EventLoop.cpp 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2022, kleines Filmröllchen <malu.bertsch@gmail.com>
  4. * Copyright (c) 2022, the SerenityOS developers.
  5. *
  6. * SPDX-License-Identifier: BSD-2-Clause
  7. */
  8. #include <AK/Assertions.h>
  9. #include <AK/Badge.h>
  10. #include <AK/Debug.h>
  11. #include <AK/Format.h>
  12. #include <AK/IDAllocator.h>
  13. #include <AK/JsonObject.h>
  14. #include <AK/JsonValue.h>
  15. #include <AK/NeverDestroyed.h>
  16. #include <AK/Singleton.h>
  17. #include <AK/TemporaryChange.h>
  18. #include <AK/Time.h>
  19. #include <LibCore/Event.h>
  20. #include <LibCore/EventLoop.h>
  21. #include <LibCore/LocalServer.h>
  22. #include <LibCore/Notifier.h>
  23. #include <LibCore/Object.h>
  24. #include <LibThreading/Mutex.h>
  25. #include <LibThreading/MutexProtected.h>
  26. #include <errno.h>
  27. #include <fcntl.h>
  28. #include <signal.h>
  29. #include <stdio.h>
  30. #include <string.h>
  31. #include <sys/select.h>
  32. #include <sys/socket.h>
  33. #include <sys/time.h>
  34. #include <time.h>
  35. #include <unistd.h>
  36. #ifdef __serenity__
  37. extern bool s_global_initializers_ran;
  38. #endif
  39. namespace Core {
  40. class InspectorServerConnection;
  41. [[maybe_unused]] static bool connect_to_inspector_server();
  42. struct EventLoopTimer {
  43. int timer_id { 0 };
  44. Time interval;
  45. Time fire_time;
  46. bool should_reload { false };
  47. TimerShouldFireWhenNotVisible fire_when_not_visible { TimerShouldFireWhenNotVisible::No };
  48. WeakPtr<Object> owner;
  49. void reload(const Time& now);
  50. bool has_expired(const Time& now) const;
  51. };
  52. struct EventLoop::Private {
  53. Threading::Mutex lock;
  54. };
  55. // The main event loop is global to the program, so it may be accessed from multiple threads.
  56. Threading::MutexProtected<EventLoop*> s_main_event_loop;
  57. static Threading::MutexProtected<NeverDestroyed<IDAllocator>> s_id_allocator;
  58. static Threading::MutexProtected<RefPtr<InspectorServerConnection>> s_inspector_server_connection;
  59. // Each thread has its own event loop stack, its own timers, notifiers and a wake pipe.
  60. static thread_local Vector<EventLoop&>* s_event_loop_stack;
  61. static thread_local HashMap<int, NonnullOwnPtr<EventLoopTimer>>* s_timers;
  62. static thread_local HashTable<Notifier*>* s_notifiers;
  63. thread_local int EventLoop::s_wake_pipe_fds[2];
  64. thread_local bool EventLoop::s_wake_pipe_initialized { false };
  65. void EventLoop::initialize_wake_pipes()
  66. {
  67. if (!s_wake_pipe_initialized) {
  68. #if defined(SOCK_NONBLOCK)
  69. int rc = pipe2(s_wake_pipe_fds, O_CLOEXEC);
  70. #else
  71. int rc = pipe(s_wake_pipe_fds);
  72. fcntl(s_wake_pipe_fds[0], F_SETFD, FD_CLOEXEC);
  73. fcntl(s_wake_pipe_fds[1], F_SETFD, FD_CLOEXEC);
  74. #endif
  75. VERIFY(rc == 0);
  76. s_wake_pipe_initialized = true;
  77. }
  78. }
  79. bool EventLoop::has_been_instantiated()
  80. {
  81. return s_event_loop_stack != nullptr && !s_event_loop_stack->is_empty();
  82. }
  83. class SignalHandlers : public RefCounted<SignalHandlers> {
  84. AK_MAKE_NONCOPYABLE(SignalHandlers);
  85. AK_MAKE_NONMOVABLE(SignalHandlers);
  86. public:
  87. SignalHandlers(int signo, void (*handle_signal)(int));
  88. ~SignalHandlers();
  89. void dispatch();
  90. int add(Function<void(int)>&& handler);
  91. bool remove(int handler_id);
  92. bool is_empty() const
  93. {
  94. if (m_calling_handlers) {
  95. for (auto& handler : m_handlers_pending) {
  96. if (handler.value)
  97. return false; // an add is pending
  98. }
  99. }
  100. return m_handlers.is_empty();
  101. }
  102. bool have(int handler_id) const
  103. {
  104. if (m_calling_handlers) {
  105. auto it = m_handlers_pending.find(handler_id);
  106. if (it != m_handlers_pending.end()) {
  107. if (!it->value)
  108. return false; // a deletion is pending
  109. }
  110. }
  111. return m_handlers.contains(handler_id);
  112. }
  113. int m_signo;
  114. void (*m_original_handler)(int); // TODO: can't use sighandler_t?
  115. HashMap<int, Function<void(int)>> m_handlers;
  116. HashMap<int, Function<void(int)>> m_handlers_pending;
  117. bool m_calling_handlers { false };
  118. };
  119. struct SignalHandlersInfo {
  120. HashMap<int, NonnullRefPtr<SignalHandlers>> signal_handlers;
  121. int next_signal_id { 0 };
  122. };
  123. static Singleton<SignalHandlersInfo> s_signals;
  124. template<bool create_if_null = true>
  125. inline SignalHandlersInfo* signals_info()
  126. {
  127. return s_signals.ptr();
  128. }
  129. pid_t EventLoop::s_pid;
  130. class InspectorServerConnection : public Object {
  131. C_OBJECT(InspectorServerConnection)
  132. private:
  133. explicit InspectorServerConnection(NonnullOwnPtr<Stream::LocalSocket> socket)
  134. : m_socket(move(socket))
  135. , m_client_id(s_id_allocator.with_locked([](auto& allocator) {
  136. return allocator->allocate();
  137. }))
  138. {
  139. #ifdef __serenity__
  140. m_socket->on_ready_to_read = [this] {
  141. u32 length;
  142. auto maybe_nread = m_socket->read({ (u8*)&length, sizeof(length) });
  143. if (maybe_nread.is_error()) {
  144. dbgln("InspectorServerConnection: Failed to read message length from inspector server connection: {}", maybe_nread.error());
  145. shutdown();
  146. return;
  147. }
  148. auto nread = maybe_nread.release_value();
  149. if (nread == 0) {
  150. dbgln_if(EVENTLOOP_DEBUG, "RPC client disconnected");
  151. shutdown();
  152. return;
  153. }
  154. VERIFY(nread == sizeof(length));
  155. auto request_buffer = ByteBuffer::create_uninitialized(length).release_value();
  156. maybe_nread = m_socket->read(request_buffer.bytes());
  157. if (maybe_nread.is_error()) {
  158. dbgln("InspectorServerConnection: Failed to read message content from inspector server connection: {}", maybe_nread.error());
  159. shutdown();
  160. return;
  161. }
  162. nread = maybe_nread.release_value();
  163. auto request_json = JsonValue::from_string(request_buffer);
  164. if (request_json.is_error() || !request_json.value().is_object()) {
  165. dbgln("RPC client sent invalid request");
  166. shutdown();
  167. return;
  168. }
  169. handle_request(request_json.value().as_object());
  170. };
  171. #else
  172. warnln("RPC Client constructed outside serenity, this is very likely a bug!");
  173. #endif
  174. }
  175. virtual ~InspectorServerConnection() override
  176. {
  177. if (auto inspected_object = m_inspected_object.strong_ref())
  178. inspected_object->decrement_inspector_count({});
  179. }
  180. public:
  181. void send_response(const JsonObject& response)
  182. {
  183. auto serialized = response.to_string();
  184. u32 length = serialized.length();
  185. // FIXME: Propagate errors
  186. MUST(m_socket->write({ (const u8*)&length, sizeof(length) }));
  187. MUST(m_socket->write(serialized.bytes()));
  188. }
  189. void handle_request(const JsonObject& request)
  190. {
  191. auto type = request.get("type").as_string_or({});
  192. if (type.is_null()) {
  193. dbgln("RPC client sent request without type field");
  194. return;
  195. }
  196. if (type == "Identify") {
  197. JsonObject response;
  198. response.set("type", type);
  199. response.set("pid", getpid());
  200. #ifdef __serenity__
  201. char buffer[1024];
  202. if (get_process_name(buffer, sizeof(buffer)) >= 0) {
  203. response.set("process_name", buffer);
  204. } else {
  205. response.set("process_name", JsonValue());
  206. }
  207. #endif
  208. send_response(response);
  209. return;
  210. }
  211. if (type == "GetAllObjects") {
  212. JsonObject response;
  213. response.set("type", type);
  214. JsonArray objects;
  215. for (auto& object : Object::all_objects()) {
  216. JsonObject json_object;
  217. object.save_to(json_object);
  218. objects.append(move(json_object));
  219. }
  220. response.set("objects", move(objects));
  221. send_response(response);
  222. return;
  223. }
  224. if (type == "SetInspectedObject") {
  225. auto address = request.get("address").to_number<FlatPtr>();
  226. for (auto& object : Object::all_objects()) {
  227. if ((FlatPtr)&object == address) {
  228. if (auto inspected_object = m_inspected_object.strong_ref())
  229. inspected_object->decrement_inspector_count({});
  230. m_inspected_object = object;
  231. object.increment_inspector_count({});
  232. break;
  233. }
  234. }
  235. return;
  236. }
  237. if (type == "SetProperty") {
  238. auto address = request.get("address").to_number<FlatPtr>();
  239. for (auto& object : Object::all_objects()) {
  240. if ((FlatPtr)&object == address) {
  241. bool success = object.set_property(request.get("name").to_string(), request.get("value"));
  242. JsonObject response;
  243. response.set("type", "SetProperty");
  244. response.set("success", success);
  245. send_response(response);
  246. break;
  247. }
  248. }
  249. return;
  250. }
  251. if (type == "Disconnect") {
  252. shutdown();
  253. return;
  254. }
  255. }
  256. void shutdown()
  257. {
  258. s_id_allocator.with_locked([this](auto& allocator) { allocator->deallocate(m_client_id); });
  259. }
  260. private:
  261. NonnullOwnPtr<Stream::LocalSocket> m_socket;
  262. WeakPtr<Object> m_inspected_object;
  263. int m_client_id { -1 };
  264. };
  265. EventLoop::EventLoop([[maybe_unused]] MakeInspectable make_inspectable)
  266. : m_wake_pipe_fds(&s_wake_pipe_fds)
  267. , m_private(make<Private>())
  268. {
  269. #ifdef __serenity__
  270. if (!s_global_initializers_ran) {
  271. // NOTE: Trying to have an event loop as a global variable will lead to initialization-order fiascos,
  272. // as the event loop constructor accesses and/or sets other global variables.
  273. // Therefore, we crash the program before ASAN catches us.
  274. // If you came here because of the assertion failure, please redesign your program to not have global event loops.
  275. // The common practice is to initialize the main event loop in the main function, and if necessary,
  276. // pass event loop references around or access them with EventLoop::with_main_locked() and EventLoop::current().
  277. VERIFY_NOT_REACHED();
  278. }
  279. #endif
  280. if (!s_event_loop_stack) {
  281. s_event_loop_stack = new Vector<EventLoop&>;
  282. s_timers = new HashMap<int, NonnullOwnPtr<EventLoopTimer>>;
  283. s_notifiers = new HashTable<Notifier*>;
  284. }
  285. s_main_event_loop.with_locked([&, this](auto*& main_event_loop) {
  286. if (main_event_loop == nullptr) {
  287. main_event_loop = this;
  288. s_pid = getpid();
  289. s_event_loop_stack->append(*this);
  290. #ifdef __serenity__
  291. if (getuid() != 0
  292. && make_inspectable == MakeInspectable::Yes
  293. // FIXME: Deadlock potential; though the main loop and inspector server connection are rarely used in conjunction
  294. && !s_inspector_server_connection.with_locked([](auto inspector_server_connection) { return inspector_server_connection; })) {
  295. if (!connect_to_inspector_server())
  296. dbgln("Core::EventLoop: Failed to connect to InspectorServer");
  297. }
  298. #endif
  299. }
  300. });
  301. initialize_wake_pipes();
  302. dbgln_if(EVENTLOOP_DEBUG, "{} Core::EventLoop constructed :)", getpid());
  303. }
  304. EventLoop::~EventLoop()
  305. {
  306. // NOTE: Pop the main event loop off of the stack when destroyed.
  307. s_main_event_loop.with_locked([this](auto*& main_event_loop) {
  308. if (this == main_event_loop) {
  309. s_event_loop_stack->take_last();
  310. main_event_loop = nullptr;
  311. }
  312. });
  313. }
  314. bool connect_to_inspector_server()
  315. {
  316. #ifdef __serenity__
  317. auto maybe_socket = Core::Stream::LocalSocket::connect("/tmp/portal/inspectables");
  318. if (maybe_socket.is_error()) {
  319. dbgln("connect_to_inspector_server: Failed to connect: {}", maybe_socket.error());
  320. return false;
  321. }
  322. s_inspector_server_connection.with_locked([&](auto& inspector_server_connection) {
  323. inspector_server_connection = InspectorServerConnection::construct(maybe_socket.release_value());
  324. });
  325. return true;
  326. #else
  327. VERIFY_NOT_REACHED();
  328. #endif
  329. }
  330. #define VERIFY_EVENT_LOOP_INITIALIZED() \
  331. do { \
  332. if (!s_event_loop_stack) { \
  333. warnln("EventLoop static API was called without prior EventLoop init!"); \
  334. VERIFY_NOT_REACHED(); \
  335. } \
  336. } while (0)
  337. EventLoop& EventLoop::current()
  338. {
  339. VERIFY_EVENT_LOOP_INITIALIZED();
  340. return s_event_loop_stack->last();
  341. }
  342. void EventLoop::quit(int code)
  343. {
  344. dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop::quit({})", code);
  345. m_exit_requested = true;
  346. m_exit_code = code;
  347. }
  348. void EventLoop::unquit()
  349. {
  350. dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop::unquit()");
  351. m_exit_requested = false;
  352. m_exit_code = 0;
  353. }
  354. struct EventLoopPusher {
  355. public:
  356. EventLoopPusher(EventLoop& event_loop)
  357. : m_event_loop(event_loop)
  358. {
  359. if (EventLoop::has_been_instantiated()) {
  360. m_event_loop.take_pending_events_from(EventLoop::current());
  361. s_event_loop_stack->append(event_loop);
  362. }
  363. }
  364. ~EventLoopPusher()
  365. {
  366. if (EventLoop::has_been_instantiated()) {
  367. s_event_loop_stack->take_last();
  368. EventLoop::current().take_pending_events_from(m_event_loop);
  369. }
  370. }
  371. private:
  372. bool is_main_event_loop()
  373. {
  374. return s_main_event_loop.with_locked([this](auto* main_event_loop) { return &m_event_loop == main_event_loop; });
  375. }
  376. EventLoop& m_event_loop;
  377. };
  378. int EventLoop::exec()
  379. {
  380. EventLoopPusher pusher(*this);
  381. for (;;) {
  382. if (m_exit_requested)
  383. return m_exit_code;
  384. pump();
  385. }
  386. VERIFY_NOT_REACHED();
  387. }
  388. void EventLoop::spin_until(Function<bool()> goal_condition)
  389. {
  390. EventLoopPusher pusher(*this);
  391. while (!goal_condition())
  392. pump();
  393. }
  394. size_t EventLoop::pump(WaitMode mode)
  395. {
  396. wait_for_event(mode);
  397. decltype(m_queued_events) events;
  398. {
  399. Threading::MutexLocker locker(m_private->lock);
  400. events = move(m_queued_events);
  401. }
  402. size_t processed_events = 0;
  403. for (size_t i = 0; i < events.size(); ++i) {
  404. auto& queued_event = events.at(i);
  405. auto receiver = queued_event.receiver.strong_ref();
  406. auto& event = *queued_event.event;
  407. if (receiver)
  408. dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop: {} event {}", *receiver, event.type());
  409. if (!receiver) {
  410. switch (event.type()) {
  411. case Event::Quit:
  412. VERIFY_NOT_REACHED();
  413. default:
  414. dbgln_if(EVENTLOOP_DEBUG, "Event type {} with no receiver :(", event.type());
  415. break;
  416. }
  417. } else if (event.type() == Event::Type::DeferredInvoke) {
  418. dbgln_if(DEFERRED_INVOKE_DEBUG, "DeferredInvoke: receiver = {}", *receiver);
  419. static_cast<DeferredInvocationEvent&>(event).m_invokee();
  420. } else {
  421. NonnullRefPtr<Object> protector(*receiver);
  422. receiver->dispatch_event(event);
  423. }
  424. ++processed_events;
  425. if (m_exit_requested) {
  426. Threading::MutexLocker locker(m_private->lock);
  427. dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop: Exit requested. Rejigging {} events.", events.size() - i);
  428. decltype(m_queued_events) new_event_queue;
  429. new_event_queue.ensure_capacity(m_queued_events.size() + events.size());
  430. for (++i; i < events.size(); ++i)
  431. new_event_queue.unchecked_append(move(events[i]));
  432. new_event_queue.extend(move(m_queued_events));
  433. m_queued_events = move(new_event_queue);
  434. break;
  435. }
  436. }
  437. return processed_events;
  438. }
  439. void EventLoop::post_event(Object& receiver, NonnullOwnPtr<Event>&& event, ShouldWake should_wake)
  440. {
  441. Threading::MutexLocker lock(m_private->lock);
  442. dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop::post_event: ({}) << receiver={}, event={}", m_queued_events.size(), receiver, event);
  443. m_queued_events.empend(receiver, move(event));
  444. if (should_wake == ShouldWake::Yes)
  445. wake();
  446. }
  447. SignalHandlers::SignalHandlers(int signo, void (*handle_signal)(int))
  448. : m_signo(signo)
  449. , m_original_handler(signal(signo, handle_signal))
  450. {
  451. dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop: Registered handler for signal {}", m_signo);
  452. }
  453. SignalHandlers::~SignalHandlers()
  454. {
  455. dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop: Unregistering handler for signal {}", m_signo);
  456. signal(m_signo, m_original_handler);
  457. }
  458. void SignalHandlers::dispatch()
  459. {
  460. TemporaryChange change(m_calling_handlers, true);
  461. for (auto& handler : m_handlers)
  462. handler.value(m_signo);
  463. if (!m_handlers_pending.is_empty()) {
  464. // Apply pending adds/removes
  465. for (auto& handler : m_handlers_pending) {
  466. if (handler.value) {
  467. auto result = m_handlers.set(handler.key, move(handler.value));
  468. VERIFY(result == AK::HashSetResult::InsertedNewEntry);
  469. } else {
  470. m_handlers.remove(handler.key);
  471. }
  472. }
  473. m_handlers_pending.clear();
  474. }
  475. }
  476. int SignalHandlers::add(Function<void(int)>&& handler)
  477. {
  478. int id = ++signals_info()->next_signal_id; // TODO: worry about wrapping and duplicates?
  479. if (m_calling_handlers)
  480. m_handlers_pending.set(id, move(handler));
  481. else
  482. m_handlers.set(id, move(handler));
  483. return id;
  484. }
  485. bool SignalHandlers::remove(int handler_id)
  486. {
  487. VERIFY(handler_id != 0);
  488. if (m_calling_handlers) {
  489. auto it = m_handlers.find(handler_id);
  490. if (it != m_handlers.end()) {
  491. // Mark pending remove
  492. m_handlers_pending.set(handler_id, {});
  493. return true;
  494. }
  495. it = m_handlers_pending.find(handler_id);
  496. if (it != m_handlers_pending.end()) {
  497. if (!it->value)
  498. return false; // already was marked as deleted
  499. it->value = nullptr;
  500. return true;
  501. }
  502. return false;
  503. }
  504. return m_handlers.remove(handler_id);
  505. }
  506. void EventLoop::dispatch_signal(int signo)
  507. {
  508. auto& info = *signals_info();
  509. auto handlers = info.signal_handlers.find(signo);
  510. if (handlers != info.signal_handlers.end()) {
  511. // Make sure we bump the ref count while dispatching the handlers!
  512. // This allows a handler to unregister/register while the handlers
  513. // are being called!
  514. auto handler = handlers->value;
  515. dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop: dispatching signal {}", signo);
  516. handler->dispatch();
  517. }
  518. }
  519. void EventLoop::handle_signal(int signo)
  520. {
  521. VERIFY(signo != 0);
  522. // We MUST check if the current pid still matches, because there
  523. // is a window between fork() and exec() where a signal delivered
  524. // to our fork could be inadvertently routed to the parent process!
  525. if (getpid() == s_pid) {
  526. int nwritten = write(s_wake_pipe_fds[1], &signo, sizeof(signo));
  527. if (nwritten < 0) {
  528. perror("EventLoop::register_signal: write");
  529. VERIFY_NOT_REACHED();
  530. }
  531. } else {
  532. // We're a fork who received a signal, reset s_pid
  533. s_pid = 0;
  534. }
  535. }
  536. int EventLoop::register_signal(int signo, Function<void(int)> handler)
  537. {
  538. VERIFY(signo != 0);
  539. auto& info = *signals_info();
  540. auto handlers = info.signal_handlers.find(signo);
  541. if (handlers == info.signal_handlers.end()) {
  542. auto signal_handlers = adopt_ref(*new SignalHandlers(signo, EventLoop::handle_signal));
  543. auto handler_id = signal_handlers->add(move(handler));
  544. info.signal_handlers.set(signo, move(signal_handlers));
  545. return handler_id;
  546. } else {
  547. return handlers->value->add(move(handler));
  548. }
  549. }
  550. void EventLoop::unregister_signal(int handler_id)
  551. {
  552. VERIFY(handler_id != 0);
  553. int remove_signo = 0;
  554. auto& info = *signals_info();
  555. for (auto& h : info.signal_handlers) {
  556. auto& handlers = *h.value;
  557. if (handlers.remove(handler_id)) {
  558. if (handlers.is_empty())
  559. remove_signo = handlers.m_signo;
  560. break;
  561. }
  562. }
  563. if (remove_signo != 0)
  564. info.signal_handlers.remove(remove_signo);
  565. }
  566. void EventLoop::notify_forked(ForkEvent event)
  567. {
  568. VERIFY_EVENT_LOOP_INITIALIZED();
  569. switch (event) {
  570. case ForkEvent::Child:
  571. s_main_event_loop.with_locked([]([[maybe_unused]] auto*& main_event_loop) { main_event_loop = nullptr; });
  572. s_event_loop_stack->clear();
  573. s_timers->clear();
  574. s_notifiers->clear();
  575. s_wake_pipe_initialized = false;
  576. initialize_wake_pipes();
  577. if (auto* info = signals_info<false>()) {
  578. info->signal_handlers.clear();
  579. info->next_signal_id = 0;
  580. }
  581. s_pid = 0;
  582. #ifdef __serenity__
  583. s_main_event_loop.with_locked([]([[maybe_unused]] auto*& main_event_loop) { main_event_loop = nullptr; });
  584. #endif
  585. return;
  586. }
  587. VERIFY_NOT_REACHED();
  588. }
  589. void EventLoop::wait_for_event(WaitMode mode)
  590. {
  591. fd_set rfds;
  592. fd_set wfds;
  593. retry:
  594. FD_ZERO(&rfds);
  595. FD_ZERO(&wfds);
  596. int max_fd = 0;
  597. auto add_fd_to_set = [&max_fd](int fd, fd_set& set) {
  598. FD_SET(fd, &set);
  599. if (fd > max_fd)
  600. max_fd = fd;
  601. };
  602. int max_fd_added = -1;
  603. add_fd_to_set(s_wake_pipe_fds[0], rfds);
  604. max_fd = max(max_fd, max_fd_added);
  605. for (auto& notifier : *s_notifiers) {
  606. if (notifier->event_mask() & Notifier::Read)
  607. add_fd_to_set(notifier->fd(), rfds);
  608. if (notifier->event_mask() & Notifier::Write)
  609. add_fd_to_set(notifier->fd(), wfds);
  610. if (notifier->event_mask() & Notifier::Exceptional)
  611. VERIFY_NOT_REACHED();
  612. }
  613. bool queued_events_is_empty;
  614. {
  615. Threading::MutexLocker locker(m_private->lock);
  616. queued_events_is_empty = m_queued_events.is_empty();
  617. }
  618. Time now;
  619. struct timeval timeout = { 0, 0 };
  620. bool should_wait_forever = false;
  621. if (mode == WaitMode::WaitForEvents && queued_events_is_empty) {
  622. auto next_timer_expiration = get_next_timer_expiration();
  623. if (next_timer_expiration.has_value()) {
  624. now = Time::now_monotonic_coarse();
  625. auto computed_timeout = next_timer_expiration.value() - now;
  626. if (computed_timeout.is_negative())
  627. computed_timeout = Time::zero();
  628. timeout = computed_timeout.to_timeval();
  629. } else {
  630. should_wait_forever = true;
  631. }
  632. }
  633. try_select_again:
  634. int marked_fd_count = select(max_fd + 1, &rfds, &wfds, nullptr, should_wait_forever ? nullptr : &timeout);
  635. if (marked_fd_count < 0) {
  636. int saved_errno = errno;
  637. if (saved_errno == EINTR) {
  638. if (m_exit_requested)
  639. return;
  640. goto try_select_again;
  641. }
  642. dbgln("Core::EventLoop::wait_for_event: {} ({}: {})", marked_fd_count, saved_errno, strerror(saved_errno));
  643. VERIFY_NOT_REACHED();
  644. }
  645. if (FD_ISSET(s_wake_pipe_fds[0], &rfds)) {
  646. int wake_events[8];
  647. ssize_t nread;
  648. // We might receive another signal while read()ing here. The signal will go to the handle_signal properly,
  649. // but we get interrupted. Therefore, just retry while we were interrupted.
  650. do {
  651. errno = 0;
  652. nread = read(s_wake_pipe_fds[0], wake_events, sizeof(wake_events));
  653. if (nread == 0)
  654. break;
  655. } while (nread < 0 && errno == EINTR);
  656. if (nread < 0) {
  657. perror("Core::EventLoop::wait_for_event: read from wake pipe");
  658. VERIFY_NOT_REACHED();
  659. }
  660. VERIFY(nread > 0);
  661. bool wake_requested = false;
  662. int event_count = nread / sizeof(wake_events[0]);
  663. for (int i = 0; i < event_count; i++) {
  664. if (wake_events[i] != 0)
  665. dispatch_signal(wake_events[i]);
  666. else
  667. wake_requested = true;
  668. }
  669. if (!wake_requested && nread == sizeof(wake_events))
  670. goto retry;
  671. }
  672. if (!s_timers->is_empty()) {
  673. now = Time::now_monotonic_coarse();
  674. }
  675. for (auto& it : *s_timers) {
  676. auto& timer = *it.value;
  677. if (!timer.has_expired(now))
  678. continue;
  679. auto owner = timer.owner.strong_ref();
  680. if (timer.fire_when_not_visible == TimerShouldFireWhenNotVisible::No
  681. && owner && !owner->is_visible_for_timer_purposes()) {
  682. continue;
  683. }
  684. dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop: Timer {} has expired, sending Core::TimerEvent to {}", timer.timer_id, *owner);
  685. if (owner)
  686. post_event(*owner, make<TimerEvent>(timer.timer_id));
  687. if (timer.should_reload) {
  688. timer.reload(now);
  689. } else {
  690. // FIXME: Support removing expired timers that don't want to reload.
  691. VERIFY_NOT_REACHED();
  692. }
  693. }
  694. if (!marked_fd_count)
  695. return;
  696. for (auto& notifier : *s_notifiers) {
  697. if (FD_ISSET(notifier->fd(), &rfds)) {
  698. if (notifier->event_mask() & Notifier::Event::Read)
  699. post_event(*notifier, make<NotifierReadEvent>(notifier->fd()));
  700. }
  701. if (FD_ISSET(notifier->fd(), &wfds)) {
  702. if (notifier->event_mask() & Notifier::Event::Write)
  703. post_event(*notifier, make<NotifierWriteEvent>(notifier->fd()));
  704. }
  705. }
  706. }
  707. bool EventLoopTimer::has_expired(const Time& now) const
  708. {
  709. return now > fire_time;
  710. }
  711. void EventLoopTimer::reload(const Time& now)
  712. {
  713. fire_time = now + interval;
  714. }
  715. Optional<Time> EventLoop::get_next_timer_expiration()
  716. {
  717. auto now = Time::now_monotonic_coarse();
  718. Optional<Time> soonest {};
  719. for (auto& it : *s_timers) {
  720. auto& fire_time = it.value->fire_time;
  721. auto owner = it.value->owner.strong_ref();
  722. if (it.value->fire_when_not_visible == TimerShouldFireWhenNotVisible::No
  723. && owner && !owner->is_visible_for_timer_purposes()) {
  724. continue;
  725. }
  726. // OPTIMIZATION: If we have a timer that needs to fire right away, we can stop looking here.
  727. // FIXME: This whole operation could be O(1) with a better data structure.
  728. if (fire_time < now)
  729. return now;
  730. if (!soonest.has_value() || fire_time < soonest.value())
  731. soonest = fire_time;
  732. }
  733. return soonest;
  734. }
  735. int EventLoop::register_timer(Object& object, int milliseconds, bool should_reload, TimerShouldFireWhenNotVisible fire_when_not_visible)
  736. {
  737. VERIFY_EVENT_LOOP_INITIALIZED();
  738. VERIFY(milliseconds >= 0);
  739. auto timer = make<EventLoopTimer>();
  740. timer->owner = object;
  741. timer->interval = Time::from_milliseconds(milliseconds);
  742. timer->reload(Time::now_monotonic_coarse());
  743. timer->should_reload = should_reload;
  744. timer->fire_when_not_visible = fire_when_not_visible;
  745. int timer_id = s_id_allocator.with_locked([](auto& allocator) { return allocator->allocate(); });
  746. timer->timer_id = timer_id;
  747. s_timers->set(timer_id, move(timer));
  748. return timer_id;
  749. }
  750. bool EventLoop::unregister_timer(int timer_id)
  751. {
  752. VERIFY_EVENT_LOOP_INITIALIZED();
  753. s_id_allocator.with_locked([&](auto& allocator) { allocator->deallocate(timer_id); });
  754. auto it = s_timers->find(timer_id);
  755. if (it == s_timers->end())
  756. return false;
  757. s_timers->remove(it);
  758. return true;
  759. }
  760. void EventLoop::register_notifier(Badge<Notifier>, Notifier& notifier)
  761. {
  762. VERIFY_EVENT_LOOP_INITIALIZED();
  763. s_notifiers->set(&notifier);
  764. }
  765. void EventLoop::unregister_notifier(Badge<Notifier>, Notifier& notifier)
  766. {
  767. VERIFY_EVENT_LOOP_INITIALIZED();
  768. s_notifiers->remove(&notifier);
  769. }
  770. void EventLoop::wake_current()
  771. {
  772. EventLoop::current().wake();
  773. }
  774. void EventLoop::wake()
  775. {
  776. dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop::wake()");
  777. int wake_event = 0;
  778. int nwritten = write((*m_wake_pipe_fds)[1], &wake_event, sizeof(wake_event));
  779. if (nwritten < 0) {
  780. perror("EventLoop::wake: write");
  781. VERIFY_NOT_REACHED();
  782. }
  783. }
  784. EventLoop::QueuedEvent::QueuedEvent(Object& receiver, NonnullOwnPtr<Event> event)
  785. : receiver(receiver)
  786. , event(move(event))
  787. {
  788. }
  789. EventLoop::QueuedEvent::QueuedEvent(QueuedEvent&& other)
  790. : receiver(other.receiver)
  791. , event(move(other.event))
  792. {
  793. }
  794. }