123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270 |
- /*
- * Copyright (c) 2021, Stephan Unverwerth <s.unverwerth@gmx.de>
- *
- * SPDX-License-Identifier: BSD-2-Clause
- */
- #include "SoftwareRasterizer.h"
- #include <AK/Function.h>
- #include <LibGfx/Painter.h>
- namespace GL {
- static constexpr size_t RASTERIZER_BLOCK_SIZE = 16;
- struct FloatVector2 {
- float x;
- float y;
- };
- constexpr static float triangle_area(const FloatVector2& a, const FloatVector2& b, const FloatVector2& c)
- {
- return ((c.x - a.x) * (b.y - a.y) - (c.y - a.y) * (b.x - a.x)) / 2;
- }
- template<typename T>
- constexpr static T interpolate(const T& v0, const T& v1, const T& v2, const FloatVector4& barycentric_coords)
- {
- return v0 * barycentric_coords.x() + v1 * barycentric_coords.y() + v2 * barycentric_coords.z();
- }
- static Gfx::RGBA32 to_rgba32(const FloatVector4& v)
- {
- auto clamped = v.clamped(0, 1);
- u8 r = clamped.x() * 255;
- u8 g = clamped.y() * 255;
- u8 b = clamped.z() * 255;
- u8 a = clamped.w() * 255;
- return a << 24 | b << 16 | g << 8 | r;
- }
- template<typename PS>
- static void rasterize_triangle(const RasterizerOptions& options, Gfx::Bitmap& render_target, DepthBuffer& depth_buffer, const GLTriangle& triangle, PS pixel_shader)
- {
- // Since the algorithm is based on blocks of uniform size, we need
- // to ensure that our render_target size is actually a multiple of the block size
- VERIFY((render_target.width() % RASTERIZER_BLOCK_SIZE) == 0);
- VERIFY((render_target.height() % RASTERIZER_BLOCK_SIZE) == 0);
- // Calculate area of the triangle for later tests
- FloatVector2 v0 = { triangle.vertices[0].x, triangle.vertices[0].y };
- FloatVector2 v1 = { triangle.vertices[1].x, triangle.vertices[1].y };
- FloatVector2 v2 = { triangle.vertices[2].x, triangle.vertices[2].y };
- float area = triangle_area(v0, v1, v2);
- if (area == 0)
- return;
- float one_over_area = 1 / area;
- // Obey top-left rule:
- // This sets up "zero" for later pixel coverage tests.
- // Depending on where on the triangle the edge is located
- // it is either tested against 0 or float epsilon, effectively
- // turning "< 0" into "<= 0"
- float constexpr epsilon = AK::NumericLimits<float>::epsilon();
- FloatVector4 zero { epsilon, epsilon, epsilon, 0.0f };
- if (v1.y > v0.y || (v1.y == v0.y && v1.x < v0.x))
- zero.set_z(0);
- if (v2.y > v1.y || (v2.y == v1.y && v2.x < v1.x))
- zero.set_x(0);
- if (v0.y > v2.y || (v0.y == v2.y && v0.x < v2.x))
- zero.set_y(0);
- // This function calculates the barycentric coordinates for the pixel relative to the triangle.
- auto barycentric_coordinates = [v0, v1, v2, one_over_area](float x, float y) -> FloatVector4 {
- FloatVector2 p { x, y };
- return {
- triangle_area(v1, v2, p) * one_over_area,
- triangle_area(v2, v0, p) * one_over_area,
- triangle_area(v0, v1, p) * one_over_area,
- 0.0f
- };
- };
- // This function tests whether a point lies within the triangle
- auto test_point = [zero](const FloatVector4& point) -> bool {
- return point.x() >= zero.x()
- && point.y() >= zero.y()
- && point.z() >= zero.z();
- };
- // Calculate bounds
- FloatVector2 min { AK::min(v0.x, AK::min(v1.x, v2.x)), AK::min(v0.y, AK::min(v1.y, v2.y)) };
- FloatVector2 max { AK::max(v0.x, AK::max(v1.x, v2.x)), AK::max(v0.y, AK::max(v1.y, v2.y)) };
- // Calculate block-based bounds
- int iminx = floorf(min.x);
- int iminy = floorf(min.y);
- int imaxx = ceilf(max.x);
- int imaxy = ceilf(max.y);
- iminx = clamp(iminx, 0, render_target.width() - 1);
- imaxx = clamp(imaxx, 0, render_target.width() - 1);
- iminy = clamp(iminy, 0, render_target.height() - 1);
- imaxy = clamp(imaxy, 0, render_target.height() - 1);
- int bx0 = iminx / RASTERIZER_BLOCK_SIZE;
- int bx1 = imaxx / RASTERIZER_BLOCK_SIZE + 1;
- int by0 = iminy / RASTERIZER_BLOCK_SIZE;
- int by1 = imaxy / RASTERIZER_BLOCK_SIZE + 1;
- // Iterate over all blocks within the bounds of the triangle
- for (int by = by0; by < by1; by++) {
- for (int bx = bx0; bx < bx1; bx++) {
- // The 4 block corners
- int x0 = bx * RASTERIZER_BLOCK_SIZE;
- int y0 = by * RASTERIZER_BLOCK_SIZE;
- int x1 = bx * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE;
- int y1 = by * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE;
- // Barycentric coordinates of the 4 block corners
- auto a = barycentric_coordinates(x0, y0);
- auto b = barycentric_coordinates(x1, y0);
- auto c = barycentric_coordinates(x0, y1);
- auto d = barycentric_coordinates(x1, y1);
- // If the whole block is outside any of the triangle edges we can discard it completely
- if ((a.x() < zero.x() && b.x() < zero.x() && c.x() < zero.x() && d.x() < zero.x())
- || (a.y() < zero.y() && b.y() < zero.y() && c.y() < zero.y() && d.y() < zero.y())
- || (a.z() < zero.z() && b.z() < zero.z() && c.z() < zero.z() && d.z() < zero.z()))
- continue;
- // barycentric coordinate derivatives
- auto dcdx = (b - a) / RASTERIZER_BLOCK_SIZE;
- auto dcdy = (c - a) / RASTERIZER_BLOCK_SIZE;
- if (test_point(a) && test_point(b) && test_point(c) && test_point(d)) {
- // The block is fully contained within the triangle
- // Fill the block without further coverage tests
- for (int y = y0; y < y1; y++) {
- auto coords = a;
- auto* pixel = &render_target.scanline(y)[x0];
- auto* depth = &depth_buffer.scanline(y)[x0];
- for (int x = x0; x < x1; x++) {
- if (options.enable_depth_test) {
- float z = interpolate(triangle.vertices[0].z, triangle.vertices[1].z, triangle.vertices[2].z, coords);
- if (z < *depth) {
- *pixel = to_rgba32(pixel_shader(coords, triangle));
- *depth = z;
- }
- } else {
- *pixel = to_rgba32(pixel_shader(coords, triangle));
- }
- pixel++;
- depth++;
- coords = coords + dcdx;
- }
- a = a + dcdy;
- }
- } else {
- // The block overlaps at least one triangle edge
- // We need to test coverage of every pixel within the block
- for (int y = y0; y < y1; y++) {
- auto coords = a;
- auto* pixel = &render_target.scanline(y)[x0];
- auto* depth = &depth_buffer.scanline(y)[x0];
- for (int x = x0; x < x1; x++) {
- if (test_point(coords)) {
- if (options.enable_depth_test) {
- float z = interpolate(triangle.vertices[0].z, triangle.vertices[1].z, triangle.vertices[2].z, coords);
- if (z < *depth) {
- *pixel = to_rgba32(pixel_shader(coords, triangle));
- *depth = z;
- }
- } else {
- *pixel = to_rgba32(pixel_shader(coords, triangle));
- }
- }
- pixel++;
- depth++;
- coords = coords + dcdx;
- }
- a = a + dcdy;
- }
- }
- }
- }
- }
- static Gfx::IntSize closest_multiple(const Gfx::IntSize& min_size, size_t step)
- {
- int width = ((min_size.width() + step - 1) / step) * step;
- int height = ((min_size.height() + step - 1) / step) * step;
- return { width, height };
- }
- SoftwareRasterizer::SoftwareRasterizer(const Gfx::IntSize& min_size)
- : m_render_target { Gfx::Bitmap::create(Gfx::BitmapFormat::BGRA8888, closest_multiple(min_size, RASTERIZER_BLOCK_SIZE)) }
- , m_depth_buffer { adopt_own(*new DepthBuffer(closest_multiple(min_size, RASTERIZER_BLOCK_SIZE))) }
- {
- }
- void SoftwareRasterizer::submit_triangle(const GLTriangle& triangle)
- {
- if (m_options.shade_smooth) {
- rasterize_triangle(m_options, *m_render_target, *m_depth_buffer, triangle, [](const FloatVector4& v, const GLTriangle& t) -> FloatVector4 {
- const float r = t.vertices[0].r * v.x() + t.vertices[1].r * v.y() + t.vertices[2].r * v.z();
- const float g = t.vertices[0].g * v.x() + t.vertices[1].g * v.y() + t.vertices[2].g * v.z();
- const float b = t.vertices[0].b * v.x() + t.vertices[1].b * v.y() + t.vertices[2].b * v.z();
- const float a = t.vertices[0].a * v.x() + t.vertices[1].a * v.y() + t.vertices[2].a * v.z();
- return { r, g, b, a };
- });
- } else {
- rasterize_triangle(m_options, *m_render_target, *m_depth_buffer, triangle, [](const FloatVector4&, const GLTriangle& t) -> FloatVector4 {
- return { t.vertices[0].r, t.vertices[0].g, t.vertices[0].b, t.vertices[0].a };
- });
- }
- }
- void SoftwareRasterizer::resize(const Gfx::IntSize& min_size)
- {
- wait_for_all_threads();
- m_render_target = Gfx::Bitmap::create(Gfx::BitmapFormat::BGRA8888, closest_multiple(min_size, RASTERIZER_BLOCK_SIZE));
- m_depth_buffer = adopt_own(*new DepthBuffer(m_render_target->size()));
- }
- void SoftwareRasterizer::clear_color(const FloatVector4& color)
- {
- wait_for_all_threads();
- uint8_t r = static_cast<uint8_t>(clamp(color.x(), 0.0f, 1.0f) * 255);
- uint8_t g = static_cast<uint8_t>(clamp(color.y(), 0.0f, 1.0f) * 255);
- uint8_t b = static_cast<uint8_t>(clamp(color.z(), 0.0f, 1.0f) * 255);
- uint8_t a = static_cast<uint8_t>(clamp(color.w(), 0.0f, 1.0f) * 255);
- m_render_target->fill(Gfx::Color(r, g, b, a));
- }
- void SoftwareRasterizer::clear_depth(float depth)
- {
- wait_for_all_threads();
- m_depth_buffer->clear(depth);
- }
- void SoftwareRasterizer::blit_to(Gfx::Bitmap& target)
- {
- wait_for_all_threads();
- Gfx::Painter painter { target };
- painter.blit({ 0, 0 }, *m_render_target, m_render_target->rect(), 1.0f, false);
- }
- void SoftwareRasterizer::wait_for_all_threads() const
- {
- // FIXME: Wait for all render threads to finish when multithreading is being implemented
- }
- void SoftwareRasterizer::set_options(const RasterizerOptions& options)
- {
- wait_for_all_threads();
- m_options = options;
- // FIXME: Recreate or reinitialize render threads here when multithreading is being implemented
- }
- }
|