Heap.cpp 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292
  1. /*
  2. * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Badge.h>
  7. #include <AK/Debug.h>
  8. #include <AK/HashTable.h>
  9. #include <AK/StackInfo.h>
  10. #include <AK/TemporaryChange.h>
  11. #include <LibCore/ElapsedTimer.h>
  12. #include <LibJS/Heap/CellAllocator.h>
  13. #include <LibJS/Heap/Handle.h>
  14. #include <LibJS/Heap/Heap.h>
  15. #include <LibJS/Heap/HeapBlock.h>
  16. #include <LibJS/Interpreter.h>
  17. #include <LibJS/Runtime/Object.h>
  18. #include <setjmp.h>
  19. namespace JS {
  20. Heap::Heap(VM& vm)
  21. : m_vm(vm)
  22. {
  23. if constexpr (HeapBlock::min_possible_cell_size <= 16) {
  24. m_allocators.append(make<CellAllocator>(16));
  25. }
  26. static_assert(HeapBlock::min_possible_cell_size <= 24, "Heap Cell tracking uses too much data!");
  27. m_allocators.append(make<CellAllocator>(32));
  28. m_allocators.append(make<CellAllocator>(64));
  29. m_allocators.append(make<CellAllocator>(128));
  30. m_allocators.append(make<CellAllocator>(256));
  31. m_allocators.append(make<CellAllocator>(512));
  32. m_allocators.append(make<CellAllocator>(1024));
  33. m_allocators.append(make<CellAllocator>(3072));
  34. }
  35. Heap::~Heap()
  36. {
  37. collect_garbage(CollectionType::CollectEverything);
  38. }
  39. ALWAYS_INLINE CellAllocator& Heap::allocator_for_size(size_t cell_size)
  40. {
  41. for (auto& allocator : m_allocators) {
  42. if (allocator->cell_size() >= cell_size)
  43. return *allocator;
  44. }
  45. dbgln("Cannot get CellAllocator for cell size {}, largest available is {}!", cell_size, m_allocators.last()->cell_size());
  46. VERIFY_NOT_REACHED();
  47. }
  48. Cell* Heap::allocate_cell(size_t size)
  49. {
  50. if (should_collect_on_every_allocation()) {
  51. collect_garbage();
  52. } else if (m_allocations_since_last_gc > m_max_allocations_between_gc) {
  53. m_allocations_since_last_gc = 0;
  54. collect_garbage();
  55. } else {
  56. ++m_allocations_since_last_gc;
  57. }
  58. auto& allocator = allocator_for_size(size);
  59. return allocator.allocate_cell(*this);
  60. }
  61. void Heap::collect_garbage(CollectionType collection_type, bool print_report)
  62. {
  63. VERIFY(!m_collecting_garbage);
  64. TemporaryChange change(m_collecting_garbage, true);
  65. Core::ElapsedTimer collection_measurement_timer;
  66. collection_measurement_timer.start();
  67. if (collection_type == CollectionType::CollectGarbage) {
  68. if (m_gc_deferrals) {
  69. m_should_gc_when_deferral_ends = true;
  70. return;
  71. }
  72. HashTable<Cell*> roots;
  73. gather_roots(roots);
  74. mark_live_cells(roots);
  75. }
  76. sweep_dead_cells(print_report, collection_measurement_timer);
  77. }
  78. void Heap::gather_roots(HashTable<Cell*>& roots)
  79. {
  80. vm().gather_roots(roots);
  81. gather_conservative_roots(roots);
  82. for (auto* handle : m_handles)
  83. roots.set(handle->cell());
  84. for (auto* list : m_marked_value_lists) {
  85. for (auto& value : list->values()) {
  86. if (value.is_cell())
  87. roots.set(&value.as_cell());
  88. }
  89. }
  90. if constexpr (HEAP_DEBUG) {
  91. dbgln("gather_roots:");
  92. for (auto* root : roots)
  93. dbgln(" + {}", root);
  94. }
  95. }
  96. __attribute__((no_sanitize("address"))) void Heap::gather_conservative_roots(HashTable<Cell*>& roots)
  97. {
  98. FlatPtr dummy;
  99. dbgln_if(HEAP_DEBUG, "gather_conservative_roots:");
  100. jmp_buf buf;
  101. setjmp(buf);
  102. HashTable<FlatPtr> possible_pointers;
  103. auto* raw_jmp_buf = reinterpret_cast<FlatPtr const*>(buf);
  104. for (size_t i = 0; i < ((size_t)sizeof(buf)) / sizeof(FlatPtr); i += sizeof(FlatPtr))
  105. possible_pointers.set(raw_jmp_buf[i]);
  106. auto stack_reference = bit_cast<FlatPtr>(&dummy);
  107. auto& stack_info = m_vm.stack_info();
  108. for (FlatPtr stack_address = stack_reference; stack_address < stack_info.top(); stack_address += sizeof(FlatPtr)) {
  109. auto data = *reinterpret_cast<FlatPtr*>(stack_address);
  110. possible_pointers.set(data);
  111. }
  112. HashTable<HeapBlock*> all_live_heap_blocks;
  113. for_each_block([&](auto& block) {
  114. all_live_heap_blocks.set(&block);
  115. return IterationDecision::Continue;
  116. });
  117. for (auto possible_pointer : possible_pointers) {
  118. if (!possible_pointer)
  119. continue;
  120. dbgln_if(HEAP_DEBUG, " ? {}", (const void*)possible_pointer);
  121. auto* possible_heap_block = HeapBlock::from_cell(reinterpret_cast<const Cell*>(possible_pointer));
  122. if (all_live_heap_blocks.contains(possible_heap_block)) {
  123. if (auto* cell = possible_heap_block->cell_from_possible_pointer(possible_pointer)) {
  124. if (cell->state() == Cell::State::Live) {
  125. dbgln_if(HEAP_DEBUG, " ?-> {}", (const void*)cell);
  126. roots.set(cell);
  127. } else {
  128. dbgln_if(HEAP_DEBUG, " #-> {}", (const void*)cell);
  129. }
  130. }
  131. }
  132. }
  133. }
  134. class MarkingVisitor final : public Cell::Visitor {
  135. public:
  136. MarkingVisitor() { }
  137. virtual void visit_impl(Cell& cell)
  138. {
  139. if (cell.is_marked())
  140. return;
  141. dbgln_if(HEAP_DEBUG, " ! {}", &cell);
  142. cell.set_marked(true);
  143. cell.visit_edges(*this);
  144. }
  145. };
  146. void Heap::mark_live_cells(const HashTable<Cell*>& roots)
  147. {
  148. dbgln_if(HEAP_DEBUG, "mark_live_cells:");
  149. MarkingVisitor visitor;
  150. for (auto* root : roots)
  151. visitor.visit(root);
  152. }
  153. void Heap::sweep_dead_cells(bool print_report, const Core::ElapsedTimer& measurement_timer)
  154. {
  155. dbgln_if(HEAP_DEBUG, "sweep_dead_cells:");
  156. Vector<HeapBlock*, 32> empty_blocks;
  157. Vector<HeapBlock*, 32> full_blocks_that_became_usable;
  158. size_t collected_cells = 0;
  159. size_t live_cells = 0;
  160. size_t collected_cell_bytes = 0;
  161. size_t live_cell_bytes = 0;
  162. for_each_block([&](auto& block) {
  163. bool block_has_live_cells = false;
  164. bool block_was_full = block.is_full();
  165. block.template for_each_cell_in_state<Cell::State::Live>([&](Cell* cell) {
  166. if (!cell->is_marked()) {
  167. dbgln_if(HEAP_DEBUG, " ~ {}", cell);
  168. block.deallocate(cell);
  169. ++collected_cells;
  170. collected_cell_bytes += block.cell_size();
  171. } else {
  172. cell->set_marked(false);
  173. block_has_live_cells = true;
  174. ++live_cells;
  175. live_cell_bytes += block.cell_size();
  176. }
  177. });
  178. if (!block_has_live_cells)
  179. empty_blocks.append(&block);
  180. else if (block_was_full != block.is_full())
  181. full_blocks_that_became_usable.append(&block);
  182. return IterationDecision::Continue;
  183. });
  184. for (auto* block : empty_blocks) {
  185. dbgln_if(HEAP_DEBUG, " - HeapBlock empty @ {}: cell_size={}", block, block->cell_size());
  186. allocator_for_size(block->cell_size()).block_did_become_empty({}, *block);
  187. }
  188. for (auto* block : full_blocks_that_became_usable) {
  189. dbgln_if(HEAP_DEBUG, " - HeapBlock usable again @ {}: cell_size={}", block, block->cell_size());
  190. allocator_for_size(block->cell_size()).block_did_become_usable({}, *block);
  191. }
  192. if constexpr (HEAP_DEBUG) {
  193. for_each_block([&](auto& block) {
  194. dbgln(" > Live HeapBlock @ {}: cell_size={}", &block, block.cell_size());
  195. return IterationDecision::Continue;
  196. });
  197. }
  198. int time_spent = measurement_timer.elapsed();
  199. if (print_report) {
  200. size_t live_block_count = 0;
  201. for_each_block([&](auto&) {
  202. ++live_block_count;
  203. return IterationDecision::Continue;
  204. });
  205. dbgln("Garbage collection report");
  206. dbgln("=============================================");
  207. dbgln(" Time spent: {} ms", time_spent);
  208. dbgln(" Live cells: {} ({} bytes)", live_cells, live_cell_bytes);
  209. dbgln("Collected cells: {} ({} bytes)", collected_cells, collected_cell_bytes);
  210. dbgln(" Live blocks: {} ({} bytes)", live_block_count, live_block_count * HeapBlock::block_size);
  211. dbgln(" Freed blocks: {} ({} bytes)", empty_blocks.size(), empty_blocks.size() * HeapBlock::block_size);
  212. dbgln("=============================================");
  213. }
  214. }
  215. void Heap::did_create_handle(Badge<HandleImpl>, HandleImpl& impl)
  216. {
  217. VERIFY(!m_handles.contains(&impl));
  218. m_handles.set(&impl);
  219. }
  220. void Heap::did_destroy_handle(Badge<HandleImpl>, HandleImpl& impl)
  221. {
  222. VERIFY(m_handles.contains(&impl));
  223. m_handles.remove(&impl);
  224. }
  225. void Heap::did_create_marked_value_list(Badge<MarkedValueList>, MarkedValueList& list)
  226. {
  227. VERIFY(!m_marked_value_lists.contains(&list));
  228. m_marked_value_lists.set(&list);
  229. }
  230. void Heap::did_destroy_marked_value_list(Badge<MarkedValueList>, MarkedValueList& list)
  231. {
  232. VERIFY(m_marked_value_lists.contains(&list));
  233. m_marked_value_lists.remove(&list);
  234. }
  235. void Heap::defer_gc(Badge<DeferGC>)
  236. {
  237. ++m_gc_deferrals;
  238. }
  239. void Heap::undefer_gc(Badge<DeferGC>)
  240. {
  241. VERIFY(m_gc_deferrals > 0);
  242. --m_gc_deferrals;
  243. if (!m_gc_deferrals) {
  244. if (m_should_gc_when_deferral_ends)
  245. collect_garbage();
  246. m_should_gc_when_deferral_ends = false;
  247. }
  248. }
  249. }