto number = TRY(vm.argument(0).to_u32(vm));
  248. if (number == 0)
  249. return Value(32);
  250. return Value(count_leading_zeroes(number));
  251. }
  252. // 21.3.2.2 Math.acos ( x ), https://tc39.es/ecma262/#sec-math.acos
  253. JS_DEFINE_NATIVE_FUNCTION(MathObject::acos)
  254. {
  255. auto number = TRY(vm.argument(0).to_number(vm));
  256. if (number.is_nan() || number.as_double() > 1 || number.as_double() < -1)
  257. return js_nan();
  258. if (number.as_double() == 1)
  259. return Value(0);
  260. return Value(::acos(number.as_double()));
  261. }
  262. // 21.3.2.3 Math.acosh ( x ), https://tc39.es/ecma262/#sec-math.acosh
  263. JS_DEFINE_NATIVE_FUNCTION(MathObject::acosh)
  264. {
  265. // 1. Let n be ? ToNumber(x).
  266. auto number = TRY(vm.argument(0).to_number(vm));
  267. // 2. If n is NaN or n is +∞𝔽, return n.
  268. if (number.is_nan() || number.is_positive_infinity())
  269. return number;
  270. // 3. If n is 1𝔽, return +0𝔽.
  271. if (number.as_double() == 1.0)
  272. return Value(0.0);
  273. // 4. If n < 1𝔽, return NaN.
  274. if (number.as_double() < 1)
  275. return js_nan();
  276. // 5. Return an implementation-approximated Number value representing the result of the inverse hyperbolic cosine of ℝ(n).
  277. return Value(::acosh(number.as_double()));
  278. }
  279. // 21.3.2.4 Math.asin ( x ), https://tc39.es/ecma262/#sec-math.asin
  280. JS_DEFINE_NATIVE_FUNCTION(MathObject::asin)
  281. {
  282. // 1. Let n be ? ToNumber(x).
  283. auto number = TRY(vm.argument(0).to_number(vm));
  284. // 2. If n is NaN, n is +0𝔽, or n is -0𝔽, return n.
  285. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  286. return number;
  287. // 3. If n > 1𝔽 or n < -1𝔽, return NaN.
  288. if (number.as_double() > 1 || number.as_double() < -1)
  289. return js_nan();
  290. // 4. Return an implementation-approximated Number value representing the result of the inverse sine of ℝ(n).
  291. return Value(::asin(number.as_double()));
  292. }
  293. // 21.3.2.5 Math.asinh ( x ), https://tc39.es/ecma262/#sec-math.asinh
  294. JS_DEFINE_NATIVE_FUNCTION(MathObject::asinh)
  295. {
  296. // 1. Let n be ? ToNumber(x).
  297. auto number = TRY(vm.argument(0).to_number(vm));
  298. // 2. If n is not finite or n is either +0𝔽 or -0𝔽, return n.
  299. if (!number.is_finite_number() || number.is_positive_zero() || number.is_negative_zero())
  300. return number;
  301. // 3. Return an implementation-approximated Number value representing the result of the inverse hyperbolic sine of ℝ(n).
  302. return Value(::asinh(number.as_double()));
  303. }
  304. // 21.3.2.6 Math.atan ( x ), https://tc39.es/ecma262/#sec-math.atan
  305. JS_DEFINE_NATIVE_FUNCTION(MathObject::atan)
  306. {
  307. auto number = TRY(vm.argument(0).to_number(vm));
  308. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  309. return number;
  310. if (number.is_positive_infinity())
  311. return Value(M_PI_2);
  312. if (number.is_negative_infinity())
  313. return Value(-M_PI_2);
  314. return Value(::atan(number.as_double()));
  315. }
  316. // 21.3.2.7 Math.atanh ( x ), https://tc39.es/ecma262/#sec-math.atanh
  317. JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh)
  318. {
  319. // 1. Let n be ? ToNumber(x).
  320. auto number = TRY(vm.argument(0).to_number(vm));
  321. // 2. If n is NaN, n is +0𝔽, or n is -0𝔽, return n.
  322. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  323. return number;
  324. // 3. If n > 1𝔽 or n < -1𝔽, return NaN.
  325. if (number.as_double() > 1. || number.as_double() < -1.)
  326. return js_nan();
  327. // 4. If n is 1𝔽, return +∞𝔽.
  328. if (number.as_double() == 1.)
  329. return js_infinity();
  330. // 5. If n is -1𝔽, return -∞𝔽.
  331. if (number.as_double() == -1.)
  332. return js_negative_infinity();
  333. // 6. Return an implementation-approximated Number value representing the result of the inverse hyperbolic tangent of ℝ(n).
  334. return Value(::atanh(number.as_double()));
  335. }
  336. // 21.3.2.21 Math.log1p ( x ), https://tc39.es/ecma262/#sec-math.log1p
  337. JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p)
  338. {
  339. // 1. Let n be ? ToNumber(x).
  340. auto number = TRY(vm.argument(0).to_number(vm));
  341. // 2. If n is NaN, n is +0𝔽, n is -0𝔽, or n is +∞𝔽, return n.
  342. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero() || number.is_positive_infinity())
  343. return number;
  344. // 3. If n is -1𝔽, return -∞𝔽.
  345. if (number.as_double() == -1.)
  346. return js_negative_infinity();
  347. // 4. If n < -1𝔽, return NaN.
  348. if (number.as_double() < -1.)
  349. return js_nan();
  350. // 5. Return an implementation-approximated Number value representing the result of the natural logarithm of 1 + ℝ(n).
  351. return Value(::log1p(number.as_double()));
  352. }
  353. // 21.3.2.9 Math.cbrt ( x ), https://tc39.es/ecma262/#sec-math.cbrt
  354. JS_DEFINE_NATIVE_FUNCTION(MathObject::cbrt)
  355. {
  356. return Value(::cbrt(TRY(vm.argument(0).to_number(vm)).as_double()));
  357. }
  358. // 21.3.2.8 Math.atan2 ( y, x ), https://tc39.es/ecma262/#sec-math.atan2
  359. JS_DEFINE_NATIVE_FUNCTION(MathObject::atan2)
  360. {
  361. auto constexpr three_quarters_pi = M_PI_4 + M_PI_2;
  362. auto y = TRY(vm.argument(0).to_number(vm));
  363. auto x = TRY(vm.argument(1).to_number(vm));
  364. if (y.is_nan() || x.is_nan())
  365. return js_nan();
  366. if (y.is_positive_infinity()) {
  367. if (x.is_positive_infinity())
  368. return Value(M_PI_4);
  369. else if (x.is_negative_infinity())
  370. return Value(three_quarters_pi);
  371. else
  372. return Value(M_PI_2);
  373. }
  374. if (y.is_negative_infinity()) {
  375. if (x.is_positive_infinity())
  376. return Value(-M_PI_4);
  377. else if (x.is_negative_infinity())
  378. return Value(-three_quarters_pi);
  379. else
  380. return Value(-M_PI_2);
  381. }
  382. if (y.is_positive_zero()) {
  383. if (x.as_double() > 0 || x.is_positive_zero())
  384. return Value(0.0);
  385. else
  386. return Value(M_PI);
  387. }
  388. if (y.is_negative_zero()) {
  389. if (x.as_double() > 0 || x.is_positive_zero())
  390. return Value(-0.0);
  391. else
  392. return Value(-M_PI);
  393. }
  394. VERIFY(y.is_finite_number() && !y.is_positive_zero() && !y.is_negative_zero());
  395. if (y.as_double() > 0) {
  396. if (x.is_positive_infinity())
  397. return Value(0);
  398. else if (x.is_negative_infinity())
  399. return Value(M_PI);
  400. else if (x.is_positive_zero() || x.is_negative_zero())
  401. return Value(M_PI_2);
  402. }
  403. if (y.as_double() < 0) {
  404. if (x.is_positive_infinity())
  405. return Value(-0.0);
  406. else if (x.is_negative_infinity())
  407. return Value(-M_PI);
  408. else if (x.is_positive_zero() || x.is_negative_zero())
  409. return Value(-M_PI_2);
  410. }
  411. VERIFY(x.is_finite_number() && !x.is_positive_zero() && !x.is_negative_zero());
  412. return Value(::atan2(y.as_double(), x.as_double()));
  413. }
  414. // 21.3.2.17 Math.fround ( x ), https://tc39.es/ecma262/#sec-math.fround
  415. JS_DEFINE_NATIVE_FUNCTION(MathObject::fround)
  416. {
  417. auto number = TRY(vm.argument(0).to_number(vm));
  418. if (number.is_nan())
  419. return js_nan();
  420. return Value((float)number.as_double());
  421. }
  422. // 21.3.2.18 Math.hypot ( ...args ), https://tc39.es/ecma262/#sec-math.hypot
  423. JS_DEFINE_NATIVE_FUNCTION(MathObject::hypot)
  424. {
  425. Vector<Value> coerced;
  426. for (size_t i = 0; i < vm.argument_count(); ++i)
  427. coerced.append(TRY(vm.argument(i).to_number(vm)));
  428. for (auto& number : coerced) {
  429. if (number.is_positive_infinity() || number.is_negative_infinity())
  430. return js_infinity();
  431. }
  432. auto only_zero = true;
  433. double sum_of_squares = 0;
  434. for (auto& number : coerced) {
  435. if (number.is_nan() || number.is_positive_infinity())
  436. return number;
  437. if (number.is_negative_infinity())
  438. return js_infinity();
  439. if (!number.is_positive_zero() && !number.is_negative_zero())
  440. only_zero = false;
  441. sum_of_squares += number.as_double() * number.as_double();
  442. }
  443. if (only_zero)
  444. return Value(0);
  445. return Value(::sqrt(sum_of_squares));
  446. }
  447. // 21.3.2.19 Math.imul ( x, y ), https://tc39.es/ecma262/#sec-math.imul
  448. JS_DEFINE_NATIVE_FUNCTION(MathObject::imul)
  449. {
  450. auto a = TRY(vm.argument(0).to_u32(vm));
  451. auto b = TRY(vm.argument(1).to_u32(vm));
  452. return Value(static_cast<i32>(a * b));
  453. }
  454. // 21.3.2.20 Math.log ( x ), https://tc39.es/ecma262/#sec-math.log
  455. JS_DEFINE_NATIVE_FUNCTION(MathObject::log)
  456. {
  457. // 1. Let n be ? ToNumber(x).
  458. auto number = TRY(vm.argument(0).to_number(vm));
  459. // 2. If n is NaN or n is +∞𝔽, return n.
  460. if (number.is_nan() || number.is_positive_infinity())
  461. return number;
  462. // 3. If n is 1𝔽, return +0𝔽.
  463. if (number.as_double() == 1.)
  464. return Value(0);
  465. // 4. If n is +0𝔽 or n is -0𝔽, return -∞𝔽.
  466. if (number.is_positive_zero() || number.is_negative_zero())
  467. return js_negative_infinity();
  468. // 5. If n < -0𝔽, return NaN.
  469. if (number.as_double() < -0.)
  470. return js_nan();
  471. // 6. Return an implementation-approximated Number value representing the result of the natural logarithm of ℝ(n).
  472. return Value(::log(number.as_double()));
  473. }
  474. // 21.3.2.23 Math.log2 ( x ), https://tc39.es/ecma262/#sec-math.log2
  475. JS_DEFINE_NATIVE_FUNCTION(MathObject::log2)
  476. {
  477. // 1. Let n be ? ToNumber(x).
  478. auto number = TRY(vm.argument(0).to_number(vm));
  479. // 2. If n is NaN or n is +∞𝔽, return n.
  480. if (number.is_nan() || number.is_positive_infinity())
  481. return number;
  482. // 3. If n is 1𝔽, return +0𝔽.
  483. if (number.as_double() == 1.)
  484. return Value(0);
  485. // 4. If n is +0𝔽 or n is -0𝔽, return -∞𝔽.
  486. if (number.is_positive_zero() || number.is_negative_zero())
  487. return js_negative_infinity();
  488. // 5. If n < -0𝔽, return NaN.
  489. if (number.as_double() < -0.)
  490. return js_nan();
  491. // 6. Return an implementation-approximated Number value representing the result of the base 2 logarithm of ℝ(n).
  492. return Value(::log2(number.as_double()));
  493. }
  494. // 21.3.2.22 Math.log10 ( x ), https://tc39.es/ecma262/#sec-math.log10
  495. JS_DEFINE_NATIVE_FUNCTION(MathObject::log10)
  496. {
  497. auto value = TRY(vm.argument(0).to_number(vm)).as_double();
  498. if (value < 0)
  499. return js_nan();
  500. return Value(::log10(value));
  501. }
  502. // 21.3.2.31 Math.sinh ( x ), https://tc39.es/ecma262/#sec-math.sinh
  503. JS_DEFINE_NATIVE_FUNCTION(MathObject::sinh)
  504. {
  505. auto number = TRY(vm.argument(0).to_number(vm));
  506. if (number.is_nan())
  507. return js_nan();
  508. return Value(::sinh(number.as_double()));
  509. }
  510. // 21.3.2.13 Math.cosh ( x ), https://tc39.es/ecma262/#sec-math.cosh
  511. JS_DEFINE_NATIVE_FUNCTION(MathObject::cosh)
  512. {
  513. // 1. Let n be ? ToNumber(x).
  514. auto number = TRY(vm.argument(0).to_number(vm));
  515. // 2. If n is NaN, return NaN.
  516. if (number.is_nan())
  517. return js_nan();
  518. // 3. If n is +∞𝔽 or n is -∞𝔽, return +∞𝔽.
  519. if (number.is_positive_infinity() || number.is_negative_infinity())
  520. return js_infinity();
  521. // 4. If n is +0𝔽 or n is -0𝔽, return 1𝔽.
  522. if (number.is_positive_zero() || number.is_negative_zero())
  523. return Value(1);
  524. // 5. Return an implementation-approximated Number value representing the result of the hyperbolic cosine of ℝ(n).
  525. return Value(::cosh(number.as_double()));
  526. }
  527. // 21.3.2.34 Math.tanh ( x ), https://tc39.es/ecma262/#sec-math.tanh
  528. JS_DEFINE_NATIVE_FUNCTION(MathObject::tanh)
  529. {
  530. auto number = TRY(vm.argument(0).to_number(vm));
  531. if (number.is_nan())
  532. return js_nan();
  533. if (number.is_positive_infinity())
  534. return Value(1);
  535. if (number.is_negative_infinity())
  536. return Value(-1);
  537. return Value(::tanh(number.as_double()));
  538. }
  539. }