MemoryManager.cpp 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. * All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions are met:
  7. *
  8. * 1. Redistributions of source code must retain the above copyright notice, this
  9. * list of conditions and the following disclaimer.
  10. *
  11. * 2. Redistributions in binary form must reproduce the above copyright notice,
  12. * this list of conditions and the following disclaimer in the documentation
  13. * and/or other materials provided with the distribution.
  14. *
  15. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  16. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  17. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  18. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  19. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  20. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  21. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  22. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  23. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25. */
  26. #include <AK/Assertions.h>
  27. #include <AK/Memory.h>
  28. #include <AK/StringView.h>
  29. #include <Kernel/Arch/i386/CPU.h>
  30. #include <Kernel/CMOS.h>
  31. #include <Kernel/FileSystem/Inode.h>
  32. #include <Kernel/Heap/kmalloc.h>
  33. #include <Kernel/Multiboot.h>
  34. #include <Kernel/Process.h>
  35. #include <Kernel/StdLib.h>
  36. #include <Kernel/VM/AnonymousVMObject.h>
  37. #include <Kernel/VM/ContiguousVMObject.h>
  38. #include <Kernel/VM/MemoryManager.h>
  39. #include <Kernel/VM/PageDirectory.h>
  40. #include <Kernel/VM/PhysicalRegion.h>
  41. #include <Kernel/VM/PurgeableVMObject.h>
  42. #include <Kernel/VM/SharedInodeVMObject.h>
  43. //#define MM_DEBUG
  44. //#define PAGE_FAULT_DEBUG
  45. extern u8* start_of_kernel_image;
  46. extern u8* end_of_kernel_image;
  47. extern FlatPtr start_of_kernel_text;
  48. extern FlatPtr start_of_kernel_data;
  49. extern FlatPtr end_of_kernel_bss;
  50. namespace Kernel {
  51. // NOTE: We can NOT use AK::Singleton for this class, because
  52. // MemoryManager::initialize is called *before* global constructors are
  53. // run. If we do, then AK::Singleton would get re-initialized, causing
  54. // the memory manager to be initialized twice!
  55. static MemoryManager* s_the;
  56. RecursiveSpinLock s_mm_lock;
  57. MemoryManager& MM
  58. {
  59. return *s_the;
  60. }
  61. bool MemoryManager::is_initialized()
  62. {
  63. return s_the != nullptr;
  64. }
  65. MemoryManager::MemoryManager()
  66. {
  67. ScopedSpinLock lock(s_mm_lock);
  68. m_kernel_page_directory = PageDirectory::create_kernel_page_directory();
  69. parse_memory_map();
  70. write_cr3(kernel_page_directory().cr3());
  71. protect_kernel_image();
  72. m_shared_zero_page = allocate_user_physical_page();
  73. }
  74. MemoryManager::~MemoryManager()
  75. {
  76. }
  77. void MemoryManager::protect_kernel_image()
  78. {
  79. ScopedSpinLock page_lock(kernel_page_directory().get_lock());
  80. // Disable writing to the kernel text and rodata segments.
  81. for (size_t i = (FlatPtr)&start_of_kernel_text; i < (FlatPtr)&start_of_kernel_data; i += PAGE_SIZE) {
  82. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  83. pte.set_writable(false);
  84. }
  85. if (Processor::current().has_feature(CPUFeature::NX)) {
  86. // Disable execution of the kernel data and bss segments, as well as the kernel heap.
  87. for (size_t i = (FlatPtr)&start_of_kernel_data; i < (FlatPtr)&end_of_kernel_bss; i += PAGE_SIZE) {
  88. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  89. pte.set_execute_disabled(true);
  90. }
  91. for (size_t i = FlatPtr(kmalloc_start); i < FlatPtr(kmalloc_end); i += PAGE_SIZE) {
  92. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  93. pte.set_execute_disabled(true);
  94. }
  95. }
  96. }
  97. void MemoryManager::parse_memory_map()
  98. {
  99. RefPtr<PhysicalRegion> region;
  100. bool region_is_super = false;
  101. // We need to make sure we exclude the kmalloc range as well as the kernel image.
  102. // The kmalloc range directly follows the kernel image
  103. const PhysicalAddress used_range_start(virtual_to_low_physical(FlatPtr(&start_of_kernel_image)));
  104. const PhysicalAddress used_range_end(PAGE_ROUND_UP(virtual_to_low_physical(FlatPtr(kmalloc_end))));
  105. klog() << "MM: kernel range: " << used_range_start << " - " << PhysicalAddress(PAGE_ROUND_UP(virtual_to_low_physical(FlatPtr(&end_of_kernel_image))));
  106. klog() << "MM: kmalloc range: " << PhysicalAddress(virtual_to_low_physical(FlatPtr(kmalloc_start))) << " - " << used_range_end;
  107. auto* mmap = (multiboot_memory_map_t*)(low_physical_to_virtual(multiboot_info_ptr->mmap_addr));
  108. for (; (unsigned long)mmap < (low_physical_to_virtual(multiboot_info_ptr->mmap_addr)) + (multiboot_info_ptr->mmap_length); mmap = (multiboot_memory_map_t*)((unsigned long)mmap + mmap->size + sizeof(mmap->size))) {
  109. klog() << "MM: Multiboot mmap: base_addr = " << String::format("0x%08x", mmap->addr) << ", length = " << String::format("0x%08x", mmap->len) << ", type = 0x" << String::format("%x", mmap->type);
  110. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  111. continue;
  112. // FIXME: Maybe make use of stuff below the 1MiB mark?
  113. if (mmap->addr < (1 * MiB))
  114. continue;
  115. if ((mmap->addr + mmap->len) > 0xffffffff)
  116. continue;
  117. auto diff = (FlatPtr)mmap->addr % PAGE_SIZE;
  118. if (diff != 0) {
  119. klog() << "MM: got an unaligned region base from the bootloader; correcting " << String::format("%p", mmap->addr) << " by " << diff << " bytes";
  120. diff = PAGE_SIZE - diff;
  121. mmap->addr += diff;
  122. mmap->len -= diff;
  123. }
  124. if ((mmap->len % PAGE_SIZE) != 0) {
  125. klog() << "MM: got an unaligned region length from the bootloader; correcting " << mmap->len << " by " << (mmap->len % PAGE_SIZE) << " bytes";
  126. mmap->len -= mmap->len % PAGE_SIZE;
  127. }
  128. if (mmap->len < PAGE_SIZE) {
  129. klog() << "MM: memory region from bootloader is too small; we want >= " << PAGE_SIZE << " bytes, but got " << mmap->len << " bytes";
  130. continue;
  131. }
  132. #ifdef MM_DEBUG
  133. klog() << "MM: considering memory at " << String::format("%p", (FlatPtr)mmap->addr) << " - " << String::format("%p", (FlatPtr)(mmap->addr + mmap->len));
  134. #endif
  135. for (size_t page_base = mmap->addr; page_base <= (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
  136. auto addr = PhysicalAddress(page_base);
  137. if (addr.get() < used_range_end.get() && addr.get() >= used_range_start.get())
  138. continue;
  139. if (page_base < 7 * MiB) {
  140. // nothing
  141. } else if (page_base >= 7 * MiB && page_base < 8 * MiB) {
  142. if (region.is_null() || !region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  143. m_super_physical_regions.append(PhysicalRegion::create(addr, addr));
  144. region = m_super_physical_regions.last();
  145. region_is_super = true;
  146. } else {
  147. region->expand(region->lower(), addr);
  148. }
  149. } else {
  150. if (region.is_null() || region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  151. m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
  152. region = m_user_physical_regions.last();
  153. region_is_super = false;
  154. } else {
  155. region->expand(region->lower(), addr);
  156. }
  157. }
  158. }
  159. }
  160. for (auto& region : m_super_physical_regions) {
  161. m_super_physical_pages += region.finalize_capacity();
  162. klog() << "Super physical region: " << region.lower() << " - " << region.upper();
  163. }
  164. for (auto& region : m_user_physical_regions) {
  165. m_user_physical_pages += region.finalize_capacity();
  166. klog() << "User physical region: " << region.lower() << " - " << region.upper();
  167. }
  168. ASSERT(m_super_physical_pages > 0);
  169. ASSERT(m_user_physical_pages > 0);
  170. }
  171. PageTableEntry* MemoryManager::pte(PageDirectory& page_directory, VirtualAddress vaddr)
  172. {
  173. ASSERT_INTERRUPTS_DISABLED();
  174. ASSERT(s_mm_lock.own_lock());
  175. ASSERT(page_directory.get_lock().own_lock());
  176. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  177. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  178. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  179. auto* pd = quickmap_pd(const_cast<PageDirectory&>(page_directory), page_directory_table_index);
  180. const PageDirectoryEntry& pde = pd[page_directory_index];
  181. if (!pde.is_present())
  182. return nullptr;
  183. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  184. }
  185. PageTableEntry* MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  186. {
  187. ASSERT_INTERRUPTS_DISABLED();
  188. ASSERT(s_mm_lock.own_lock());
  189. ASSERT(page_directory.get_lock().own_lock());
  190. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  191. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  192. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  193. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  194. PageDirectoryEntry& pde = pd[page_directory_index];
  195. if (!pde.is_present()) {
  196. #ifdef MM_DEBUG
  197. dbg() << "MM: PDE " << page_directory_index << " not present (requested for " << vaddr << "), allocating";
  198. #endif
  199. bool did_purge = false;
  200. auto page_table = allocate_user_physical_page(ShouldZeroFill::Yes, &did_purge);
  201. if (!page_table) {
  202. dbg() << "MM: Unable to allocate page table to map " << vaddr;
  203. return nullptr;
  204. }
  205. if (did_purge) {
  206. // If any memory had to be purged, ensure_pte may have been called as part
  207. // of the purging process. So we need to re-map the pd in this case to ensure
  208. // we're writing to the correct underlying physical page
  209. pd = quickmap_pd(page_directory, page_directory_table_index);
  210. ASSERT(&pde == &pd[page_directory_index]); // Sanity check
  211. ASSERT(!pde.is_present()); // Should have not changed
  212. }
  213. #ifdef MM_DEBUG
  214. dbg() << "MM: PD K" << &page_directory << " (" << (&page_directory == m_kernel_page_directory ? "Kernel" : "User") << ") at " << PhysicalAddress(page_directory.cr3()) << " allocated page table #" << page_directory_index << " (for " << vaddr << ") at " << page_table->paddr();
  215. #endif
  216. pde.set_page_table_base(page_table->paddr().get());
  217. pde.set_user_allowed(true);
  218. pde.set_present(true);
  219. pde.set_writable(true);
  220. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  221. // Use page_directory_table_index and page_directory_index as key
  222. // This allows us to release the page table entry when no longer needed
  223. auto result = page_directory.m_page_tables.set(vaddr.get() & ~0x1fffff, move(page_table));
  224. ASSERT(result == AK::HashSetResult::InsertedNewEntry);
  225. }
  226. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  227. }
  228. void MemoryManager::release_pte(PageDirectory& page_directory, VirtualAddress vaddr, bool is_last_release)
  229. {
  230. ASSERT_INTERRUPTS_DISABLED();
  231. ASSERT(s_mm_lock.own_lock());
  232. ASSERT(page_directory.get_lock().own_lock());
  233. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  234. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  235. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  236. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  237. PageDirectoryEntry& pde = pd[page_directory_index];
  238. if (pde.is_present()) {
  239. auto* page_table = quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()));
  240. auto& pte = page_table[page_table_index];
  241. pte.clear();
  242. if (is_last_release || page_table_index == 0x1ff) {
  243. // If this is the last PTE in a region or the last PTE in a page table then
  244. // check if we can also release the page table
  245. bool all_clear = true;
  246. for (u32 i = 0; i <= 0x1ff; i++) {
  247. if (!page_table[i].is_null()) {
  248. all_clear = false;
  249. break;
  250. }
  251. }
  252. if (all_clear) {
  253. pde.clear();
  254. auto result = page_directory.m_page_tables.remove(vaddr.get() & ~0x1fffff);
  255. ASSERT(result);
  256. #ifdef MM_DEBUG
  257. dbg() << "MM: Released page table for " << VirtualAddress(vaddr.get() & ~0x1fffff);
  258. #endif
  259. }
  260. }
  261. }
  262. }
  263. void MemoryManager::initialize(u32 cpu)
  264. {
  265. auto mm_data = new MemoryManagerData;
  266. #ifdef MM_DEBUG
  267. dbg() << "MM: Processor #" << cpu << " specific data at " << VirtualAddress(mm_data);
  268. #endif
  269. Processor::current().set_mm_data(*mm_data);
  270. if (cpu == 0) {
  271. s_the = new MemoryManager;
  272. kmalloc_enable_expand();
  273. }
  274. }
  275. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  276. {
  277. ScopedSpinLock lock(s_mm_lock);
  278. for (auto& region : MM.m_kernel_regions) {
  279. if (region.contains(vaddr))
  280. return &region;
  281. }
  282. return nullptr;
  283. }
  284. Region* MemoryManager::user_region_from_vaddr(Process& process, VirtualAddress vaddr)
  285. {
  286. ScopedSpinLock lock(s_mm_lock);
  287. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  288. for (auto& region : process.m_regions) {
  289. if (region.contains(vaddr))
  290. return &region;
  291. }
  292. #ifdef MM_DEBUG
  293. dbg() << process << " Couldn't find user region for " << vaddr;
  294. #endif
  295. return nullptr;
  296. }
  297. Region* MemoryManager::find_region_from_vaddr(Process& process, VirtualAddress vaddr)
  298. {
  299. ScopedSpinLock lock(s_mm_lock);
  300. if (auto* region = user_region_from_vaddr(process, vaddr))
  301. return region;
  302. return kernel_region_from_vaddr(vaddr);
  303. }
  304. const Region* MemoryManager::find_region_from_vaddr(const Process& process, VirtualAddress vaddr)
  305. {
  306. ScopedSpinLock lock(s_mm_lock);
  307. if (auto* region = user_region_from_vaddr(const_cast<Process&>(process), vaddr))
  308. return region;
  309. return kernel_region_from_vaddr(vaddr);
  310. }
  311. Region* MemoryManager::find_region_from_vaddr(VirtualAddress vaddr)
  312. {
  313. ScopedSpinLock lock(s_mm_lock);
  314. if (auto* region = kernel_region_from_vaddr(vaddr))
  315. return region;
  316. auto page_directory = PageDirectory::find_by_cr3(read_cr3());
  317. if (!page_directory)
  318. return nullptr;
  319. ASSERT(page_directory->process());
  320. return user_region_from_vaddr(*page_directory->process(), vaddr);
  321. }
  322. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  323. {
  324. ASSERT_INTERRUPTS_DISABLED();
  325. ASSERT(Thread::current() != nullptr);
  326. ScopedSpinLock lock(s_mm_lock);
  327. if (Processor::current().in_irq()) {
  328. dbg() << "CPU[" << Processor::current().id() << "] BUG! Page fault while handling IRQ! code=" << fault.code() << ", vaddr=" << fault.vaddr() << ", irq level: " << Processor::current().in_irq();
  329. dump_kernel_regions();
  330. return PageFaultResponse::ShouldCrash;
  331. }
  332. #ifdef PAGE_FAULT_DEBUG
  333. dbgln("MM: CPU[{}] handle_page_fault({:#04x}) at {}", Processor::current().id(), fault.code(), fault.vaddr());
  334. #endif
  335. auto* region = find_region_from_vaddr(fault.vaddr());
  336. if (!region) {
  337. klog() << "CPU[" << Processor::current().id() << "] NP(error) fault at invalid address " << fault.vaddr();
  338. return PageFaultResponse::ShouldCrash;
  339. }
  340. return region->handle_fault(fault);
  341. }
  342. OwnPtr<Region> MemoryManager::allocate_contiguous_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  343. {
  344. ASSERT(!(size % PAGE_SIZE));
  345. ScopedSpinLock lock(s_mm_lock);
  346. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  347. if (!range.is_valid())
  348. return nullptr;
  349. auto vmobject = ContiguousVMObject::create_with_size(size);
  350. auto region = allocate_kernel_region_with_vmobject(range, vmobject, name, access, user_accessible, cacheable);
  351. if (!region)
  352. return nullptr;
  353. return region;
  354. }
  355. OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, bool should_commit, bool cacheable)
  356. {
  357. ASSERT(!(size % PAGE_SIZE));
  358. ScopedSpinLock lock(s_mm_lock);
  359. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  360. if (!range.is_valid())
  361. return nullptr;
  362. auto vmobject = AnonymousVMObject::create_with_size(size);
  363. auto region = allocate_kernel_region_with_vmobject(range, vmobject, name, access, user_accessible, cacheable);
  364. if (!region)
  365. return nullptr;
  366. if (should_commit && !region->commit())
  367. return nullptr;
  368. return region;
  369. }
  370. OwnPtr<Region> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  371. {
  372. ASSERT(!(size % PAGE_SIZE));
  373. ScopedSpinLock lock(s_mm_lock);
  374. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  375. if (!range.is_valid())
  376. return nullptr;
  377. auto vmobject = AnonymousVMObject::create_for_physical_range(paddr, size);
  378. if (!vmobject)
  379. return nullptr;
  380. return allocate_kernel_region_with_vmobject(range, *vmobject, name, access, user_accessible, cacheable);
  381. }
  382. OwnPtr<Region> MemoryManager::allocate_kernel_region_identity(PhysicalAddress paddr, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  383. {
  384. ASSERT(!(size % PAGE_SIZE));
  385. ScopedSpinLock lock(s_mm_lock);
  386. auto range = kernel_page_directory().identity_range_allocator().allocate_specific(VirtualAddress(paddr.get()), size);
  387. if (!range.is_valid())
  388. return nullptr;
  389. auto vmobject = AnonymousVMObject::create_for_physical_range(paddr, size);
  390. if (!vmobject)
  391. return nullptr;
  392. return allocate_kernel_region_with_vmobject(range, *vmobject, name, access, user_accessible, cacheable);
  393. }
  394. OwnPtr<Region> MemoryManager::allocate_user_accessible_kernel_region(size_t size, const StringView& name, u8 access, bool cacheable)
  395. {
  396. return allocate_kernel_region(size, name, access, true, true, cacheable);
  397. }
  398. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(const Range& range, VMObject& vmobject, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  399. {
  400. ScopedSpinLock lock(s_mm_lock);
  401. OwnPtr<Region> region;
  402. if (user_accessible)
  403. region = Region::create_user_accessible(range, vmobject, 0, name, access, cacheable);
  404. else
  405. region = Region::create_kernel_only(range, vmobject, 0, name, access, cacheable);
  406. if (region)
  407. region->map(kernel_page_directory());
  408. return region;
  409. }
  410. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  411. {
  412. ASSERT(!(size % PAGE_SIZE));
  413. ScopedSpinLock lock(s_mm_lock);
  414. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  415. if (!range.is_valid())
  416. return nullptr;
  417. return allocate_kernel_region_with_vmobject(range, vmobject, name, access, user_accessible, cacheable);
  418. }
  419. void MemoryManager::deallocate_user_physical_page(const PhysicalPage& page)
  420. {
  421. ScopedSpinLock lock(s_mm_lock);
  422. for (auto& region : m_user_physical_regions) {
  423. if (!region.contains(page)) {
  424. klog() << "MM: deallocate_user_physical_page: " << page.paddr() << " not in " << region.lower() << " -> " << region.upper();
  425. continue;
  426. }
  427. region.return_page(page);
  428. --m_user_physical_pages_used;
  429. return;
  430. }
  431. klog() << "MM: deallocate_user_physical_page couldn't figure out region for user page @ " << page.paddr();
  432. ASSERT_NOT_REACHED();
  433. }
  434. RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page()
  435. {
  436. ASSERT(s_mm_lock.is_locked());
  437. RefPtr<PhysicalPage> page;
  438. for (auto& region : m_user_physical_regions) {
  439. page = region.take_free_page(false);
  440. if (!page.is_null())
  441. break;
  442. }
  443. return page;
  444. }
  445. RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill, bool* did_purge)
  446. {
  447. ScopedSpinLock lock(s_mm_lock);
  448. auto page = find_free_user_physical_page();
  449. bool purged_pages = false;
  450. if (!page) {
  451. // We didn't have a single free physical page. Let's try to free something up!
  452. // First, we look for a purgeable VMObject in the volatile state.
  453. for_each_vmobject_of_type<PurgeableVMObject>([&](auto& vmobject) {
  454. int purged_page_count = vmobject.purge_with_interrupts_disabled({});
  455. if (purged_page_count) {
  456. klog() << "MM: Purge saved the day! Purged " << purged_page_count << " pages from PurgeableVMObject{" << &vmobject << "}";
  457. page = find_free_user_physical_page();
  458. purged_pages = true;
  459. ASSERT(page);
  460. return IterationDecision::Break;
  461. }
  462. return IterationDecision::Continue;
  463. });
  464. if (!page) {
  465. klog() << "MM: no user physical pages available";
  466. return {};
  467. }
  468. }
  469. #ifdef MM_DEBUG
  470. dbg() << "MM: allocate_user_physical_page vending " << page->paddr();
  471. #endif
  472. if (should_zero_fill == ShouldZeroFill::Yes) {
  473. auto* ptr = quickmap_page(*page);
  474. memset(ptr, 0, PAGE_SIZE);
  475. unquickmap_page();
  476. }
  477. if (did_purge)
  478. *did_purge = purged_pages;
  479. ++m_user_physical_pages_used;
  480. return page;
  481. }
  482. void MemoryManager::deallocate_supervisor_physical_page(const PhysicalPage& page)
  483. {
  484. ScopedSpinLock lock(s_mm_lock);
  485. for (auto& region : m_super_physical_regions) {
  486. if (!region.contains(page)) {
  487. klog() << "MM: deallocate_supervisor_physical_page: " << page.paddr() << " not in " << region.lower() << " -> " << region.upper();
  488. continue;
  489. }
  490. region.return_page(page);
  491. --m_super_physical_pages_used;
  492. return;
  493. }
  494. klog() << "MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ " << page.paddr();
  495. ASSERT_NOT_REACHED();
  496. }
  497. NonnullRefPtrVector<PhysicalPage> MemoryManager::allocate_contiguous_supervisor_physical_pages(size_t size)
  498. {
  499. ASSERT(!(size % PAGE_SIZE));
  500. ScopedSpinLock lock(s_mm_lock);
  501. size_t count = ceil_div(size, PAGE_SIZE);
  502. NonnullRefPtrVector<PhysicalPage> physical_pages;
  503. for (auto& region : m_super_physical_regions) {
  504. physical_pages = region.take_contiguous_free_pages((count), true);
  505. if (!physical_pages.is_empty())
  506. break;
  507. }
  508. if (physical_pages.is_empty()) {
  509. if (m_super_physical_regions.is_empty()) {
  510. klog() << "MM: no super physical regions available (?)";
  511. }
  512. klog() << "MM: no super physical pages available";
  513. ASSERT_NOT_REACHED();
  514. return {};
  515. }
  516. auto cleanup_region = MM.allocate_kernel_region(physical_pages[0].paddr(), PAGE_SIZE * count, "MemoryManager Allocation Sanitization", Region::Access::Read | Region::Access::Write);
  517. fast_u32_fill((u32*)cleanup_region->vaddr().as_ptr(), 0, (PAGE_SIZE * count) / sizeof(u32));
  518. m_super_physical_pages_used += count;
  519. return physical_pages;
  520. }
  521. RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  522. {
  523. ScopedSpinLock lock(s_mm_lock);
  524. RefPtr<PhysicalPage> page;
  525. for (auto& region : m_super_physical_regions) {
  526. page = region.take_free_page(true);
  527. if (!page.is_null())
  528. break;
  529. }
  530. if (!page) {
  531. if (m_super_physical_regions.is_empty()) {
  532. klog() << "MM: no super physical regions available (?)";
  533. }
  534. klog() << "MM: no super physical pages available";
  535. ASSERT_NOT_REACHED();
  536. return {};
  537. }
  538. #ifdef MM_DEBUG
  539. dbg() << "MM: allocate_supervisor_physical_page vending " << page->paddr();
  540. #endif
  541. fast_u32_fill((u32*)page->paddr().offset(0xc0000000).as_ptr(), 0, PAGE_SIZE / sizeof(u32));
  542. ++m_super_physical_pages_used;
  543. return page;
  544. }
  545. void MemoryManager::enter_process_paging_scope(Process& process)
  546. {
  547. auto current_thread = Thread::current();
  548. ASSERT(current_thread != nullptr);
  549. ScopedSpinLock lock(s_mm_lock);
  550. current_thread->tss().cr3 = process.page_directory().cr3();
  551. write_cr3(process.page_directory().cr3());
  552. }
  553. void MemoryManager::flush_tlb_local(VirtualAddress vaddr, size_t page_count)
  554. {
  555. #ifdef MM_DEBUG
  556. dbg() << "MM: Flush " << page_count << " pages at " << vaddr << " on CPU#" << Processor::current().id();
  557. #endif
  558. Processor::flush_tlb_local(vaddr, page_count);
  559. }
  560. void MemoryManager::flush_tlb(VirtualAddress vaddr, size_t page_count)
  561. {
  562. #ifdef MM_DEBUG
  563. dbg() << "MM: Flush " << page_count << " pages at " << vaddr;
  564. #endif
  565. Processor::flush_tlb(vaddr, page_count);
  566. }
  567. extern "C" PageTableEntry boot_pd3_pt1023[1024];
  568. PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
  569. {
  570. ASSERT(s_mm_lock.own_lock());
  571. auto& mm_data = get_data();
  572. auto& pte = boot_pd3_pt1023[4];
  573. auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
  574. if (pte.physical_page_base() != pd_paddr.as_ptr()) {
  575. #ifdef MM_DEBUG
  576. dbg() << "quickmap_pd: Mapping P" << (void*)directory.m_directory_pages[pdpt_index]->paddr().as_ptr() << " at 0xffe04000 in pte @ " << &pte;
  577. #endif
  578. pte.set_physical_page_base(pd_paddr.get());
  579. pte.set_present(true);
  580. pte.set_writable(true);
  581. pte.set_user_allowed(false);
  582. // Because we must continue to hold the MM lock while we use this
  583. // mapping, it is sufficient to only flush on the current CPU. Other
  584. // CPUs trying to use this API must wait on the MM lock anyway
  585. flush_tlb_local(VirtualAddress(0xffe04000));
  586. } else {
  587. // Even though we don't allow this to be called concurrently, it's
  588. // possible that this PD was mapped on a different CPU and we don't
  589. // broadcast the flush. If so, we still need to flush the TLB.
  590. if (mm_data.m_last_quickmap_pd != pd_paddr)
  591. flush_tlb_local(VirtualAddress(0xffe04000));
  592. }
  593. mm_data.m_last_quickmap_pd = pd_paddr;
  594. return (PageDirectoryEntry*)0xffe04000;
  595. }
  596. PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
  597. {
  598. ASSERT(s_mm_lock.own_lock());
  599. auto& mm_data = get_data();
  600. auto& pte = boot_pd3_pt1023[0];
  601. if (pte.physical_page_base() != pt_paddr.as_ptr()) {
  602. #ifdef MM_DEBUG
  603. dbg() << "quickmap_pt: Mapping P" << (void*)pt_paddr.as_ptr() << " at 0xffe00000 in pte @ " << &pte;
  604. #endif
  605. pte.set_physical_page_base(pt_paddr.get());
  606. pte.set_present(true);
  607. pte.set_writable(true);
  608. pte.set_user_allowed(false);
  609. // Because we must continue to hold the MM lock while we use this
  610. // mapping, it is sufficient to only flush on the current CPU. Other
  611. // CPUs trying to use this API must wait on the MM lock anyway
  612. flush_tlb_local(VirtualAddress(0xffe00000));
  613. } else {
  614. // Even though we don't allow this to be called concurrently, it's
  615. // possible that this PT was mapped on a different CPU and we don't
  616. // broadcast the flush. If so, we still need to flush the TLB.
  617. if (mm_data.m_last_quickmap_pt != pt_paddr)
  618. flush_tlb_local(VirtualAddress(0xffe00000));
  619. }
  620. mm_data.m_last_quickmap_pt = pt_paddr;
  621. return (PageTableEntry*)0xffe00000;
  622. }
  623. u8* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  624. {
  625. ASSERT_INTERRUPTS_DISABLED();
  626. auto& mm_data = get_data();
  627. mm_data.m_quickmap_prev_flags = mm_data.m_quickmap_in_use.lock();
  628. ScopedSpinLock lock(s_mm_lock);
  629. u32 pte_idx = 8 + Processor::current().id();
  630. VirtualAddress vaddr(0xffe00000 + pte_idx * PAGE_SIZE);
  631. auto& pte = boot_pd3_pt1023[pte_idx];
  632. if (pte.physical_page_base() != physical_page.paddr().as_ptr()) {
  633. #ifdef MM_DEBUG
  634. dbg() << "quickmap_page: Mapping P" << (void*)physical_page.paddr().as_ptr() << " at 0xffe08000 in pte @ " << &pte;
  635. #endif
  636. pte.set_physical_page_base(physical_page.paddr().get());
  637. pte.set_present(true);
  638. pte.set_writable(true);
  639. pte.set_user_allowed(false);
  640. flush_tlb_local(vaddr);
  641. }
  642. return vaddr.as_ptr();
  643. }
  644. void MemoryManager::unquickmap_page()
  645. {
  646. ASSERT_INTERRUPTS_DISABLED();
  647. ScopedSpinLock lock(s_mm_lock);
  648. auto& mm_data = get_data();
  649. ASSERT(mm_data.m_quickmap_in_use.is_locked());
  650. u32 pte_idx = 8 + Processor::current().id();
  651. VirtualAddress vaddr(0xffe00000 + pte_idx * PAGE_SIZE);
  652. auto& pte = boot_pd3_pt1023[pte_idx];
  653. pte.clear();
  654. flush_tlb_local(vaddr);
  655. mm_data.m_quickmap_in_use.unlock(mm_data.m_quickmap_prev_flags);
  656. }
  657. template<MemoryManager::AccessSpace space, MemoryManager::AccessType access_type>
  658. bool MemoryManager::validate_range(const Process& process, VirtualAddress base_vaddr, size_t size) const
  659. {
  660. ASSERT(s_mm_lock.is_locked());
  661. ASSERT(size);
  662. if (base_vaddr > base_vaddr.offset(size)) {
  663. dbg() << "Shenanigans! Asked to validate wrappy " << base_vaddr << " size=" << size;
  664. return false;
  665. }
  666. VirtualAddress vaddr = base_vaddr.page_base();
  667. VirtualAddress end_vaddr = base_vaddr.offset(size - 1).page_base();
  668. if (end_vaddr < vaddr) {
  669. dbg() << "Shenanigans! Asked to validate " << base_vaddr << " size=" << size;
  670. return false;
  671. }
  672. const Region* region = nullptr;
  673. while (vaddr <= end_vaddr) {
  674. if (!region || !region->contains(vaddr)) {
  675. if (space == AccessSpace::Kernel)
  676. region = kernel_region_from_vaddr(vaddr);
  677. if (!region || !region->contains(vaddr))
  678. region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  679. if (!region
  680. || (space == AccessSpace::User && !region->is_user_accessible())
  681. || (access_type == AccessType::Read && !region->is_readable())
  682. || (access_type == AccessType::Write && !region->is_writable())) {
  683. return false;
  684. }
  685. }
  686. vaddr = region->range().end();
  687. }
  688. return true;
  689. }
  690. bool MemoryManager::validate_user_stack(const Process& process, VirtualAddress vaddr) const
  691. {
  692. if (!is_user_address(vaddr))
  693. return false;
  694. ScopedSpinLock lock(s_mm_lock);
  695. auto* region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  696. return region && region->is_user_accessible() && region->is_stack();
  697. }
  698. void MemoryManager::register_vmobject(VMObject& vmobject)
  699. {
  700. ScopedSpinLock lock(s_mm_lock);
  701. m_vmobjects.append(&vmobject);
  702. }
  703. void MemoryManager::unregister_vmobject(VMObject& vmobject)
  704. {
  705. ScopedSpinLock lock(s_mm_lock);
  706. m_vmobjects.remove(&vmobject);
  707. }
  708. void MemoryManager::register_region(Region& region)
  709. {
  710. ScopedSpinLock lock(s_mm_lock);
  711. if (region.is_kernel())
  712. m_kernel_regions.append(&region);
  713. else
  714. m_user_regions.append(&region);
  715. }
  716. void MemoryManager::unregister_region(Region& region)
  717. {
  718. ScopedSpinLock lock(s_mm_lock);
  719. if (region.is_kernel())
  720. m_kernel_regions.remove(&region);
  721. else
  722. m_user_regions.remove(&region);
  723. }
  724. void MemoryManager::dump_kernel_regions()
  725. {
  726. klog() << "Kernel regions:";
  727. klog() << "BEGIN END SIZE ACCESS NAME";
  728. ScopedSpinLock lock(s_mm_lock);
  729. for (auto& region : MM.m_kernel_regions) {
  730. klog() << String::format("%08x", region.vaddr().get()) << " -- " << String::format("%08x", region.vaddr().offset(region.size() - 1).get()) << " " << String::format("%08x", region.size()) << " " << (region.is_readable() ? 'R' : ' ') << (region.is_writable() ? 'W' : ' ') << (region.is_executable() ? 'X' : ' ') << (region.is_shared() ? 'S' : ' ') << (region.is_stack() ? 'T' : ' ') << (region.vmobject().is_purgeable() ? 'P' : ' ') << " " << region.name().characters();
  731. }
  732. }
  733. }