MemoryManager.cpp 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240
  1. /*
  2. * Copyright (c) 2018-2022, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Assertions.h>
  7. #include <AK/Memory.h>
  8. #include <AK/StringView.h>
  9. #include <Kernel/Arch/CPU.h>
  10. #include <Kernel/Arch/PageDirectory.h>
  11. #include <Kernel/Arch/PageFault.h>
  12. #include <Kernel/Arch/RegisterState.h>
  13. #include <Kernel/BootInfo.h>
  14. #include <Kernel/CMOS.h>
  15. #include <Kernel/FileSystem/Inode.h>
  16. #include <Kernel/Heap/kmalloc.h>
  17. #include <Kernel/KSyms.h>
  18. #include <Kernel/Memory/AnonymousVMObject.h>
  19. #include <Kernel/Memory/MemoryManager.h>
  20. #include <Kernel/Memory/PageDirectory.h>
  21. #include <Kernel/Memory/PhysicalRegion.h>
  22. #include <Kernel/Memory/SharedInodeVMObject.h>
  23. #include <Kernel/Multiboot.h>
  24. #include <Kernel/Panic.h>
  25. #include <Kernel/Prekernel/Prekernel.h>
  26. #include <Kernel/Process.h>
  27. #include <Kernel/Sections.h>
  28. #include <Kernel/StdLib.h>
  29. extern u8 start_of_kernel_image[];
  30. extern u8 end_of_kernel_image[];
  31. extern u8 start_of_kernel_text[];
  32. extern u8 start_of_kernel_data[];
  33. extern u8 end_of_kernel_bss[];
  34. extern u8 start_of_ro_after_init[];
  35. extern u8 end_of_ro_after_init[];
  36. extern u8 start_of_unmap_after_init[];
  37. extern u8 end_of_unmap_after_init[];
  38. extern u8 start_of_kernel_ksyms[];
  39. extern u8 end_of_kernel_ksyms[];
  40. extern multiboot_module_entry_t multiboot_copy_boot_modules_array[16];
  41. extern size_t multiboot_copy_boot_modules_count;
  42. // Treat the super pages as logically separate from .bss
  43. // FIXME: Find a solution so we don't need to expand this range each time
  44. // we are in a situation too many drivers try to allocate super pages.
  45. __attribute__((section(".super_pages"))) static u8 super_pages[4 * MiB];
  46. namespace Kernel::Memory {
  47. ErrorOr<FlatPtr> page_round_up(FlatPtr x)
  48. {
  49. if (x > (explode_byte(0xFF) & ~0xFFF)) {
  50. return Error::from_errno(EINVAL);
  51. }
  52. return (((FlatPtr)(x)) + PAGE_SIZE - 1) & (~(PAGE_SIZE - 1));
  53. }
  54. // NOTE: We can NOT use Singleton for this class, because
  55. // MemoryManager::initialize is called *before* global constructors are
  56. // run. If we do, then Singleton would get re-initialized, causing
  57. // the memory manager to be initialized twice!
  58. static MemoryManager* s_the;
  59. RecursiveSpinlock s_mm_lock { LockRank::MemoryManager };
  60. MemoryManager& MemoryManager::the()
  61. {
  62. return *s_the;
  63. }
  64. bool MemoryManager::is_initialized()
  65. {
  66. return s_the != nullptr;
  67. }
  68. static UNMAP_AFTER_INIT VirtualRange kernel_virtual_range()
  69. {
  70. auto kernel_range_start = kernel_mapping_base + 2 * MiB; // The first 2 MiB are used for mapping the pre-kernel
  71. return VirtualRange { VirtualAddress(kernel_range_start), KERNEL_PD_END - kernel_range_start };
  72. }
  73. UNMAP_AFTER_INIT MemoryManager::MemoryManager()
  74. : m_region_tree(kernel_virtual_range())
  75. {
  76. s_the = this;
  77. SpinlockLocker lock(s_mm_lock);
  78. parse_memory_map();
  79. activate_kernel_page_directory(kernel_page_directory());
  80. protect_kernel_image();
  81. // We're temporarily "committing" to two pages that we need to allocate below
  82. auto committed_pages = commit_user_physical_pages(2).release_value();
  83. m_shared_zero_page = committed_pages.take_one();
  84. // We're wasting a page here, we just need a special tag (physical
  85. // address) so that we know when we need to lazily allocate a page
  86. // that we should be drawing this page from the committed pool rather
  87. // than potentially failing if no pages are available anymore.
  88. // By using a tag we don't have to query the VMObject for every page
  89. // whether it was committed or not
  90. m_lazy_committed_page = committed_pages.take_one();
  91. }
  92. UNMAP_AFTER_INIT MemoryManager::~MemoryManager() = default;
  93. UNMAP_AFTER_INIT void MemoryManager::protect_kernel_image()
  94. {
  95. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  96. // Disable writing to the kernel text and rodata segments.
  97. for (auto const* i = start_of_kernel_text; i < start_of_kernel_data; i += PAGE_SIZE) {
  98. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  99. pte.set_writable(false);
  100. }
  101. if (Processor::current().has_nx()) {
  102. // Disable execution of the kernel data, bss and heap segments.
  103. for (auto const* i = start_of_kernel_data; i < end_of_kernel_image; i += PAGE_SIZE) {
  104. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  105. pte.set_execute_disabled(true);
  106. }
  107. }
  108. }
  109. UNMAP_AFTER_INIT void MemoryManager::unmap_prekernel()
  110. {
  111. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  112. SpinlockLocker mm_lock(s_mm_lock);
  113. auto start = start_of_prekernel_image.page_base().get();
  114. auto end = end_of_prekernel_image.page_base().get();
  115. for (auto i = start; i <= end; i += PAGE_SIZE)
  116. release_pte(kernel_page_directory(), VirtualAddress(i), i == end ? IsLastPTERelease::Yes : IsLastPTERelease::No);
  117. flush_tlb(&kernel_page_directory(), VirtualAddress(start), (end - start) / PAGE_SIZE);
  118. }
  119. UNMAP_AFTER_INIT void MemoryManager::protect_readonly_after_init_memory()
  120. {
  121. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  122. SpinlockLocker mm_lock(s_mm_lock);
  123. // Disable writing to the .ro_after_init section
  124. for (auto i = (FlatPtr)&start_of_ro_after_init; i < (FlatPtr)&end_of_ro_after_init; i += PAGE_SIZE) {
  125. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  126. pte.set_writable(false);
  127. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  128. }
  129. }
  130. void MemoryManager::unmap_text_after_init()
  131. {
  132. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  133. SpinlockLocker mm_lock(s_mm_lock);
  134. auto start = page_round_down((FlatPtr)&start_of_unmap_after_init);
  135. auto end = page_round_up((FlatPtr)&end_of_unmap_after_init).release_value_but_fixme_should_propagate_errors();
  136. // Unmap the entire .unmap_after_init section
  137. for (auto i = start; i < end; i += PAGE_SIZE) {
  138. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  139. pte.clear();
  140. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  141. }
  142. dmesgln("Unmapped {} KiB of kernel text after init! :^)", (end - start) / KiB);
  143. }
  144. UNMAP_AFTER_INIT void MemoryManager::protect_ksyms_after_init()
  145. {
  146. SpinlockLocker mm_lock(s_mm_lock);
  147. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  148. auto start = page_round_down((FlatPtr)start_of_kernel_ksyms);
  149. auto end = page_round_up((FlatPtr)end_of_kernel_ksyms).release_value_but_fixme_should_propagate_errors();
  150. for (auto i = start; i < end; i += PAGE_SIZE) {
  151. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  152. pte.set_writable(false);
  153. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  154. }
  155. dmesgln("Write-protected kernel symbols after init.");
  156. }
  157. IterationDecision MemoryManager::for_each_physical_memory_range(Function<IterationDecision(PhysicalMemoryRange const&)> callback)
  158. {
  159. VERIFY(!m_physical_memory_ranges.is_empty());
  160. for (auto& current_range : m_physical_memory_ranges) {
  161. IterationDecision decision = callback(current_range);
  162. if (decision != IterationDecision::Continue)
  163. return decision;
  164. }
  165. return IterationDecision::Continue;
  166. }
  167. UNMAP_AFTER_INIT void MemoryManager::register_reserved_ranges()
  168. {
  169. VERIFY(!m_physical_memory_ranges.is_empty());
  170. ContiguousReservedMemoryRange range;
  171. for (auto& current_range : m_physical_memory_ranges) {
  172. if (current_range.type != PhysicalMemoryRangeType::Reserved) {
  173. if (range.start.is_null())
  174. continue;
  175. m_reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, current_range.start.get() - range.start.get() });
  176. range.start.set((FlatPtr) nullptr);
  177. continue;
  178. }
  179. if (!range.start.is_null()) {
  180. continue;
  181. }
  182. range.start = current_range.start;
  183. }
  184. if (m_physical_memory_ranges.last().type != PhysicalMemoryRangeType::Reserved)
  185. return;
  186. if (range.start.is_null())
  187. return;
  188. m_reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, m_physical_memory_ranges.last().start.get() + m_physical_memory_ranges.last().length - range.start.get() });
  189. }
  190. bool MemoryManager::is_allowed_to_read_physical_memory_for_userspace(PhysicalAddress start_address, size_t read_length) const
  191. {
  192. // Note: Guard against overflow in case someone tries to mmap on the edge of
  193. // the RAM
  194. if (start_address.offset_addition_would_overflow(read_length))
  195. return false;
  196. auto end_address = start_address.offset(read_length);
  197. for (auto const& current_range : m_reserved_memory_ranges) {
  198. if (current_range.start > start_address)
  199. continue;
  200. if (current_range.start.offset(current_range.length) < end_address)
  201. continue;
  202. return true;
  203. }
  204. return false;
  205. }
  206. UNMAP_AFTER_INIT void MemoryManager::parse_memory_map()
  207. {
  208. // Register used memory regions that we know of.
  209. m_used_memory_ranges.ensure_capacity(4);
  210. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::LowMemory, PhysicalAddress(0x00000000), PhysicalAddress(1 * MiB) });
  211. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::Kernel, PhysicalAddress(virtual_to_low_physical((FlatPtr)start_of_kernel_image)), PhysicalAddress(page_round_up(virtual_to_low_physical((FlatPtr)end_of_kernel_image)).release_value_but_fixme_should_propagate_errors()) });
  212. if (multiboot_flags & 0x4) {
  213. auto* bootmods_start = multiboot_copy_boot_modules_array;
  214. auto* bootmods_end = bootmods_start + multiboot_copy_boot_modules_count;
  215. for (auto* bootmod = bootmods_start; bootmod < bootmods_end; bootmod++) {
  216. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::BootModule, PhysicalAddress(bootmod->start), PhysicalAddress(bootmod->end) });
  217. }
  218. }
  219. auto* mmap_begin = multiboot_memory_map;
  220. auto* mmap_end = multiboot_memory_map + multiboot_memory_map_count;
  221. struct ContiguousPhysicalVirtualRange {
  222. PhysicalAddress lower;
  223. PhysicalAddress upper;
  224. };
  225. Vector<ContiguousPhysicalVirtualRange> contiguous_physical_ranges;
  226. for (auto* mmap = mmap_begin; mmap < mmap_end; mmap++) {
  227. // We have to copy these onto the stack, because we take a reference to these when printing them out,
  228. // and doing so on a packed struct field is UB.
  229. auto address = mmap->addr;
  230. auto length = mmap->len;
  231. ArmedScopeGuard write_back_guard = [&]() {
  232. mmap->addr = address;
  233. mmap->len = length;
  234. };
  235. dmesgln("MM: Multiboot mmap: address={:p}, length={}, type={}", address, length, mmap->type);
  236. auto start_address = PhysicalAddress(address);
  237. switch (mmap->type) {
  238. case (MULTIBOOT_MEMORY_AVAILABLE):
  239. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Usable, start_address, length });
  240. break;
  241. case (MULTIBOOT_MEMORY_RESERVED):
  242. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Reserved, start_address, length });
  243. break;
  244. case (MULTIBOOT_MEMORY_ACPI_RECLAIMABLE):
  245. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_Reclaimable, start_address, length });
  246. break;
  247. case (MULTIBOOT_MEMORY_NVS):
  248. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_NVS, start_address, length });
  249. break;
  250. case (MULTIBOOT_MEMORY_BADRAM):
  251. dmesgln("MM: Warning, detected bad memory range!");
  252. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::BadMemory, start_address, length });
  253. break;
  254. default:
  255. dbgln("MM: Unknown range!");
  256. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Unknown, start_address, length });
  257. break;
  258. }
  259. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  260. continue;
  261. // Fix up unaligned memory regions.
  262. auto diff = (FlatPtr)address % PAGE_SIZE;
  263. if (diff != 0) {
  264. dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting {:p} by {} bytes", address, diff);
  265. diff = PAGE_SIZE - diff;
  266. address += diff;
  267. length -= diff;
  268. }
  269. if ((length % PAGE_SIZE) != 0) {
  270. dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting length {} by {} bytes", length, length % PAGE_SIZE);
  271. length -= length % PAGE_SIZE;
  272. }
  273. if (length < PAGE_SIZE) {
  274. dmesgln("MM: Memory physical_region from bootloader is too small; we want >= {} bytes, but got {} bytes", PAGE_SIZE, length);
  275. continue;
  276. }
  277. for (PhysicalSize page_base = address; page_base <= (address + length); page_base += PAGE_SIZE) {
  278. auto addr = PhysicalAddress(page_base);
  279. // Skip used memory ranges.
  280. bool should_skip = false;
  281. for (auto& used_range : m_used_memory_ranges) {
  282. if (addr.get() >= used_range.start.get() && addr.get() <= used_range.end.get()) {
  283. should_skip = true;
  284. break;
  285. }
  286. }
  287. if (should_skip)
  288. continue;
  289. if (contiguous_physical_ranges.is_empty() || contiguous_physical_ranges.last().upper.offset(PAGE_SIZE) != addr) {
  290. contiguous_physical_ranges.append(ContiguousPhysicalVirtualRange {
  291. .lower = addr,
  292. .upper = addr,
  293. });
  294. } else {
  295. contiguous_physical_ranges.last().upper = addr;
  296. }
  297. }
  298. }
  299. for (auto& range : contiguous_physical_ranges) {
  300. m_user_physical_regions.append(PhysicalRegion::try_create(range.lower, range.upper).release_nonnull());
  301. }
  302. // Super pages are guaranteed to be in the first 16MB of physical memory
  303. VERIFY(virtual_to_low_physical((FlatPtr)super_pages) + sizeof(super_pages) < 0x1000000);
  304. // Append statically-allocated super physical physical_region.
  305. m_super_physical_region = PhysicalRegion::try_create(
  306. PhysicalAddress(virtual_to_low_physical(FlatPtr(super_pages))),
  307. PhysicalAddress(virtual_to_low_physical(FlatPtr(super_pages + sizeof(super_pages)))));
  308. VERIFY(m_super_physical_region);
  309. m_system_memory_info.super_physical_pages += m_super_physical_region->size();
  310. for (auto& region : m_user_physical_regions)
  311. m_system_memory_info.user_physical_pages += region.size();
  312. register_reserved_ranges();
  313. for (auto& range : m_reserved_memory_ranges) {
  314. dmesgln("MM: Contiguous reserved range from {}, length is {}", range.start, range.length);
  315. }
  316. initialize_physical_pages();
  317. VERIFY(m_system_memory_info.super_physical_pages > 0);
  318. VERIFY(m_system_memory_info.user_physical_pages > 0);
  319. // We start out with no committed pages
  320. m_system_memory_info.user_physical_pages_uncommitted = m_system_memory_info.user_physical_pages;
  321. for (auto& used_range : m_used_memory_ranges) {
  322. dmesgln("MM: {} range @ {} - {} (size {:#x})", UserMemoryRangeTypeNames[to_underlying(used_range.type)], used_range.start, used_range.end.offset(-1), used_range.end.as_ptr() - used_range.start.as_ptr());
  323. }
  324. dmesgln("MM: Super physical region: {} - {} (size {:#x})", m_super_physical_region->lower(), m_super_physical_region->upper().offset(-1), PAGE_SIZE * m_super_physical_region->size());
  325. m_super_physical_region->initialize_zones();
  326. for (auto& region : m_user_physical_regions) {
  327. dmesgln("MM: User physical region: {} - {} (size {:#x})", region.lower(), region.upper().offset(-1), PAGE_SIZE * region.size());
  328. region.initialize_zones();
  329. }
  330. }
  331. UNMAP_AFTER_INIT void MemoryManager::initialize_physical_pages()
  332. {
  333. // We assume that the physical page range is contiguous and doesn't contain huge gaps!
  334. PhysicalAddress highest_physical_address;
  335. for (auto& range : m_used_memory_ranges) {
  336. if (range.end.get() > highest_physical_address.get())
  337. highest_physical_address = range.end;
  338. }
  339. for (auto& region : m_physical_memory_ranges) {
  340. auto range_end = PhysicalAddress(region.start).offset(region.length);
  341. if (range_end.get() > highest_physical_address.get())
  342. highest_physical_address = range_end;
  343. }
  344. // Calculate how many total physical pages the array will have
  345. m_physical_page_entries_count = PhysicalAddress::physical_page_index(highest_physical_address.get()) + 1;
  346. VERIFY(m_physical_page_entries_count != 0);
  347. VERIFY(!Checked<decltype(m_physical_page_entries_count)>::multiplication_would_overflow(m_physical_page_entries_count, sizeof(PhysicalPageEntry)));
  348. // Calculate how many bytes the array will consume
  349. auto physical_page_array_size = m_physical_page_entries_count * sizeof(PhysicalPageEntry);
  350. auto physical_page_array_pages = page_round_up(physical_page_array_size).release_value_but_fixme_should_propagate_errors() / PAGE_SIZE;
  351. VERIFY(physical_page_array_pages * PAGE_SIZE >= physical_page_array_size);
  352. // Calculate how many page tables we will need to be able to map them all
  353. auto needed_page_table_count = (physical_page_array_pages + 512 - 1) / 512;
  354. auto physical_page_array_pages_and_page_tables_count = physical_page_array_pages + needed_page_table_count;
  355. // Now that we know how much memory we need for a contiguous array of PhysicalPage instances, find a memory region that can fit it
  356. PhysicalRegion* found_region { nullptr };
  357. Optional<size_t> found_region_index;
  358. for (size_t i = 0; i < m_user_physical_regions.size(); ++i) {
  359. auto& region = m_user_physical_regions[i];
  360. if (region.size() >= physical_page_array_pages_and_page_tables_count) {
  361. found_region = &region;
  362. found_region_index = i;
  363. break;
  364. }
  365. }
  366. if (!found_region) {
  367. dmesgln("MM: Need {} bytes for physical page management, but no memory region is large enough!", physical_page_array_pages_and_page_tables_count);
  368. VERIFY_NOT_REACHED();
  369. }
  370. VERIFY(m_system_memory_info.user_physical_pages >= physical_page_array_pages_and_page_tables_count);
  371. m_system_memory_info.user_physical_pages -= physical_page_array_pages_and_page_tables_count;
  372. if (found_region->size() == physical_page_array_pages_and_page_tables_count) {
  373. // We're stealing the entire region
  374. m_physical_pages_region = m_user_physical_regions.take(*found_region_index);
  375. } else {
  376. m_physical_pages_region = found_region->try_take_pages_from_beginning(physical_page_array_pages_and_page_tables_count);
  377. }
  378. m_used_memory_ranges.append({ UsedMemoryRangeType::PhysicalPages, m_physical_pages_region->lower(), m_physical_pages_region->upper() });
  379. // Create the bare page directory. This is not a fully constructed page directory and merely contains the allocators!
  380. m_kernel_page_directory = PageDirectory::must_create_kernel_page_directory();
  381. {
  382. // Carve out the whole page directory covering the kernel image to make MemoryManager::initialize_physical_pages() happy
  383. FlatPtr start_of_range = ((FlatPtr)start_of_kernel_image & ~(FlatPtr)0x1fffff);
  384. FlatPtr end_of_range = ((FlatPtr)end_of_kernel_image & ~(FlatPtr)0x1fffff) + 0x200000;
  385. auto reserved_range = MUST(m_region_tree.try_allocate_specific(VirtualAddress(start_of_range), end_of_range - start_of_range));
  386. (void)MUST(Region::create_unbacked(reserved_range)).leak_ptr();
  387. }
  388. // Allocate a virtual address range for our array
  389. auto range = MUST(m_region_tree.try_allocate_anywhere(physical_page_array_pages * PAGE_SIZE));
  390. {
  391. (void)MUST(Region::create_unbacked(range)).leak_ptr();
  392. }
  393. // Now that we have our special m_physical_pages_region region with enough pages to hold the entire array
  394. // try to map the entire region into kernel space so we always have it
  395. // We can't use ensure_pte here because it would try to allocate a PhysicalPage and we don't have the array
  396. // mapped yet so we can't create them
  397. SpinlockLocker lock(s_mm_lock);
  398. // Create page tables at the beginning of m_physical_pages_region, followed by the PhysicalPageEntry array
  399. auto page_tables_base = m_physical_pages_region->lower();
  400. auto physical_page_array_base = page_tables_base.offset(needed_page_table_count * PAGE_SIZE);
  401. auto physical_page_array_current_page = physical_page_array_base.get();
  402. auto virtual_page_array_base = range.base().get();
  403. auto virtual_page_array_current_page = virtual_page_array_base;
  404. for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) {
  405. auto virtual_page_base_for_this_pt = virtual_page_array_current_page;
  406. auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE);
  407. auto* pt = reinterpret_cast<PageTableEntry*>(quickmap_page(pt_paddr));
  408. __builtin_memset(pt, 0, PAGE_SIZE);
  409. for (size_t pte_index = 0; pte_index < PAGE_SIZE / sizeof(PageTableEntry); pte_index++) {
  410. auto& pte = pt[pte_index];
  411. pte.set_physical_page_base(physical_page_array_current_page);
  412. pte.set_user_allowed(false);
  413. pte.set_writable(true);
  414. if (Processor::current().has_nx())
  415. pte.set_execute_disabled(false);
  416. pte.set_global(true);
  417. pte.set_present(true);
  418. physical_page_array_current_page += PAGE_SIZE;
  419. virtual_page_array_current_page += PAGE_SIZE;
  420. }
  421. unquickmap_page();
  422. // Hook the page table into the kernel page directory
  423. u32 page_directory_index = (virtual_page_base_for_this_pt >> 21) & 0x1ff;
  424. auto* pd = reinterpret_cast<PageDirectoryEntry*>(quickmap_page(boot_pd_kernel));
  425. PageDirectoryEntry& pde = pd[page_directory_index];
  426. VERIFY(!pde.is_present()); // Nothing should be using this PD yet
  427. // We can't use ensure_pte quite yet!
  428. pde.set_page_table_base(pt_paddr.get());
  429. pde.set_user_allowed(false);
  430. pde.set_present(true);
  431. pde.set_writable(true);
  432. pde.set_global(true);
  433. unquickmap_page();
  434. flush_tlb_local(VirtualAddress(virtual_page_base_for_this_pt));
  435. }
  436. // We now have the entire PhysicalPageEntry array mapped!
  437. m_physical_page_entries = (PhysicalPageEntry*)range.base().get();
  438. for (size_t i = 0; i < m_physical_page_entries_count; i++)
  439. new (&m_physical_page_entries[i]) PageTableEntry();
  440. // Now we should be able to allocate PhysicalPage instances,
  441. // so finish setting up the kernel page directory
  442. m_kernel_page_directory->allocate_kernel_directory();
  443. // Now create legit PhysicalPage objects for the page tables we created.
  444. virtual_page_array_current_page = virtual_page_array_base;
  445. for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) {
  446. VERIFY(virtual_page_array_current_page <= range.end().get());
  447. auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE);
  448. auto physical_page_index = PhysicalAddress::physical_page_index(pt_paddr.get());
  449. auto& physical_page_entry = m_physical_page_entries[physical_page_index];
  450. auto physical_page = adopt_ref(*new (&physical_page_entry.allocated.physical_page) PhysicalPage(MayReturnToFreeList::No));
  451. // NOTE: This leaked ref is matched by the unref in MemoryManager::release_pte()
  452. (void)physical_page.leak_ref();
  453. virtual_page_array_current_page += (PAGE_SIZE / sizeof(PageTableEntry)) * PAGE_SIZE;
  454. }
  455. dmesgln("MM: Physical page entries: {}", range);
  456. }
  457. PhysicalPageEntry& MemoryManager::get_physical_page_entry(PhysicalAddress physical_address)
  458. {
  459. VERIFY(m_physical_page_entries);
  460. auto physical_page_entry_index = PhysicalAddress::physical_page_index(physical_address.get());
  461. VERIFY(physical_page_entry_index < m_physical_page_entries_count);
  462. return m_physical_page_entries[physical_page_entry_index];
  463. }
  464. PhysicalAddress MemoryManager::get_physical_address(PhysicalPage const& physical_page)
  465. {
  466. PhysicalPageEntry const& physical_page_entry = *reinterpret_cast<PhysicalPageEntry const*>((u8 const*)&physical_page - __builtin_offsetof(PhysicalPageEntry, allocated.physical_page));
  467. VERIFY(m_physical_page_entries);
  468. size_t physical_page_entry_index = &physical_page_entry - m_physical_page_entries;
  469. VERIFY(physical_page_entry_index < m_physical_page_entries_count);
  470. return PhysicalAddress((PhysicalPtr)physical_page_entry_index * PAGE_SIZE);
  471. }
  472. PageTableEntry* MemoryManager::pte(PageDirectory& page_directory, VirtualAddress vaddr)
  473. {
  474. VERIFY_INTERRUPTS_DISABLED();
  475. VERIFY(s_mm_lock.is_locked_by_current_processor());
  476. VERIFY(page_directory.get_lock().is_locked_by_current_processor());
  477. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
  478. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  479. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  480. auto* pd = quickmap_pd(const_cast<PageDirectory&>(page_directory), page_directory_table_index);
  481. PageDirectoryEntry const& pde = pd[page_directory_index];
  482. if (!pde.is_present())
  483. return nullptr;
  484. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  485. }
  486. PageTableEntry* MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  487. {
  488. VERIFY_INTERRUPTS_DISABLED();
  489. VERIFY(s_mm_lock.is_locked_by_current_processor());
  490. VERIFY(page_directory.get_lock().is_locked_by_current_processor());
  491. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
  492. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  493. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  494. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  495. auto& pde = pd[page_directory_index];
  496. if (pde.is_present())
  497. return &quickmap_pt(PhysicalAddress(pde.page_table_base()))[page_table_index];
  498. bool did_purge = false;
  499. auto page_table_or_error = allocate_user_physical_page(ShouldZeroFill::Yes, &did_purge);
  500. if (page_table_or_error.is_error()) {
  501. dbgln("MM: Unable to allocate page table to map {}", vaddr);
  502. return nullptr;
  503. }
  504. auto page_table = page_table_or_error.release_value();
  505. if (did_purge) {
  506. // If any memory had to be purged, ensure_pte may have been called as part
  507. // of the purging process. So we need to re-map the pd in this case to ensure
  508. // we're writing to the correct underlying physical page
  509. pd = quickmap_pd(page_directory, page_directory_table_index);
  510. VERIFY(&pde == &pd[page_directory_index]); // Sanity check
  511. VERIFY(!pde.is_present()); // Should have not changed
  512. }
  513. pde.set_page_table_base(page_table->paddr().get());
  514. pde.set_user_allowed(true);
  515. pde.set_present(true);
  516. pde.set_writable(true);
  517. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  518. // NOTE: This leaked ref is matched by the unref in MemoryManager::release_pte()
  519. (void)page_table.leak_ref();
  520. return &quickmap_pt(PhysicalAddress(pde.page_table_base()))[page_table_index];
  521. }
  522. void MemoryManager::release_pte(PageDirectory& page_directory, VirtualAddress vaddr, IsLastPTERelease is_last_pte_release)
  523. {
  524. VERIFY_INTERRUPTS_DISABLED();
  525. VERIFY(s_mm_lock.is_locked_by_current_processor());
  526. VERIFY(page_directory.get_lock().is_locked_by_current_processor());
  527. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
  528. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  529. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  530. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  531. PageDirectoryEntry& pde = pd[page_directory_index];
  532. if (pde.is_present()) {
  533. auto* page_table = quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()));
  534. auto& pte = page_table[page_table_index];
  535. pte.clear();
  536. if (is_last_pte_release == IsLastPTERelease::Yes || page_table_index == 0x1ff) {
  537. // If this is the last PTE in a region or the last PTE in a page table then
  538. // check if we can also release the page table
  539. bool all_clear = true;
  540. for (u32 i = 0; i <= 0x1ff; i++) {
  541. if (!page_table[i].is_null()) {
  542. all_clear = false;
  543. break;
  544. }
  545. }
  546. if (all_clear) {
  547. get_physical_page_entry(PhysicalAddress { pde.page_table_base() }).allocated.physical_page.unref();
  548. pde.clear();
  549. }
  550. }
  551. }
  552. }
  553. UNMAP_AFTER_INIT void MemoryManager::initialize(u32 cpu)
  554. {
  555. ProcessorSpecific<MemoryManagerData>::initialize();
  556. if (cpu == 0) {
  557. new MemoryManager;
  558. kmalloc_enable_expand();
  559. }
  560. }
  561. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  562. {
  563. if (is_user_address(vaddr))
  564. return nullptr;
  565. SpinlockLocker lock(s_mm_lock);
  566. auto* region = MM.m_region_tree.regions().find_largest_not_above(vaddr.get());
  567. if (!region || !region->contains(vaddr))
  568. return nullptr;
  569. return region;
  570. }
  571. Region* MemoryManager::find_user_region_from_vaddr_no_lock(AddressSpace& space, VirtualAddress vaddr)
  572. {
  573. VERIFY(space.get_lock().is_locked_by_current_processor());
  574. return space.find_region_containing({ vaddr, 1 });
  575. }
  576. Region* MemoryManager::find_user_region_from_vaddr(AddressSpace& space, VirtualAddress vaddr)
  577. {
  578. SpinlockLocker lock(space.get_lock());
  579. return find_user_region_from_vaddr_no_lock(space, vaddr);
  580. }
  581. void MemoryManager::validate_syscall_preconditions(AddressSpace& space, RegisterState const& regs)
  582. {
  583. // We take the space lock once here and then use the no_lock variants
  584. // to avoid excessive spinlock recursion in this extremely common path.
  585. SpinlockLocker lock(space.get_lock());
  586. auto unlock_and_handle_crash = [&lock, &regs](char const* description, int signal) {
  587. lock.unlock();
  588. handle_crash(regs, description, signal);
  589. };
  590. {
  591. VirtualAddress userspace_sp = VirtualAddress { regs.userspace_sp() };
  592. if (!MM.validate_user_stack_no_lock(space, userspace_sp)) {
  593. dbgln("Invalid stack pointer: {}", userspace_sp);
  594. return unlock_and_handle_crash("Bad stack on syscall entry", SIGSEGV);
  595. }
  596. }
  597. {
  598. VirtualAddress ip = VirtualAddress { regs.ip() };
  599. auto* calling_region = MM.find_user_region_from_vaddr_no_lock(space, ip);
  600. if (!calling_region) {
  601. dbgln("Syscall from {:p} which has no associated region", ip);
  602. return unlock_and_handle_crash("Syscall from unknown region", SIGSEGV);
  603. }
  604. if (calling_region->is_writable()) {
  605. dbgln("Syscall from writable memory at {:p}", ip);
  606. return unlock_and_handle_crash("Syscall from writable memory", SIGSEGV);
  607. }
  608. if (space.enforces_syscall_regions() && !calling_region->is_syscall_region()) {
  609. dbgln("Syscall from non-syscall region");
  610. return unlock_and_handle_crash("Syscall from non-syscall region", SIGSEGV);
  611. }
  612. }
  613. }
  614. Region* MemoryManager::find_region_from_vaddr(VirtualAddress vaddr)
  615. {
  616. if (auto* region = kernel_region_from_vaddr(vaddr))
  617. return region;
  618. auto page_directory = PageDirectory::find_current();
  619. if (!page_directory)
  620. return nullptr;
  621. VERIFY(page_directory->address_space());
  622. return find_user_region_from_vaddr(*page_directory->address_space(), vaddr);
  623. }
  624. PageFaultResponse MemoryManager::handle_page_fault(PageFault const& fault)
  625. {
  626. VERIFY_INTERRUPTS_DISABLED();
  627. auto faulted_in_range = [&fault](auto const* start, auto const* end) {
  628. return fault.vaddr() >= VirtualAddress { start } && fault.vaddr() < VirtualAddress { end };
  629. };
  630. if (faulted_in_range(&start_of_ro_after_init, &end_of_ro_after_init))
  631. PANIC("Attempt to write into READONLY_AFTER_INIT section");
  632. if (faulted_in_range(&start_of_unmap_after_init, &end_of_unmap_after_init)) {
  633. auto const* kernel_symbol = symbolicate_kernel_address(fault.vaddr().get());
  634. PANIC("Attempt to access UNMAP_AFTER_INIT section ({:p}: {})", fault.vaddr(), kernel_symbol ? kernel_symbol->name : "(Unknown)");
  635. }
  636. if (faulted_in_range(&start_of_kernel_ksyms, &end_of_kernel_ksyms))
  637. PANIC("Attempt to access KSYMS section");
  638. if (Processor::current_in_irq()) {
  639. dbgln("CPU[{}] BUG! Page fault while handling IRQ! code={}, vaddr={}, irq level: {}",
  640. Processor::current_id(), fault.code(), fault.vaddr(), Processor::current_in_irq());
  641. dump_kernel_regions();
  642. return PageFaultResponse::ShouldCrash;
  643. }
  644. dbgln_if(PAGE_FAULT_DEBUG, "MM: CPU[{}] handle_page_fault({:#04x}) at {}", Processor::current_id(), fault.code(), fault.vaddr());
  645. auto* region = find_region_from_vaddr(fault.vaddr());
  646. if (!region) {
  647. return PageFaultResponse::ShouldCrash;
  648. }
  649. return region->handle_fault(fault);
  650. }
  651. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_contiguous_kernel_region(size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  652. {
  653. VERIFY(!(size % PAGE_SIZE));
  654. SpinlockLocker lock(kernel_page_directory().get_lock());
  655. auto vmobject = TRY(AnonymousVMObject::try_create_physically_contiguous_with_size(size));
  656. auto range = TRY(m_region_tree.try_allocate_anywhere(size));
  657. return allocate_kernel_region_with_vmobject(range, move(vmobject), name, access, cacheable);
  658. }
  659. ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_page(StringView name, Memory::Region::Access access, RefPtr<Memory::PhysicalPage>& dma_buffer_page)
  660. {
  661. dma_buffer_page = TRY(allocate_supervisor_physical_page());
  662. // Do not enable Cache for this region as physical memory transfers are performed (Most architectures have this behaviour by default)
  663. return allocate_kernel_region(dma_buffer_page->paddr(), PAGE_SIZE, name, access, Region::Cacheable::No);
  664. }
  665. ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_page(StringView name, Memory::Region::Access access)
  666. {
  667. RefPtr<Memory::PhysicalPage> dma_buffer_page;
  668. return allocate_dma_buffer_page(name, access, dma_buffer_page);
  669. }
  670. ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_pages(size_t size, StringView name, Memory::Region::Access access, NonnullRefPtrVector<Memory::PhysicalPage>& dma_buffer_pages)
  671. {
  672. VERIFY(!(size % PAGE_SIZE));
  673. dma_buffer_pages = TRY(allocate_contiguous_supervisor_physical_pages(size));
  674. // Do not enable Cache for this region as physical memory transfers are performed (Most architectures have this behaviour by default)
  675. return allocate_kernel_region(dma_buffer_pages.first().paddr(), size, name, access, Region::Cacheable::No);
  676. }
  677. ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_pages(size_t size, StringView name, Memory::Region::Access access)
  678. {
  679. VERIFY(!(size % PAGE_SIZE));
  680. NonnullRefPtrVector<Memory::PhysicalPage> dma_buffer_pages;
  681. return allocate_dma_buffer_pages(size, name, access, dma_buffer_pages);
  682. }
  683. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region(size_t size, StringView name, Region::Access access, AllocationStrategy strategy, Region::Cacheable cacheable)
  684. {
  685. VERIFY(!(size % PAGE_SIZE));
  686. auto vmobject = TRY(AnonymousVMObject::try_create_with_size(size, strategy));
  687. SpinlockLocker lock(kernel_page_directory().get_lock());
  688. auto range = TRY(m_region_tree.try_allocate_anywhere(size));
  689. return allocate_kernel_region_with_vmobject(range, move(vmobject), name, access, cacheable);
  690. }
  691. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  692. {
  693. VERIFY(!(size % PAGE_SIZE));
  694. auto vmobject = TRY(AnonymousVMObject::try_create_for_physical_range(paddr, size));
  695. SpinlockLocker lock(kernel_page_directory().get_lock());
  696. auto range = TRY(m_region_tree.try_allocate_anywhere(size));
  697. return allocate_kernel_region_with_vmobject(range, move(vmobject), name, access, cacheable);
  698. }
  699. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region_with_vmobject(VirtualRange const& range, VMObject& vmobject, StringView name, Region::Access access, Region::Cacheable cacheable)
  700. {
  701. OwnPtr<KString> name_kstring;
  702. if (!name.is_null())
  703. name_kstring = TRY(KString::try_create(name));
  704. auto region = TRY(Region::try_create_kernel_only(range, vmobject, 0, move(name_kstring), access, cacheable));
  705. TRY(region->map(kernel_page_directory()));
  706. return region;
  707. }
  708. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  709. {
  710. VERIFY(!(size % PAGE_SIZE));
  711. SpinlockLocker lock(kernel_page_directory().get_lock());
  712. auto range = TRY(m_region_tree.try_allocate_anywhere(size));
  713. return allocate_kernel_region_with_vmobject(range, vmobject, name, access, cacheable);
  714. }
  715. ErrorOr<CommittedPhysicalPageSet> MemoryManager::commit_user_physical_pages(size_t page_count)
  716. {
  717. VERIFY(page_count > 0);
  718. SpinlockLocker lock(s_mm_lock);
  719. if (m_system_memory_info.user_physical_pages_uncommitted < page_count)
  720. return ENOMEM;
  721. m_system_memory_info.user_physical_pages_uncommitted -= page_count;
  722. m_system_memory_info.user_physical_pages_committed += page_count;
  723. return CommittedPhysicalPageSet { {}, page_count };
  724. }
  725. void MemoryManager::uncommit_user_physical_pages(Badge<CommittedPhysicalPageSet>, size_t page_count)
  726. {
  727. VERIFY(page_count > 0);
  728. SpinlockLocker lock(s_mm_lock);
  729. VERIFY(m_system_memory_info.user_physical_pages_committed >= page_count);
  730. m_system_memory_info.user_physical_pages_uncommitted += page_count;
  731. m_system_memory_info.user_physical_pages_committed -= page_count;
  732. }
  733. void MemoryManager::deallocate_physical_page(PhysicalAddress paddr)
  734. {
  735. SpinlockLocker lock(s_mm_lock);
  736. // Are we returning a user page?
  737. for (auto& region : m_user_physical_regions) {
  738. if (!region.contains(paddr))
  739. continue;
  740. region.return_page(paddr);
  741. --m_system_memory_info.user_physical_pages_used;
  742. // Always return pages to the uncommitted pool. Pages that were
  743. // committed and allocated are only freed upon request. Once
  744. // returned there is no guarantee being able to get them back.
  745. ++m_system_memory_info.user_physical_pages_uncommitted;
  746. return;
  747. }
  748. // If it's not a user page, it should be a supervisor page.
  749. if (!m_super_physical_region->contains(paddr))
  750. PANIC("MM: deallocate_user_physical_page couldn't figure out region for page @ {}", paddr);
  751. m_super_physical_region->return_page(paddr);
  752. --m_system_memory_info.super_physical_pages_used;
  753. }
  754. RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page(bool committed)
  755. {
  756. VERIFY(s_mm_lock.is_locked());
  757. RefPtr<PhysicalPage> page;
  758. if (committed) {
  759. // Draw from the committed pages pool. We should always have these pages available
  760. VERIFY(m_system_memory_info.user_physical_pages_committed > 0);
  761. m_system_memory_info.user_physical_pages_committed--;
  762. } else {
  763. // We need to make sure we don't touch pages that we have committed to
  764. if (m_system_memory_info.user_physical_pages_uncommitted == 0)
  765. return {};
  766. m_system_memory_info.user_physical_pages_uncommitted--;
  767. }
  768. for (auto& region : m_user_physical_regions) {
  769. page = region.take_free_page();
  770. if (!page.is_null()) {
  771. ++m_system_memory_info.user_physical_pages_used;
  772. break;
  773. }
  774. }
  775. VERIFY(!committed || !page.is_null());
  776. return page;
  777. }
  778. NonnullRefPtr<PhysicalPage> MemoryManager::allocate_committed_user_physical_page(Badge<CommittedPhysicalPageSet>, ShouldZeroFill should_zero_fill)
  779. {
  780. SpinlockLocker lock(s_mm_lock);
  781. auto page = find_free_user_physical_page(true);
  782. if (should_zero_fill == ShouldZeroFill::Yes) {
  783. auto* ptr = quickmap_page(*page);
  784. memset(ptr, 0, PAGE_SIZE);
  785. unquickmap_page();
  786. }
  787. return page.release_nonnull();
  788. }
  789. ErrorOr<NonnullRefPtr<PhysicalPage>> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill, bool* did_purge)
  790. {
  791. SpinlockLocker lock(s_mm_lock);
  792. auto page = find_free_user_physical_page(false);
  793. bool purged_pages = false;
  794. if (!page) {
  795. // We didn't have a single free physical page. Let's try to free something up!
  796. // First, we look for a purgeable VMObject in the volatile state.
  797. for_each_vmobject([&](auto& vmobject) {
  798. if (!vmobject.is_anonymous())
  799. return IterationDecision::Continue;
  800. auto& anonymous_vmobject = static_cast<AnonymousVMObject&>(vmobject);
  801. if (!anonymous_vmobject.is_purgeable() || !anonymous_vmobject.is_volatile())
  802. return IterationDecision::Continue;
  803. if (auto purged_page_count = anonymous_vmobject.purge()) {
  804. dbgln("MM: Purge saved the day! Purged {} pages from AnonymousVMObject", purged_page_count);
  805. page = find_free_user_physical_page(false);
  806. purged_pages = true;
  807. VERIFY(page);
  808. return IterationDecision::Break;
  809. }
  810. return IterationDecision::Continue;
  811. });
  812. if (!page) {
  813. dmesgln("MM: no user physical pages available");
  814. return ENOMEM;
  815. }
  816. }
  817. if (should_zero_fill == ShouldZeroFill::Yes) {
  818. auto* ptr = quickmap_page(*page);
  819. memset(ptr, 0, PAGE_SIZE);
  820. unquickmap_page();
  821. }
  822. if (did_purge)
  823. *did_purge = purged_pages;
  824. return page.release_nonnull();
  825. }
  826. ErrorOr<NonnullRefPtrVector<PhysicalPage>> MemoryManager::allocate_contiguous_user_physical_pages(size_t size)
  827. {
  828. VERIFY(!(size % PAGE_SIZE));
  829. SpinlockLocker lock(s_mm_lock);
  830. size_t page_count = ceil_div(size, static_cast<size_t>(PAGE_SIZE));
  831. for (auto& physical_region : m_user_physical_regions) {
  832. auto physical_pages = physical_region.take_contiguous_free_pages(page_count);
  833. if (!physical_pages.is_empty()) {
  834. {
  835. auto cleanup_region = TRY(MM.allocate_kernel_region(physical_pages[0].paddr(), PAGE_SIZE * page_count, "MemoryManager Allocation Sanitization", Region::Access::Read | Region::Access::Write));
  836. memset(cleanup_region->vaddr().as_ptr(), 0, PAGE_SIZE * page_count);
  837. }
  838. m_system_memory_info.user_physical_pages_used += page_count;
  839. return physical_pages;
  840. }
  841. }
  842. dmesgln("MM: no contiguous user physical pages available");
  843. return ENOMEM;
  844. }
  845. ErrorOr<NonnullRefPtrVector<PhysicalPage>> MemoryManager::allocate_contiguous_supervisor_physical_pages(size_t size)
  846. {
  847. VERIFY(!(size % PAGE_SIZE));
  848. SpinlockLocker lock(s_mm_lock);
  849. size_t count = ceil_div(size, static_cast<size_t>(PAGE_SIZE));
  850. auto physical_pages = m_super_physical_region->take_contiguous_free_pages(count);
  851. if (physical_pages.is_empty()) {
  852. dmesgln("MM: no super physical pages available");
  853. return ENOMEM;
  854. }
  855. {
  856. auto cleanup_region = TRY(MM.allocate_kernel_region(physical_pages[0].paddr(), PAGE_SIZE * count, "MemoryManager Allocation Sanitization", Region::Access::Read | Region::Access::Write));
  857. memset(cleanup_region->vaddr().as_ptr(), 0, PAGE_SIZE * count);
  858. }
  859. m_system_memory_info.super_physical_pages_used += count;
  860. return physical_pages;
  861. }
  862. ErrorOr<NonnullRefPtr<PhysicalPage>> MemoryManager::allocate_supervisor_physical_page()
  863. {
  864. SpinlockLocker lock(s_mm_lock);
  865. auto page = m_super_physical_region->take_free_page();
  866. if (!page) {
  867. dmesgln("MM: no super physical pages available");
  868. return ENOMEM;
  869. }
  870. auto* ptr = quickmap_page(*page);
  871. memset(ptr, 0, PAGE_SIZE);
  872. unquickmap_page();
  873. ++m_system_memory_info.super_physical_pages_used;
  874. return page.release_nonnull();
  875. }
  876. void MemoryManager::enter_process_address_space(Process& process)
  877. {
  878. enter_address_space(process.address_space());
  879. }
  880. void MemoryManager::enter_address_space(AddressSpace& space)
  881. {
  882. auto* current_thread = Thread::current();
  883. VERIFY(current_thread != nullptr);
  884. SpinlockLocker lock(s_mm_lock);
  885. current_thread->regs().cr3 = space.page_directory().cr3();
  886. activate_page_directory(space.page_directory(), current_thread);
  887. }
  888. void MemoryManager::flush_tlb_local(VirtualAddress vaddr, size_t page_count)
  889. {
  890. Processor::flush_tlb_local(vaddr, page_count);
  891. }
  892. void MemoryManager::flush_tlb(PageDirectory const* page_directory, VirtualAddress vaddr, size_t page_count)
  893. {
  894. Processor::flush_tlb(page_directory, vaddr, page_count);
  895. }
  896. PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
  897. {
  898. VERIFY(s_mm_lock.is_locked_by_current_processor());
  899. auto& mm_data = get_data();
  900. auto& pte = boot_pd_kernel_pt1023[(KERNEL_QUICKMAP_PD - KERNEL_PT1024_BASE) / PAGE_SIZE];
  901. auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
  902. if (pte.physical_page_base() != pd_paddr.get()) {
  903. pte.set_physical_page_base(pd_paddr.get());
  904. pte.set_present(true);
  905. pte.set_writable(true);
  906. pte.set_user_allowed(false);
  907. // Because we must continue to hold the MM lock while we use this
  908. // mapping, it is sufficient to only flush on the current CPU. Other
  909. // CPUs trying to use this API must wait on the MM lock anyway
  910. flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PD));
  911. } else {
  912. // Even though we don't allow this to be called concurrently, it's
  913. // possible that this PD was mapped on a different CPU and we don't
  914. // broadcast the flush. If so, we still need to flush the TLB.
  915. if (mm_data.m_last_quickmap_pd != pd_paddr)
  916. flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PD));
  917. }
  918. mm_data.m_last_quickmap_pd = pd_paddr;
  919. return (PageDirectoryEntry*)KERNEL_QUICKMAP_PD;
  920. }
  921. PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
  922. {
  923. VERIFY(s_mm_lock.is_locked_by_current_processor());
  924. auto& mm_data = get_data();
  925. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[(KERNEL_QUICKMAP_PT - KERNEL_PT1024_BASE) / PAGE_SIZE];
  926. if (pte.physical_page_base() != pt_paddr.get()) {
  927. pte.set_physical_page_base(pt_paddr.get());
  928. pte.set_present(true);
  929. pte.set_writable(true);
  930. pte.set_user_allowed(false);
  931. // Because we must continue to hold the MM lock while we use this
  932. // mapping, it is sufficient to only flush on the current CPU. Other
  933. // CPUs trying to use this API must wait on the MM lock anyway
  934. flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PT));
  935. } else {
  936. // Even though we don't allow this to be called concurrently, it's
  937. // possible that this PT was mapped on a different CPU and we don't
  938. // broadcast the flush. If so, we still need to flush the TLB.
  939. if (mm_data.m_last_quickmap_pt != pt_paddr)
  940. flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PT));
  941. }
  942. mm_data.m_last_quickmap_pt = pt_paddr;
  943. return (PageTableEntry*)KERNEL_QUICKMAP_PT;
  944. }
  945. u8* MemoryManager::quickmap_page(PhysicalAddress const& physical_address)
  946. {
  947. VERIFY_INTERRUPTS_DISABLED();
  948. VERIFY(s_mm_lock.is_locked_by_current_processor());
  949. auto& mm_data = get_data();
  950. mm_data.m_quickmap_prev_flags = mm_data.m_quickmap_in_use.lock();
  951. VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
  952. u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
  953. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx];
  954. if (pte.physical_page_base() != physical_address.get()) {
  955. pte.set_physical_page_base(physical_address.get());
  956. pte.set_present(true);
  957. pte.set_writable(true);
  958. pte.set_user_allowed(false);
  959. flush_tlb_local(vaddr);
  960. }
  961. return vaddr.as_ptr();
  962. }
  963. void MemoryManager::unquickmap_page()
  964. {
  965. VERIFY_INTERRUPTS_DISABLED();
  966. VERIFY(s_mm_lock.is_locked_by_current_processor());
  967. auto& mm_data = get_data();
  968. VERIFY(mm_data.m_quickmap_in_use.is_locked());
  969. VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
  970. u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
  971. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx];
  972. pte.clear();
  973. flush_tlb_local(vaddr);
  974. mm_data.m_quickmap_in_use.unlock(mm_data.m_quickmap_prev_flags);
  975. }
  976. bool MemoryManager::validate_user_stack_no_lock(AddressSpace& space, VirtualAddress vaddr) const
  977. {
  978. VERIFY(space.get_lock().is_locked_by_current_processor());
  979. if (!is_user_address(vaddr))
  980. return false;
  981. auto* region = find_user_region_from_vaddr_no_lock(space, vaddr);
  982. return region && region->is_user() && region->is_stack();
  983. }
  984. bool MemoryManager::validate_user_stack(AddressSpace& space, VirtualAddress vaddr) const
  985. {
  986. SpinlockLocker lock(space.get_lock());
  987. return validate_user_stack_no_lock(space, vaddr);
  988. }
  989. void MemoryManager::register_kernel_region(Region& region)
  990. {
  991. VERIFY(region.is_kernel());
  992. SpinlockLocker lock(s_mm_lock);
  993. m_region_tree.regions().insert(region.vaddr().get(), region);
  994. }
  995. void MemoryManager::unregister_kernel_region(Region& region)
  996. {
  997. VERIFY(region.is_kernel());
  998. SpinlockLocker lock(s_mm_lock);
  999. m_region_tree.regions().remove(region.vaddr().get());
  1000. }
  1001. void MemoryManager::dump_kernel_regions()
  1002. {
  1003. dbgln("Kernel regions:");
  1004. #if ARCH(I386)
  1005. char const* addr_padding = "";
  1006. #else
  1007. char const* addr_padding = " ";
  1008. #endif
  1009. dbgln("BEGIN{} END{} SIZE{} ACCESS NAME",
  1010. addr_padding, addr_padding, addr_padding);
  1011. SpinlockLocker lock(s_mm_lock);
  1012. for (auto const& region : m_region_tree.regions()) {
  1013. dbgln("{:p} -- {:p} {:p} {:c}{:c}{:c}{:c}{:c}{:c} {}",
  1014. region.vaddr().get(),
  1015. region.vaddr().offset(region.size() - 1).get(),
  1016. region.size(),
  1017. region.is_readable() ? 'R' : ' ',
  1018. region.is_writable() ? 'W' : ' ',
  1019. region.is_executable() ? 'X' : ' ',
  1020. region.is_shared() ? 'S' : ' ',
  1021. region.is_stack() ? 'T' : ' ',
  1022. region.is_syscall_region() ? 'C' : ' ',
  1023. region.name());
  1024. }
  1025. }
  1026. void MemoryManager::set_page_writable_direct(VirtualAddress vaddr, bool writable)
  1027. {
  1028. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  1029. SpinlockLocker lock(s_mm_lock);
  1030. auto* pte = ensure_pte(kernel_page_directory(), vaddr);
  1031. VERIFY(pte);
  1032. if (pte->is_writable() == writable)
  1033. return;
  1034. pte->set_writable(writable);
  1035. flush_tlb(&kernel_page_directory(), vaddr);
  1036. }
  1037. CommittedPhysicalPageSet::~CommittedPhysicalPageSet()
  1038. {
  1039. if (m_page_count)
  1040. MM.uncommit_user_physical_pages({}, m_page_count);
  1041. }
  1042. NonnullRefPtr<PhysicalPage> CommittedPhysicalPageSet::take_one()
  1043. {
  1044. VERIFY(m_page_count > 0);
  1045. --m_page_count;
  1046. return MM.allocate_committed_user_physical_page({}, MemoryManager::ShouldZeroFill::Yes);
  1047. }
  1048. void CommittedPhysicalPageSet::uncommit_one()
  1049. {
  1050. VERIFY(m_page_count > 0);
  1051. --m_page_count;
  1052. MM.uncommit_user_physical_pages({}, 1);
  1053. }
  1054. void MemoryManager::copy_physical_page(PhysicalPage& physical_page, u8 page_buffer[PAGE_SIZE])
  1055. {
  1056. SpinlockLocker locker(s_mm_lock);
  1057. auto* quickmapped_page = quickmap_page(physical_page);
  1058. memcpy(page_buffer, quickmapped_page, PAGE_SIZE);
  1059. unquickmap_page();
  1060. }
  1061. }