MathObject.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492
  1. /*
  2. * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2020, Linus Groh <linusg@serenityos.org>
  4. *
  5. * SPDX-License-Identifier: BSD-2-Clause
  6. */
  7. #include <AK/Function.h>
  8. #include <LibJS/Runtime/GlobalObject.h>
  9. #include <LibJS/Runtime/MathObject.h>
  10. #include <math.h>
  11. namespace JS {
  12. MathObject::MathObject(GlobalObject& global_object)
  13. : Object(*global_object.object_prototype())
  14. {
  15. }
  16. void MathObject::initialize(GlobalObject& global_object)
  17. {
  18. auto& vm = this->vm();
  19. Object::initialize(global_object);
  20. u8 attr = Attribute::Writable | Attribute::Configurable;
  21. define_native_function(vm.names.abs, abs, 1, attr);
  22. define_native_function(vm.names.random, random, 0, attr);
  23. define_native_function(vm.names.sqrt, sqrt, 1, attr);
  24. define_native_function(vm.names.floor, floor, 1, attr);
  25. define_native_function(vm.names.ceil, ceil, 1, attr);
  26. define_native_function(vm.names.round, round, 1, attr);
  27. define_native_function(vm.names.max, max, 2, attr);
  28. define_native_function(vm.names.min, min, 2, attr);
  29. define_native_function(vm.names.trunc, trunc, 1, attr);
  30. define_native_function(vm.names.sin, sin, 1, attr);
  31. define_native_function(vm.names.cos, cos, 1, attr);
  32. define_native_function(vm.names.tan, tan, 1, attr);
  33. define_native_function(vm.names.pow, pow, 2, attr);
  34. define_native_function(vm.names.exp, exp, 1, attr);
  35. define_native_function(vm.names.expm1, expm1, 1, attr);
  36. define_native_function(vm.names.sign, sign, 1, attr);
  37. define_native_function(vm.names.clz32, clz32, 1, attr);
  38. define_native_function(vm.names.acos, acos, 1, attr);
  39. define_native_function(vm.names.acosh, acosh, 1, attr);
  40. define_native_function(vm.names.asin, asin, 1, attr);
  41. define_native_function(vm.names.asinh, asinh, 1, attr);
  42. define_native_function(vm.names.atan, atan, 1, attr);
  43. define_native_function(vm.names.atanh, atanh, 1, attr);
  44. define_native_function(vm.names.log1p, log1p, 1, attr);
  45. define_native_function(vm.names.cbrt, cbrt, 1, attr);
  46. define_native_function(vm.names.atan2, atan2, 2, attr);
  47. define_native_function(vm.names.fround, fround, 1, attr);
  48. define_native_function(vm.names.hypot, hypot, 2, attr);
  49. define_native_function(vm.names.log, log, 1, attr);
  50. define_native_function(vm.names.log2, log2, 1, attr);
  51. define_native_function(vm.names.log10, log10, 1, attr);
  52. define_native_function(vm.names.sinh, sinh, 1, attr);
  53. define_native_function(vm.names.cosh, cosh, 1, attr);
  54. define_native_function(vm.names.tanh, tanh, 1, attr);
  55. define_property(vm.names.E, Value(M_E), 0);
  56. define_property(vm.names.LN2, Value(M_LN2), 0);
  57. define_property(vm.names.LN10, Value(M_LN10), 0);
  58. define_property(vm.names.LOG2E, Value(::log2(M_E)), 0);
  59. define_property(vm.names.LOG10E, Value(::log10(M_E)), 0);
  60. define_property(vm.names.PI, Value(M_PI), 0);
  61. define_property(vm.names.SQRT1_2, Value(M_SQRT1_2), 0);
  62. define_property(vm.names.SQRT2, Value(M_SQRT2), 0);
  63. define_property(vm.well_known_symbol_to_string_tag(), js_string(vm.heap(), "Math"), Attribute::Configurable);
  64. }
  65. MathObject::~MathObject()
  66. {
  67. }
  68. JS_DEFINE_NATIVE_FUNCTION(MathObject::abs)
  69. {
  70. auto number = vm.argument(0).to_number(global_object);
  71. if (vm.exception())
  72. return {};
  73. if (number.is_nan())
  74. return js_nan();
  75. return Value(number.as_double() >= 0 ? number.as_double() : -number.as_double());
  76. }
  77. JS_DEFINE_NATIVE_FUNCTION(MathObject::random)
  78. {
  79. #ifdef __serenity__
  80. double r = (double)arc4random() / (double)UINT32_MAX;
  81. #else
  82. double r = (double)rand() / (double)RAND_MAX;
  83. #endif
  84. return Value(r);
  85. }
  86. JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
  87. {
  88. auto number = vm.argument(0).to_number(global_object);
  89. if (vm.exception())
  90. return {};
  91. if (number.is_nan())
  92. return js_nan();
  93. return Value(::sqrt(number.as_double()));
  94. }
  95. JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
  96. {
  97. auto number = vm.argument(0).to_number(global_object);
  98. if (vm.exception())
  99. return {};
  100. if (number.is_nan())
  101. return js_nan();
  102. return Value(::floor(number.as_double()));
  103. }
  104. JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
  105. {
  106. auto number = vm.argument(0).to_number(global_object);
  107. if (vm.exception())
  108. return {};
  109. if (number.is_nan())
  110. return js_nan();
  111. auto number_double = number.as_double();
  112. if (number_double < 0 && number_double > -1)
  113. return Value(-0.f);
  114. return Value(::ceil(number.as_double()));
  115. }
  116. JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
  117. {
  118. auto number = vm.argument(0).to_number(global_object);
  119. if (vm.exception())
  120. return {};
  121. if (number.is_nan())
  122. return js_nan();
  123. double intpart = 0;
  124. double frac = modf(number.as_double(), &intpart);
  125. if (intpart >= 0) {
  126. if (frac >= 0.5)
  127. intpart += 1.0;
  128. } else {
  129. if (frac < -0.5)
  130. intpart -= 1.0;
  131. }
  132. return Value(intpart);
  133. }
  134. JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
  135. {
  136. if (!vm.argument_count())
  137. return js_negative_infinity();
  138. auto max = vm.argument(0).to_number(global_object);
  139. if (vm.exception())
  140. return {};
  141. for (size_t i = 1; i < vm.argument_count(); ++i) {
  142. auto cur = vm.argument(i).to_number(global_object);
  143. if (vm.exception())
  144. return {};
  145. max = Value(cur.as_double() > max.as_double() ? cur : max);
  146. }
  147. return max;
  148. }
  149. JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
  150. {
  151. if (!vm.argument_count())
  152. return js_infinity();
  153. auto min = vm.argument(0).to_number(global_object);
  154. if (vm.exception())
  155. return {};
  156. for (size_t i = 1; i < vm.argument_count(); ++i) {
  157. auto cur = vm.argument(i).to_number(global_object);
  158. if (vm.exception())
  159. return {};
  160. min = Value(cur.as_double() < min.as_double() ? cur : min);
  161. }
  162. return min;
  163. }
  164. JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
  165. {
  166. auto number = vm.argument(0).to_number(global_object);
  167. if (vm.exception())
  168. return {};
  169. if (number.is_nan())
  170. return js_nan();
  171. if (number.as_double() < 0)
  172. return MathObject::ceil(vm, global_object);
  173. return MathObject::floor(vm, global_object);
  174. }
  175. JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
  176. {
  177. auto number = vm.argument(0).to_number(global_object);
  178. if (vm.exception())
  179. return {};
  180. if (number.is_nan())
  181. return js_nan();
  182. return Value(::sin(number.as_double()));
  183. }
  184. JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
  185. {
  186. auto number = vm.argument(0).to_number(global_object);
  187. if (vm.exception())
  188. return {};
  189. if (number.is_nan())
  190. return js_nan();
  191. return Value(::cos(number.as_double()));
  192. }
  193. JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
  194. {
  195. auto number = vm.argument(0).to_number(global_object);
  196. if (vm.exception())
  197. return {};
  198. if (number.is_nan())
  199. return js_nan();
  200. return Value(::tan(number.as_double()));
  201. }
  202. JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
  203. {
  204. return JS::exp(global_object, vm.argument(0), vm.argument(1));
  205. }
  206. JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
  207. {
  208. auto number = vm.argument(0).to_number(global_object);
  209. if (vm.exception())
  210. return {};
  211. if (number.is_nan())
  212. return js_nan();
  213. return Value(::exp(number.as_double()));
  214. }
  215. JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
  216. {
  217. auto number = vm.argument(0).to_number(global_object);
  218. if (vm.exception())
  219. return {};
  220. if (number.is_nan())
  221. return js_nan();
  222. return Value(::expm1(number.as_double()));
  223. }
  224. JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
  225. {
  226. auto number = vm.argument(0).to_number(global_object);
  227. if (vm.exception())
  228. return {};
  229. if (number.is_positive_zero())
  230. return Value(0);
  231. if (number.is_negative_zero())
  232. return Value(-0.0);
  233. if (number.as_double() > 0)
  234. return Value(1);
  235. if (number.as_double() < 0)
  236. return Value(-1);
  237. return js_nan();
  238. }
  239. JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
  240. {
  241. auto number = vm.argument(0).to_number(global_object);
  242. if (vm.exception())
  243. return {};
  244. if (!number.is_finite_number() || (unsigned)number.as_double() == 0)
  245. return Value(32);
  246. return Value(__builtin_clz((unsigned)number.as_double()));
  247. }
  248. JS_DEFINE_NATIVE_FUNCTION(MathObject::acos)
  249. {
  250. auto number = vm.argument(0).to_number(global_object);
  251. if (vm.exception())
  252. return {};
  253. if (number.is_nan() || number.as_double() > 1 || number.as_double() < -1)
  254. return js_nan();
  255. if (number.as_double() == 1)
  256. return Value(0);
  257. return Value(::acos(number.as_double()));
  258. }
  259. JS_DEFINE_NATIVE_FUNCTION(MathObject::acosh)
  260. {
  261. auto number = vm.argument(0).to_number(global_object);
  262. if (vm.exception())
  263. return {};
  264. if (number.as_double() < 1)
  265. return js_nan();
  266. return Value(::acosh(number.as_double()));
  267. }
  268. JS_DEFINE_NATIVE_FUNCTION(MathObject::asin)
  269. {
  270. auto number = vm.argument(0).to_number(global_object);
  271. if (vm.exception())
  272. return {};
  273. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  274. return number;
  275. return Value(::asin(number.as_double()));
  276. }
  277. JS_DEFINE_NATIVE_FUNCTION(MathObject::asinh)
  278. {
  279. auto number = vm.argument(0).to_number(global_object);
  280. if (vm.exception())
  281. return {};
  282. return Value(::asinh(number.as_double()));
  283. }
  284. JS_DEFINE_NATIVE_FUNCTION(MathObject::atan)
  285. {
  286. auto number = vm.argument(0).to_number(global_object);
  287. if (vm.exception())
  288. return {};
  289. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  290. return number;
  291. if (number.is_positive_infinity())
  292. return Value(M_PI_2);
  293. if (number.is_negative_infinity())
  294. return Value(-M_PI_2);
  295. return Value(::atan(number.as_double()));
  296. }
  297. JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh)
  298. {
  299. auto number = vm.argument(0).to_number(global_object);
  300. if (vm.exception())
  301. return {};
  302. if (number.as_double() > 1 || number.as_double() < -1)
  303. return js_nan();
  304. return Value(::atanh(number.as_double()));
  305. }
  306. JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p)
  307. {
  308. auto number = vm.argument(0).to_number(global_object);
  309. if (vm.exception())
  310. return {};
  311. if (number.as_double() < -1)
  312. return js_nan();
  313. return Value(::log1p(number.as_double()));
  314. }
  315. JS_DEFINE_NATIVE_FUNCTION(MathObject::cbrt)
  316. {
  317. auto number = vm.argument(0).to_number(global_object);
  318. if (vm.exception())
  319. return {};
  320. return Value(::cbrt(number.as_double()));
  321. }
  322. JS_DEFINE_NATIVE_FUNCTION(MathObject::atan2)
  323. {
  324. auto y = vm.argument(0).to_number(global_object), x = vm.argument(1).to_number(global_object);
  325. auto pi_4 = M_PI_2 / 2;
  326. auto three_pi_4 = pi_4 + M_PI_2;
  327. if (vm.exception())
  328. return {};
  329. if (x.is_positive_zero()) {
  330. if (y.is_positive_zero() || y.is_negative_zero())
  331. return y;
  332. else
  333. return (y.as_double() > 0) ? Value(M_PI_2) : Value(-M_PI_2);
  334. }
  335. if (x.is_negative_zero()) {
  336. if (y.is_positive_zero())
  337. return Value(M_PI);
  338. else if (y.is_negative_zero())
  339. return Value(-M_PI);
  340. else
  341. return (y.as_double() > 0) ? Value(M_PI_2) : Value(-M_PI_2);
  342. }
  343. if (x.is_positive_infinity()) {
  344. if (y.is_infinity())
  345. return (y.is_positive_infinity()) ? Value(pi_4) : Value(-pi_4);
  346. else
  347. return (y.as_double() > 0) ? Value(+0.0) : Value(-0.0);
  348. }
  349. if (x.is_negative_infinity()) {
  350. if (y.is_infinity())
  351. return (y.is_positive_infinity()) ? Value(three_pi_4) : Value(-three_pi_4);
  352. else
  353. return (y.as_double() > 0) ? Value(M_PI) : Value(-M_PI);
  354. }
  355. if (y.is_infinity())
  356. return (y.is_positive_infinity()) ? Value(M_PI_2) : Value(-M_PI_2);
  357. if (y.is_positive_zero())
  358. return (x.as_double() > 0) ? Value(+0.0) : Value(M_PI);
  359. if (y.is_negative_zero())
  360. return (x.as_double() > 0) ? Value(-0.0) : Value(-M_PI);
  361. return Value(::atan2(y.as_double(), x.as_double()));
  362. }
  363. JS_DEFINE_NATIVE_FUNCTION(MathObject::fround)
  364. {
  365. auto number = vm.argument(0).to_number(global_object);
  366. if (vm.exception())
  367. return {};
  368. if (number.is_nan())
  369. return js_nan();
  370. return Value((float)number.as_double());
  371. }
  372. JS_DEFINE_NATIVE_FUNCTION(MathObject::hypot)
  373. {
  374. if (!vm.argument_count())
  375. return Value(0);
  376. auto hypot = vm.argument(0).to_number(global_object);
  377. if (vm.exception())
  378. return {};
  379. hypot = Value(hypot.as_double() * hypot.as_double());
  380. for (size_t i = 1; i < vm.argument_count(); ++i) {
  381. auto cur = vm.argument(i).to_number(global_object);
  382. if (vm.exception())
  383. return {};
  384. hypot = Value(hypot.as_double() + cur.as_double() * cur.as_double());
  385. }
  386. return Value(::sqrt(hypot.as_double()));
  387. }
  388. JS_DEFINE_NATIVE_FUNCTION(MathObject::log)
  389. {
  390. auto number = vm.argument(0).to_number(global_object);
  391. if (vm.exception())
  392. return {};
  393. if (number.as_double() < 0)
  394. return js_nan();
  395. return Value(::log(number.as_double()));
  396. }
  397. JS_DEFINE_NATIVE_FUNCTION(MathObject::log2)
  398. {
  399. auto number = vm.argument(0).to_number(global_object);
  400. if (vm.exception())
  401. return {};
  402. if (number.as_double() < 0)
  403. return js_nan();
  404. return Value(::log2(number.as_double()));
  405. }
  406. JS_DEFINE_NATIVE_FUNCTION(MathObject::log10)
  407. {
  408. auto number = vm.argument(0).to_number(global_object);
  409. if (vm.exception())
  410. return {};
  411. if (number.as_double() < 0)
  412. return js_nan();
  413. return Value(::log10(number.as_double()));
  414. }
  415. JS_DEFINE_NATIVE_FUNCTION(MathObject::sinh)
  416. {
  417. auto number = vm.argument(0).to_number(global_object);
  418. if (vm.exception())
  419. return {};
  420. if (number.is_nan())
  421. return js_nan();
  422. return Value(::sinh(number.as_double()));
  423. }
  424. JS_DEFINE_NATIVE_FUNCTION(MathObject::cosh)
  425. {
  426. auto number = vm.argument(0).to_number(global_object);
  427. if (vm.exception())
  428. return {};
  429. if (number.is_nan())
  430. return js_nan();
  431. return Value(::cosh(number.as_double()));
  432. }
  433. JS_DEFINE_NATIVE_FUNCTION(MathObject::tanh)
  434. {
  435. auto number = vm.argument(0).to_number(global_object);
  436. if (vm.exception())
  437. return {};
  438. if (number.is_nan())
  439. return js_nan();
  440. if (number.is_positive_infinity())
  441. return Value(1);
  442. if (number.is_negative_infinity())
  443. return Value(-1);
  444. return Value(::tanh(number.as_double()));
  445. }
  446. }