Thread.cpp 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641
  1. #include <AK/ELF/ELFLoader.h>
  2. #include <AK/StringBuilder.h>
  3. #include <Kernel/FileSystem/FileDescription.h>
  4. #include <Kernel/Process.h>
  5. #include <Kernel/Scheduler.h>
  6. #include <Kernel/Thread.h>
  7. #include <Kernel/VM/MemoryManager.h>
  8. #include <LibC/signal_numbers.h>
  9. //#define SIGNAL_DEBUG
  10. u16 thread_specific_selector()
  11. {
  12. static u16 selector;
  13. if (!selector) {
  14. selector = gdt_alloc_entry();
  15. auto& descriptor = get_gdt_entry(selector);
  16. descriptor.dpl = 3;
  17. descriptor.segment_present = 1;
  18. descriptor.granularity = 0;
  19. descriptor.zero = 0;
  20. descriptor.operation_size = 1;
  21. descriptor.descriptor_type = 1;
  22. descriptor.type = 2;
  23. }
  24. return selector;
  25. }
  26. Descriptor& thread_specific_descriptor()
  27. {
  28. return get_gdt_entry(thread_specific_selector());
  29. }
  30. HashTable<Thread*>& thread_table()
  31. {
  32. ASSERT_INTERRUPTS_DISABLED();
  33. static HashTable<Thread*>* table;
  34. if (!table)
  35. table = new HashTable<Thread*>;
  36. return *table;
  37. }
  38. static const u32 default_kernel_stack_size = 65536;
  39. static const u32 default_userspace_stack_size = 65536;
  40. Thread::Thread(Process& process)
  41. : m_process(process)
  42. , m_tid(process.m_next_tid++)
  43. {
  44. dbgprintf("Thread{%p}: New thread TID=%u in %s(%u)\n", this, m_tid, process.name().characters(), process.pid());
  45. set_default_signal_dispositions();
  46. m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16);
  47. memset(&m_tss, 0, sizeof(m_tss));
  48. // Only IF is set when a process boots.
  49. m_tss.eflags = 0x0202;
  50. u16 cs, ds, ss, gs;
  51. if (m_process.is_ring0()) {
  52. cs = 0x08;
  53. ds = 0x10;
  54. ss = 0x10;
  55. gs = 0;
  56. } else {
  57. cs = 0x1b;
  58. ds = 0x23;
  59. ss = 0x23;
  60. gs = thread_specific_selector() | 3;
  61. }
  62. m_tss.ds = ds;
  63. m_tss.es = ds;
  64. m_tss.fs = ds;
  65. m_tss.gs = gs;
  66. m_tss.ss = ss;
  67. m_tss.cs = cs;
  68. m_tss.cr3 = m_process.page_directory().cr3();
  69. if (m_process.is_ring0()) {
  70. // FIXME: This memory is leaked.
  71. // But uh, there's also no kernel process termination, so I guess it's not technically leaked...
  72. m_kernel_stack_base = (u32)kmalloc_eternal(default_kernel_stack_size);
  73. m_kernel_stack_top = (m_kernel_stack_base + default_kernel_stack_size) & 0xfffffff8u;
  74. m_tss.esp = m_kernel_stack_top;
  75. } else {
  76. // Ring3 processes need a separate stack for Ring0.
  77. m_kernel_stack_region = MM.allocate_kernel_region(default_kernel_stack_size, String::format("Kernel Stack (Thread %d)", m_tid));
  78. m_kernel_stack_base = m_kernel_stack_region->vaddr().get();
  79. m_kernel_stack_top = m_kernel_stack_region->vaddr().offset(default_kernel_stack_size).get() & 0xfffffff8u;
  80. m_tss.ss0 = 0x10;
  81. m_tss.esp0 = m_kernel_stack_top;
  82. }
  83. // HACK: Ring2 SS in the TSS is the current PID.
  84. m_tss.ss2 = m_process.pid();
  85. m_far_ptr.offset = 0x98765432;
  86. if (m_process.pid() != 0) {
  87. InterruptDisabler disabler;
  88. thread_table().set(this);
  89. Scheduler::init_thread(*this);
  90. }
  91. }
  92. Thread::~Thread()
  93. {
  94. dbgprintf("~Thread{%p}\n", this);
  95. kfree_aligned(m_fpu_state);
  96. {
  97. InterruptDisabler disabler;
  98. thread_table().remove(this);
  99. }
  100. if (g_last_fpu_thread == this)
  101. g_last_fpu_thread = nullptr;
  102. if (selector())
  103. gdt_free_entry(selector());
  104. if (m_userspace_stack_region)
  105. m_process.deallocate_region(*m_userspace_stack_region);
  106. if (m_kernel_stack_region)
  107. m_process.deallocate_region(*m_kernel_stack_region);
  108. if (m_kernel_stack_for_signal_handler_region)
  109. m_process.deallocate_region(*m_kernel_stack_for_signal_handler_region);
  110. }
  111. void Thread::unblock()
  112. {
  113. if (current == this) {
  114. set_state(Thread::Running);
  115. return;
  116. }
  117. ASSERT(m_state != Thread::Runnable && m_state != Thread::Running);
  118. set_state(Thread::Runnable);
  119. }
  120. void Thread::block_helper()
  121. {
  122. // This function mostly exists to avoid circular header dependencies. If
  123. // anything needs adding, think carefully about whether it belongs in
  124. // block() instead. Remember that we're unlocking here, so be very careful
  125. // about altering any state once we're unlocked!
  126. bool did_unlock = process().big_lock().unlock_if_locked();
  127. Scheduler::yield();
  128. if (did_unlock)
  129. process().big_lock().lock();
  130. }
  131. u64 Thread::sleep(u32 ticks)
  132. {
  133. ASSERT(state() == Thread::Running);
  134. u64 wakeup_time = g_uptime + ticks;
  135. auto ret = current->block<Thread::SleepBlocker>(wakeup_time);
  136. if (wakeup_time > g_uptime) {
  137. ASSERT(ret == Thread::BlockResult::InterruptedBySignal);
  138. }
  139. return wakeup_time;
  140. }
  141. const char* Thread::state_string() const
  142. {
  143. switch (state()) {
  144. case Thread::Invalid:
  145. return "Invalid";
  146. case Thread::Runnable:
  147. return "Runnable";
  148. case Thread::Running:
  149. return "Running";
  150. case Thread::Dying:
  151. return "Dying";
  152. case Thread::Dead:
  153. return "Dead";
  154. case Thread::Stopped:
  155. return "Stopped";
  156. case Thread::Skip1SchedulerPass:
  157. return "Skip1";
  158. case Thread::Skip0SchedulerPasses:
  159. return "Skip0";
  160. case Thread::Blocked:
  161. ASSERT(!m_blockers.is_empty());
  162. return m_blockers.first()->state_string();
  163. }
  164. kprintf("to_string(Thread::State): Invalid state: %u\n", state());
  165. ASSERT_NOT_REACHED();
  166. return nullptr;
  167. }
  168. void Thread::finalize()
  169. {
  170. ASSERT(current == g_finalizer);
  171. dbgprintf("Finalizing Thread %u in %s(%u)\n", tid(), m_process.name().characters(), pid());
  172. set_state(Thread::State::Dead);
  173. if (m_dump_backtrace_on_finalization)
  174. dbg() << backtrace_impl();
  175. if (this == &m_process.main_thread()) {
  176. m_process.finalize();
  177. return;
  178. }
  179. delete this;
  180. }
  181. void Thread::finalize_dying_threads()
  182. {
  183. ASSERT(current == g_finalizer);
  184. Vector<Thread*, 32> dying_threads;
  185. {
  186. InterruptDisabler disabler;
  187. for_each_in_state(Thread::State::Dying, [&](Thread& thread) {
  188. dying_threads.append(&thread);
  189. return IterationDecision::Continue;
  190. });
  191. }
  192. for (auto* thread : dying_threads)
  193. thread->finalize();
  194. }
  195. bool Thread::tick()
  196. {
  197. ++m_ticks;
  198. if (tss().cs & 3)
  199. ++m_process.m_ticks_in_user;
  200. else
  201. ++m_process.m_ticks_in_kernel;
  202. return --m_ticks_left;
  203. }
  204. void Thread::send_signal(u8 signal, Process* sender)
  205. {
  206. ASSERT(signal < 32);
  207. InterruptDisabler disabler;
  208. // FIXME: Figure out what to do for masked signals. Should we also ignore them here?
  209. if (should_ignore_signal(signal)) {
  210. dbg() << "signal " << signal << " was ignored by " << process();
  211. return;
  212. }
  213. if (sender)
  214. dbgprintf("signal: %s(%u) sent %d to %s(%u)\n", sender->name().characters(), sender->pid(), signal, process().name().characters(), pid());
  215. else
  216. dbgprintf("signal: kernel sent %d to %s(%u)\n", signal, process().name().characters(), pid());
  217. m_pending_signals |= 1 << (signal - 1);
  218. }
  219. bool Thread::has_unmasked_pending_signals() const
  220. {
  221. return m_pending_signals & ~m_signal_mask;
  222. }
  223. ShouldUnblockThread Thread::dispatch_one_pending_signal()
  224. {
  225. ASSERT_INTERRUPTS_DISABLED();
  226. u32 signal_candidates = m_pending_signals & ~m_signal_mask;
  227. ASSERT(signal_candidates);
  228. u8 signal = 1;
  229. for (; signal < 32; ++signal) {
  230. if (signal_candidates & (1 << (signal - 1))) {
  231. break;
  232. }
  233. }
  234. return dispatch_signal(signal);
  235. }
  236. enum class DefaultSignalAction {
  237. Terminate,
  238. Ignore,
  239. DumpCore,
  240. Stop,
  241. Continue,
  242. };
  243. DefaultSignalAction default_signal_action(u8 signal)
  244. {
  245. ASSERT(signal && signal < NSIG);
  246. switch (signal) {
  247. case SIGHUP:
  248. case SIGINT:
  249. case SIGKILL:
  250. case SIGPIPE:
  251. case SIGALRM:
  252. case SIGUSR1:
  253. case SIGUSR2:
  254. case SIGVTALRM:
  255. case SIGSTKFLT:
  256. case SIGIO:
  257. case SIGPROF:
  258. case SIGTERM:
  259. case SIGPWR:
  260. return DefaultSignalAction::Terminate;
  261. case SIGCHLD:
  262. case SIGURG:
  263. case SIGWINCH:
  264. return DefaultSignalAction::Ignore;
  265. case SIGQUIT:
  266. case SIGILL:
  267. case SIGTRAP:
  268. case SIGABRT:
  269. case SIGBUS:
  270. case SIGFPE:
  271. case SIGSEGV:
  272. case SIGXCPU:
  273. case SIGXFSZ:
  274. case SIGSYS:
  275. return DefaultSignalAction::DumpCore;
  276. case SIGCONT:
  277. return DefaultSignalAction::Continue;
  278. case SIGSTOP:
  279. case SIGTSTP:
  280. case SIGTTIN:
  281. case SIGTTOU:
  282. return DefaultSignalAction::Stop;
  283. }
  284. ASSERT_NOT_REACHED();
  285. }
  286. bool Thread::should_ignore_signal(u8 signal) const
  287. {
  288. ASSERT(signal < 32);
  289. auto& action = m_signal_action_data[signal];
  290. if (action.handler_or_sigaction.is_null())
  291. return default_signal_action(signal) == DefaultSignalAction::Ignore;
  292. if (action.handler_or_sigaction.as_ptr() == SIG_IGN)
  293. return true;
  294. return false;
  295. }
  296. ShouldUnblockThread Thread::dispatch_signal(u8 signal)
  297. {
  298. ASSERT_INTERRUPTS_DISABLED();
  299. ASSERT(signal > 0 && signal <= 32);
  300. ASSERT(!process().is_ring0());
  301. #ifdef SIGNAL_DEBUG
  302. kprintf("dispatch_signal %s(%u) <- %u\n", process().name().characters(), pid(), signal);
  303. #endif
  304. auto& action = m_signal_action_data[signal];
  305. // FIXME: Implement SA_SIGINFO signal handlers.
  306. ASSERT(!(action.flags & SA_SIGINFO));
  307. // Mark this signal as handled.
  308. m_pending_signals &= ~(1 << (signal - 1));
  309. if (signal == SIGSTOP) {
  310. set_state(Stopped);
  311. return ShouldUnblockThread::No;
  312. }
  313. if (signal == SIGCONT && state() == Stopped)
  314. set_state(Runnable);
  315. auto handler_vaddr = action.handler_or_sigaction;
  316. if (handler_vaddr.is_null()) {
  317. switch (default_signal_action(signal)) {
  318. case DefaultSignalAction::Stop:
  319. set_state(Stopped);
  320. return ShouldUnblockThread::No;
  321. case DefaultSignalAction::DumpCore:
  322. process().for_each_thread([](auto& thread) {
  323. thread.set_dump_backtrace_on_finalization();
  324. return IterationDecision::Continue;
  325. });
  326. [[fallthrough]];
  327. case DefaultSignalAction::Terminate:
  328. m_process.terminate_due_to_signal(signal);
  329. return ShouldUnblockThread::No;
  330. case DefaultSignalAction::Ignore:
  331. ASSERT_NOT_REACHED();
  332. case DefaultSignalAction::Continue:
  333. return ShouldUnblockThread::Yes;
  334. }
  335. ASSERT_NOT_REACHED();
  336. }
  337. if (handler_vaddr.as_ptr() == SIG_IGN) {
  338. #ifdef SIGNAL_DEBUG
  339. kprintf("%s(%u) ignored signal %u\n", process().name().characters(), pid(), signal);
  340. #endif
  341. return ShouldUnblockThread::Yes;
  342. }
  343. ProcessPagingScope paging_scope(m_process);
  344. // The userspace registers should be stored at the top of the stack
  345. // We have to subtract 2 because the processor decrements the kernel
  346. // stack before pushing the args.
  347. auto& regs = *(RegisterDump*)(kernel_stack_top() - sizeof(RegisterDump) - 2);
  348. u32 old_signal_mask = m_signal_mask;
  349. u32 new_signal_mask = action.mask;
  350. if (action.flags & SA_NODEFER)
  351. new_signal_mask &= ~(1 << (signal - 1));
  352. else
  353. new_signal_mask |= 1 << (signal - 1);
  354. m_signal_mask |= new_signal_mask;
  355. u32 old_esp = regs.esp_if_crossRing;
  356. u32 ret_eip = regs.eip;
  357. u32 ret_eflags = regs.eflags;
  358. // Align the stack to 16 bytes.
  359. // Note that we push 56 bytes (4 * 14) on to the stack,
  360. // so we need to account for this here.
  361. u32 stack_alignment = (regs.esp_if_crossRing - 56) % 16;
  362. regs.esp_if_crossRing -= stack_alignment;
  363. push_value_on_user_stack(regs, ret_eflags);
  364. push_value_on_user_stack(regs, ret_eip);
  365. push_value_on_user_stack(regs, regs.eax);
  366. push_value_on_user_stack(regs, regs.ecx);
  367. push_value_on_user_stack(regs, regs.edx);
  368. push_value_on_user_stack(regs, regs.ebx);
  369. push_value_on_user_stack(regs, old_esp);
  370. push_value_on_user_stack(regs, regs.ebp);
  371. push_value_on_user_stack(regs, regs.esi);
  372. push_value_on_user_stack(regs, regs.edi);
  373. // PUSH old_signal_mask
  374. push_value_on_user_stack(regs, old_signal_mask);
  375. push_value_on_user_stack(regs, signal);
  376. push_value_on_user_stack(regs, handler_vaddr.get());
  377. push_value_on_user_stack(regs, 0); //push fake return address
  378. regs.eip = g_return_to_ring3_from_signal_trampoline.get();
  379. ASSERT((regs.esp_if_crossRing % 16) == 0);
  380. // If we're not blocking we need to update the tss so
  381. // that the far jump in Scheduler goes to the proper location.
  382. // When we are blocking we don't update the TSS as we want to
  383. // resume at the blocker and descend the stack, cleaning up nicely.
  384. if (!in_kernel()) {
  385. Scheduler::prepare_to_modify_tss(*this);
  386. m_tss.cs = 0x1b;
  387. m_tss.ds = 0x23;
  388. m_tss.es = 0x23;
  389. m_tss.fs = 0x23;
  390. m_tss.gs = thread_specific_selector() | 3;
  391. m_tss.eip = regs.eip;
  392. m_tss.esp = regs.esp_if_crossRing;
  393. // FIXME: This state is such a hack. It avoids trouble if 'current' is the process receiving a signal.
  394. set_state(Skip1SchedulerPass);
  395. }
  396. #ifdef SIGNAL_DEBUG
  397. kprintf("signal: Okay, %s(%u) {%s} has been primed with signal handler %w:%x\n", process().name().characters(), pid(), to_string(state()), m_tss.cs, m_tss.eip);
  398. #endif
  399. return ShouldUnblockThread::Yes;
  400. }
  401. void Thread::set_default_signal_dispositions()
  402. {
  403. // FIXME: Set up all the right default actions. See signal(7).
  404. memset(&m_signal_action_data, 0, sizeof(m_signal_action_data));
  405. m_signal_action_data[SIGCHLD].handler_or_sigaction = VirtualAddress((u32)SIG_IGN);
  406. m_signal_action_data[SIGWINCH].handler_or_sigaction = VirtualAddress((u32)SIG_IGN);
  407. }
  408. void Thread::push_value_on_user_stack(RegisterDump& registers, u32 value)
  409. {
  410. registers.esp_if_crossRing -= 4;
  411. u32* stack_ptr = (u32*)registers.esp_if_crossRing;
  412. *stack_ptr = value;
  413. }
  414. void Thread::push_value_on_stack(u32 value)
  415. {
  416. m_tss.esp -= 4;
  417. u32* stack_ptr = (u32*)m_tss.esp;
  418. *stack_ptr = value;
  419. }
  420. void Thread::make_userspace_stack_for_main_thread(Vector<String> arguments, Vector<String> environment)
  421. {
  422. auto* region = m_process.allocate_region(VirtualAddress(), default_userspace_stack_size, "Stack (Main thread)");
  423. ASSERT(region);
  424. m_tss.esp = region->vaddr().offset(default_userspace_stack_size).get();
  425. char* stack_base = (char*)region->vaddr().get();
  426. int argc = arguments.size();
  427. char** argv = (char**)stack_base;
  428. char** env = argv + arguments.size() + 1;
  429. char* bufptr = stack_base + (sizeof(char*) * (arguments.size() + 1)) + (sizeof(char*) * (environment.size() + 1));
  430. size_t total_blob_size = 0;
  431. for (auto& a : arguments)
  432. total_blob_size += a.length() + 1;
  433. for (auto& e : environment)
  434. total_blob_size += e.length() + 1;
  435. size_t total_meta_size = sizeof(char*) * (arguments.size() + 1) + sizeof(char*) * (environment.size() + 1);
  436. // FIXME: It would be better if this didn't make us panic.
  437. ASSERT((total_blob_size + total_meta_size) < default_userspace_stack_size);
  438. for (int i = 0; i < arguments.size(); ++i) {
  439. argv[i] = bufptr;
  440. memcpy(bufptr, arguments[i].characters(), arguments[i].length());
  441. bufptr += arguments[i].length();
  442. *(bufptr++) = '\0';
  443. }
  444. argv[arguments.size()] = nullptr;
  445. for (int i = 0; i < environment.size(); ++i) {
  446. env[i] = bufptr;
  447. memcpy(bufptr, environment[i].characters(), environment[i].length());
  448. bufptr += environment[i].length();
  449. *(bufptr++) = '\0';
  450. }
  451. env[environment.size()] = nullptr;
  452. // NOTE: The stack needs to be 16-byte aligned.
  453. push_value_on_stack((u32)env);
  454. push_value_on_stack((u32)argv);
  455. push_value_on_stack((u32)argc);
  456. push_value_on_stack(0);
  457. }
  458. void Thread::make_userspace_stack_for_secondary_thread(void* argument)
  459. {
  460. m_userspace_stack_region = m_process.allocate_region(VirtualAddress(), default_userspace_stack_size, String::format("Stack (Thread %d)", tid()));
  461. ASSERT(m_userspace_stack_region);
  462. m_tss.esp = m_userspace_stack_region->vaddr().offset(default_userspace_stack_size).get();
  463. // NOTE: The stack needs to be 16-byte aligned.
  464. push_value_on_stack((u32)argument);
  465. push_value_on_stack(0);
  466. }
  467. Thread* Thread::clone(Process& process)
  468. {
  469. auto* clone = new Thread(process);
  470. memcpy(clone->m_signal_action_data, m_signal_action_data, sizeof(m_signal_action_data));
  471. clone->m_signal_mask = m_signal_mask;
  472. clone->m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16);
  473. memcpy(clone->m_fpu_state, m_fpu_state, sizeof(FPUState));
  474. clone->m_has_used_fpu = m_has_used_fpu;
  475. clone->m_thread_specific_data = m_thread_specific_data;
  476. return clone;
  477. }
  478. void Thread::initialize()
  479. {
  480. Scheduler::initialize();
  481. }
  482. Vector<Thread*> Thread::all_threads()
  483. {
  484. Vector<Thread*> threads;
  485. InterruptDisabler disabler;
  486. threads.ensure_capacity(thread_table().size());
  487. for (auto* thread : thread_table())
  488. threads.unchecked_append(thread);
  489. return threads;
  490. }
  491. bool Thread::is_thread(void* ptr)
  492. {
  493. ASSERT_INTERRUPTS_DISABLED();
  494. return thread_table().contains((Thread*)ptr);
  495. }
  496. void Thread::set_state(State new_state)
  497. {
  498. InterruptDisabler disabler;
  499. if (new_state == Blocked) {
  500. // we should always have a Blocker while blocked
  501. ASSERT(!m_blockers.is_empty());
  502. }
  503. m_state = new_state;
  504. if (m_process.pid() != 0) {
  505. Scheduler::update_state_for_thread(*this);
  506. }
  507. }
  508. String Thread::backtrace(ProcessInspectionHandle&) const
  509. {
  510. return backtrace_impl();
  511. }
  512. String Thread::backtrace_impl() const
  513. {
  514. auto& process = const_cast<Process&>(this->process());
  515. ProcessPagingScope paging_scope(process);
  516. struct RecognizedSymbol {
  517. u32 address;
  518. const KSym* ksym;
  519. };
  520. StringBuilder builder;
  521. Vector<RecognizedSymbol, 64> recognized_symbols;
  522. recognized_symbols.append({ tss().eip, ksymbolicate(tss().eip) });
  523. for (u32* stack_ptr = (u32*)frame_ptr(); process.validate_read_from_kernel(VirtualAddress((u32)stack_ptr)); stack_ptr = (u32*)*stack_ptr) {
  524. u32 retaddr = stack_ptr[1];
  525. recognized_symbols.append({ retaddr, ksymbolicate(retaddr) });
  526. }
  527. for (auto& symbol : recognized_symbols) {
  528. if (!symbol.address)
  529. break;
  530. if (!symbol.ksym) {
  531. if (!Scheduler::is_active() && process.elf_loader() && process.elf_loader()->has_symbols())
  532. builder.appendf("%p %s\n", symbol.address, process.elf_loader()->symbolicate(symbol.address).characters());
  533. else
  534. builder.appendf("%p\n", symbol.address);
  535. continue;
  536. }
  537. unsigned offset = symbol.address - symbol.ksym->address;
  538. if (symbol.ksym->address == ksym_highest_address && offset > 4096)
  539. builder.appendf("%p\n", symbol.address);
  540. else
  541. builder.appendf("%p %s +%u\n", symbol.address, symbol.ksym->name, offset);
  542. }
  543. return builder.to_string();
  544. }
  545. void Thread::make_thread_specific_region(Badge<Process>)
  546. {
  547. size_t thread_specific_region_alignment = max(process().m_master_tls_alignment, alignof(ThreadSpecificData));
  548. size_t thread_specific_region_size = align_up_to(process().m_master_tls_size, thread_specific_region_alignment) + sizeof(ThreadSpecificData);
  549. auto* region = process().allocate_region({}, thread_specific_region_size, "Thread-specific", PROT_READ | PROT_WRITE, true);
  550. auto* thread_specific_data = (ThreadSpecificData*)region->vaddr().offset(align_up_to(process().m_master_tls_size, thread_specific_region_alignment)).as_ptr();
  551. auto* thread_local_storage = (u8*)((u8*)thread_specific_data) - align_up_to(process().m_master_tls_size, process().m_master_tls_alignment);
  552. m_thread_specific_data = VirtualAddress((u32)thread_specific_data);
  553. thread_specific_data->self = thread_specific_data;
  554. memcpy(thread_local_storage, process().m_master_tls_region->vaddr().as_ptr(), process().m_master_tls_size);
  555. }