MemoryManager.cpp 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Assertions.h>
  7. #include <AK/Memory.h>
  8. #include <AK/StringView.h>
  9. #include <Kernel/Arch/x86/PageFault.h>
  10. #include <Kernel/BootInfo.h>
  11. #include <Kernel/CMOS.h>
  12. #include <Kernel/FileSystem/Inode.h>
  13. #include <Kernel/Heap/kmalloc.h>
  14. #include <Kernel/Memory/AnonymousVMObject.h>
  15. #include <Kernel/Memory/MemoryManager.h>
  16. #include <Kernel/Memory/PageDirectory.h>
  17. #include <Kernel/Memory/PhysicalRegion.h>
  18. #include <Kernel/Memory/SharedInodeVMObject.h>
  19. #include <Kernel/Multiboot.h>
  20. #include <Kernel/Panic.h>
  21. #include <Kernel/Process.h>
  22. #include <Kernel/Sections.h>
  23. #include <Kernel/StdLib.h>
  24. extern u8 start_of_kernel_image[];
  25. extern u8 end_of_kernel_image[];
  26. extern u8 start_of_kernel_text[];
  27. extern u8 start_of_kernel_data[];
  28. extern u8 end_of_kernel_bss[];
  29. extern u8 start_of_ro_after_init[];
  30. extern u8 end_of_ro_after_init[];
  31. extern u8 start_of_unmap_after_init[];
  32. extern u8 end_of_unmap_after_init[];
  33. extern u8 start_of_kernel_ksyms[];
  34. extern u8 end_of_kernel_ksyms[];
  35. extern multiboot_module_entry_t multiboot_copy_boot_modules_array[16];
  36. extern size_t multiboot_copy_boot_modules_count;
  37. // Treat the super pages as logically separate from .bss
  38. // FIXME: Find a solution so we don't need to expand this range each time
  39. // we are in a situation too many drivers try to allocate super pages.
  40. __attribute__((section(".super_pages"))) static u8 super_pages[4 * MiB];
  41. namespace Kernel::Memory {
  42. ErrorOr<FlatPtr> page_round_up(FlatPtr x)
  43. {
  44. if (x > (explode_byte(0xFF) & ~0xFFF)) {
  45. return Error::from_errno(EINVAL);
  46. }
  47. return (((FlatPtr)(x)) + PAGE_SIZE - 1) & (~(PAGE_SIZE - 1));
  48. }
  49. // NOTE: We can NOT use Singleton for this class, because
  50. // MemoryManager::initialize is called *before* global constructors are
  51. // run. If we do, then Singleton would get re-initialized, causing
  52. // the memory manager to be initialized twice!
  53. static MemoryManager* s_the;
  54. RecursiveSpinlock s_mm_lock { LockRank::MemoryManager };
  55. MemoryManager& MemoryManager::the()
  56. {
  57. return *s_the;
  58. }
  59. bool MemoryManager::is_initialized()
  60. {
  61. return s_the != nullptr;
  62. }
  63. UNMAP_AFTER_INIT MemoryManager::MemoryManager()
  64. {
  65. s_the = this;
  66. SpinlockLocker lock(s_mm_lock);
  67. parse_memory_map();
  68. write_cr3(kernel_page_directory().cr3());
  69. protect_kernel_image();
  70. // We're temporarily "committing" to two pages that we need to allocate below
  71. auto committed_pages = commit_user_physical_pages(2).release_value();
  72. m_shared_zero_page = committed_pages.take_one();
  73. // We're wasting a page here, we just need a special tag (physical
  74. // address) so that we know when we need to lazily allocate a page
  75. // that we should be drawing this page from the committed pool rather
  76. // than potentially failing if no pages are available anymore.
  77. // By using a tag we don't have to query the VMObject for every page
  78. // whether it was committed or not
  79. m_lazy_committed_page = committed_pages.take_one();
  80. }
  81. UNMAP_AFTER_INIT MemoryManager::~MemoryManager()
  82. {
  83. }
  84. UNMAP_AFTER_INIT void MemoryManager::protect_kernel_image()
  85. {
  86. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  87. // Disable writing to the kernel text and rodata segments.
  88. for (auto i = start_of_kernel_text; i < start_of_kernel_data; i += PAGE_SIZE) {
  89. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  90. pte.set_writable(false);
  91. }
  92. if (Processor::current().has_feature(CPUFeature::NX)) {
  93. // Disable execution of the kernel data, bss and heap segments.
  94. for (auto i = start_of_kernel_data; i < end_of_kernel_image; i += PAGE_SIZE) {
  95. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  96. pte.set_execute_disabled(true);
  97. }
  98. }
  99. }
  100. UNMAP_AFTER_INIT void MemoryManager::unmap_prekernel()
  101. {
  102. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  103. SpinlockLocker mm_lock(s_mm_lock);
  104. auto start = start_of_prekernel_image.page_base().get();
  105. auto end = end_of_prekernel_image.page_base().get();
  106. for (auto i = start; i <= end; i += PAGE_SIZE)
  107. release_pte(kernel_page_directory(), VirtualAddress(i), i == end ? IsLastPTERelease::Yes : IsLastPTERelease::No, UnsafeIgnoreMissingPageTable::Yes);
  108. flush_tlb(&kernel_page_directory(), VirtualAddress(start), (end - start) / PAGE_SIZE);
  109. }
  110. UNMAP_AFTER_INIT void MemoryManager::protect_readonly_after_init_memory()
  111. {
  112. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  113. SpinlockLocker mm_lock(s_mm_lock);
  114. // Disable writing to the .ro_after_init section
  115. for (auto i = (FlatPtr)&start_of_ro_after_init; i < (FlatPtr)&end_of_ro_after_init; i += PAGE_SIZE) {
  116. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  117. pte.set_writable(false);
  118. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  119. }
  120. }
  121. void MemoryManager::unmap_text_after_init()
  122. {
  123. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  124. SpinlockLocker mm_lock(s_mm_lock);
  125. auto start = page_round_down((FlatPtr)&start_of_unmap_after_init);
  126. auto end = page_round_up((FlatPtr)&end_of_unmap_after_init).release_value_but_fixme_should_propagate_errors();
  127. // Unmap the entire .unmap_after_init section
  128. for (auto i = start; i < end; i += PAGE_SIZE) {
  129. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  130. pte.clear();
  131. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  132. }
  133. dmesgln("Unmapped {} KiB of kernel text after init! :^)", (end - start) / KiB);
  134. }
  135. UNMAP_AFTER_INIT void MemoryManager::protect_ksyms_after_init()
  136. {
  137. SpinlockLocker mm_lock(s_mm_lock);
  138. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  139. auto start = page_round_down((FlatPtr)start_of_kernel_ksyms);
  140. auto end = page_round_up((FlatPtr)end_of_kernel_ksyms).release_value_but_fixme_should_propagate_errors();
  141. for (auto i = start; i < end; i += PAGE_SIZE) {
  142. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  143. pte.set_writable(false);
  144. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  145. }
  146. dmesgln("Write-protected kernel symbols after init.");
  147. }
  148. IterationDecision MemoryManager::for_each_physical_memory_range(Function<IterationDecision(PhysicalMemoryRange const&)> callback)
  149. {
  150. VERIFY(!m_physical_memory_ranges.is_empty());
  151. for (auto& current_range : m_physical_memory_ranges) {
  152. IterationDecision decision = callback(current_range);
  153. if (decision != IterationDecision::Continue)
  154. return decision;
  155. }
  156. return IterationDecision::Continue;
  157. }
  158. UNMAP_AFTER_INIT void MemoryManager::register_reserved_ranges()
  159. {
  160. VERIFY(!m_physical_memory_ranges.is_empty());
  161. ContiguousReservedMemoryRange range;
  162. for (auto& current_range : m_physical_memory_ranges) {
  163. if (current_range.type != PhysicalMemoryRangeType::Reserved) {
  164. if (range.start.is_null())
  165. continue;
  166. m_reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, current_range.start.get() - range.start.get() });
  167. range.start.set((FlatPtr) nullptr);
  168. continue;
  169. }
  170. if (!range.start.is_null()) {
  171. continue;
  172. }
  173. range.start = current_range.start;
  174. }
  175. if (m_physical_memory_ranges.last().type != PhysicalMemoryRangeType::Reserved)
  176. return;
  177. if (range.start.is_null())
  178. return;
  179. m_reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, m_physical_memory_ranges.last().start.get() + m_physical_memory_ranges.last().length - range.start.get() });
  180. }
  181. bool MemoryManager::is_allowed_to_read_physical_memory_for_userspace(PhysicalAddress start_address, size_t read_length) const
  182. {
  183. // Note: Guard against overflow in case someone tries to mmap on the edge of
  184. // the RAM
  185. if (start_address.offset_addition_would_overflow(read_length))
  186. return false;
  187. auto end_address = start_address.offset(read_length);
  188. for (auto& current_range : m_reserved_memory_ranges) {
  189. if (current_range.start > start_address)
  190. continue;
  191. if (current_range.start.offset(current_range.length) < end_address)
  192. continue;
  193. return true;
  194. }
  195. return false;
  196. }
  197. UNMAP_AFTER_INIT void MemoryManager::parse_memory_map()
  198. {
  199. // Register used memory regions that we know of.
  200. m_used_memory_ranges.ensure_capacity(4);
  201. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::LowMemory, PhysicalAddress(0x00000000), PhysicalAddress(1 * MiB) });
  202. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::Kernel, PhysicalAddress(virtual_to_low_physical((FlatPtr)start_of_kernel_image)), PhysicalAddress(page_round_up(virtual_to_low_physical((FlatPtr)end_of_kernel_image)).release_value_but_fixme_should_propagate_errors()) });
  203. if (multiboot_flags & 0x4) {
  204. auto* bootmods_start = multiboot_copy_boot_modules_array;
  205. auto* bootmods_end = bootmods_start + multiboot_copy_boot_modules_count;
  206. for (auto* bootmod = bootmods_start; bootmod < bootmods_end; bootmod++) {
  207. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::BootModule, PhysicalAddress(bootmod->start), PhysicalAddress(bootmod->end) });
  208. }
  209. }
  210. auto* mmap_begin = multiboot_memory_map;
  211. auto* mmap_end = multiboot_memory_map + multiboot_memory_map_count;
  212. struct ContiguousPhysicalVirtualRange {
  213. PhysicalAddress lower;
  214. PhysicalAddress upper;
  215. };
  216. Vector<ContiguousPhysicalVirtualRange> contiguous_physical_ranges;
  217. for (auto* mmap = mmap_begin; mmap < mmap_end; mmap++) {
  218. // We have to copy these onto the stack, because we take a reference to these when printing them out,
  219. // and doing so on a packed struct field is UB.
  220. auto address = mmap->addr;
  221. auto length = mmap->len;
  222. ArmedScopeGuard write_back_guard = [&]() {
  223. mmap->addr = address;
  224. mmap->len = length;
  225. };
  226. dmesgln("MM: Multiboot mmap: address={:p}, length={}, type={}", address, length, mmap->type);
  227. auto start_address = PhysicalAddress(address);
  228. switch (mmap->type) {
  229. case (MULTIBOOT_MEMORY_AVAILABLE):
  230. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Usable, start_address, length });
  231. break;
  232. case (MULTIBOOT_MEMORY_RESERVED):
  233. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Reserved, start_address, length });
  234. break;
  235. case (MULTIBOOT_MEMORY_ACPI_RECLAIMABLE):
  236. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_Reclaimable, start_address, length });
  237. break;
  238. case (MULTIBOOT_MEMORY_NVS):
  239. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_NVS, start_address, length });
  240. break;
  241. case (MULTIBOOT_MEMORY_BADRAM):
  242. dmesgln("MM: Warning, detected bad memory range!");
  243. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::BadMemory, start_address, length });
  244. break;
  245. default:
  246. dbgln("MM: Unknown range!");
  247. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Unknown, start_address, length });
  248. break;
  249. }
  250. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  251. continue;
  252. // Fix up unaligned memory regions.
  253. auto diff = (FlatPtr)address % PAGE_SIZE;
  254. if (diff != 0) {
  255. dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting {:p} by {} bytes", address, diff);
  256. diff = PAGE_SIZE - diff;
  257. address += diff;
  258. length -= diff;
  259. }
  260. if ((length % PAGE_SIZE) != 0) {
  261. dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting length {} by {} bytes", length, length % PAGE_SIZE);
  262. length -= length % PAGE_SIZE;
  263. }
  264. if (length < PAGE_SIZE) {
  265. dmesgln("MM: Memory physical_region from bootloader is too small; we want >= {} bytes, but got {} bytes", PAGE_SIZE, length);
  266. continue;
  267. }
  268. for (PhysicalSize page_base = address; page_base <= (address + length); page_base += PAGE_SIZE) {
  269. auto addr = PhysicalAddress(page_base);
  270. // Skip used memory ranges.
  271. bool should_skip = false;
  272. for (auto& used_range : m_used_memory_ranges) {
  273. if (addr.get() >= used_range.start.get() && addr.get() <= used_range.end.get()) {
  274. should_skip = true;
  275. break;
  276. }
  277. }
  278. if (should_skip)
  279. continue;
  280. if (contiguous_physical_ranges.is_empty() || contiguous_physical_ranges.last().upper.offset(PAGE_SIZE) != addr) {
  281. contiguous_physical_ranges.append(ContiguousPhysicalVirtualRange {
  282. .lower = addr,
  283. .upper = addr,
  284. });
  285. } else {
  286. contiguous_physical_ranges.last().upper = addr;
  287. }
  288. }
  289. }
  290. for (auto& range : contiguous_physical_ranges) {
  291. m_user_physical_regions.append(PhysicalRegion::try_create(range.lower, range.upper).release_nonnull());
  292. }
  293. // Super pages are guaranteed to be in the first 16MB of physical memory
  294. VERIFY(virtual_to_low_physical((FlatPtr)super_pages) + sizeof(super_pages) < 0x1000000);
  295. // Append statically-allocated super physical physical_region.
  296. m_super_physical_region = PhysicalRegion::try_create(
  297. PhysicalAddress(virtual_to_low_physical(FlatPtr(super_pages))),
  298. PhysicalAddress(virtual_to_low_physical(FlatPtr(super_pages + sizeof(super_pages)))));
  299. VERIFY(m_super_physical_region);
  300. m_system_memory_info.super_physical_pages += m_super_physical_region->size();
  301. for (auto& region : m_user_physical_regions)
  302. m_system_memory_info.user_physical_pages += region.size();
  303. register_reserved_ranges();
  304. for (auto& range : m_reserved_memory_ranges) {
  305. dmesgln("MM: Contiguous reserved range from {}, length is {}", range.start, range.length);
  306. }
  307. initialize_physical_pages();
  308. VERIFY(m_system_memory_info.super_physical_pages > 0);
  309. VERIFY(m_system_memory_info.user_physical_pages > 0);
  310. // We start out with no committed pages
  311. m_system_memory_info.user_physical_pages_uncommitted = m_system_memory_info.user_physical_pages;
  312. for (auto& used_range : m_used_memory_ranges) {
  313. dmesgln("MM: {} range @ {} - {} (size {:#x})", UserMemoryRangeTypeNames[to_underlying(used_range.type)], used_range.start, used_range.end.offset(-1), used_range.end.as_ptr() - used_range.start.as_ptr());
  314. }
  315. dmesgln("MM: Super physical region: {} - {} (size {:#x})", m_super_physical_region->lower(), m_super_physical_region->upper().offset(-1), PAGE_SIZE * m_super_physical_region->size());
  316. m_super_physical_region->initialize_zones();
  317. for (auto& region : m_user_physical_regions) {
  318. dmesgln("MM: User physical region: {} - {} (size {:#x})", region.lower(), region.upper().offset(-1), PAGE_SIZE * region.size());
  319. region.initialize_zones();
  320. }
  321. }
  322. UNMAP_AFTER_INIT void MemoryManager::initialize_physical_pages()
  323. {
  324. // We assume that the physical page range is contiguous and doesn't contain huge gaps!
  325. PhysicalAddress highest_physical_address;
  326. for (auto& range : m_used_memory_ranges) {
  327. if (range.end.get() > highest_physical_address.get())
  328. highest_physical_address = range.end;
  329. }
  330. for (auto& region : m_physical_memory_ranges) {
  331. auto range_end = PhysicalAddress(region.start).offset(region.length);
  332. if (range_end.get() > highest_physical_address.get())
  333. highest_physical_address = range_end;
  334. }
  335. // Calculate how many total physical pages the array will have
  336. m_physical_page_entries_count = PhysicalAddress::physical_page_index(highest_physical_address.get()) + 1;
  337. VERIFY(m_physical_page_entries_count != 0);
  338. VERIFY(!Checked<decltype(m_physical_page_entries_count)>::multiplication_would_overflow(m_physical_page_entries_count, sizeof(PhysicalPageEntry)));
  339. // Calculate how many bytes the array will consume
  340. auto physical_page_array_size = m_physical_page_entries_count * sizeof(PhysicalPageEntry);
  341. auto physical_page_array_pages = page_round_up(physical_page_array_size).release_value_but_fixme_should_propagate_errors() / PAGE_SIZE;
  342. VERIFY(physical_page_array_pages * PAGE_SIZE >= physical_page_array_size);
  343. // Calculate how many page tables we will need to be able to map them all
  344. auto needed_page_table_count = (physical_page_array_pages + 512 - 1) / 512;
  345. auto physical_page_array_pages_and_page_tables_count = physical_page_array_pages + needed_page_table_count;
  346. // Now that we know how much memory we need for a contiguous array of PhysicalPage instances, find a memory region that can fit it
  347. PhysicalRegion* found_region { nullptr };
  348. Optional<size_t> found_region_index;
  349. for (size_t i = 0; i < m_user_physical_regions.size(); ++i) {
  350. auto& region = m_user_physical_regions[i];
  351. if (region.size() >= physical_page_array_pages_and_page_tables_count) {
  352. found_region = &region;
  353. found_region_index = i;
  354. break;
  355. }
  356. }
  357. if (!found_region) {
  358. dmesgln("MM: Need {} bytes for physical page management, but no memory region is large enough!", physical_page_array_pages_and_page_tables_count);
  359. VERIFY_NOT_REACHED();
  360. }
  361. VERIFY(m_system_memory_info.user_physical_pages >= physical_page_array_pages_and_page_tables_count);
  362. m_system_memory_info.user_physical_pages -= physical_page_array_pages_and_page_tables_count;
  363. if (found_region->size() == physical_page_array_pages_and_page_tables_count) {
  364. // We're stealing the entire region
  365. m_physical_pages_region = m_user_physical_regions.take(*found_region_index);
  366. } else {
  367. m_physical_pages_region = found_region->try_take_pages_from_beginning(physical_page_array_pages_and_page_tables_count);
  368. }
  369. m_used_memory_ranges.append({ UsedMemoryRangeType::PhysicalPages, m_physical_pages_region->lower(), m_physical_pages_region->upper() });
  370. // Create the bare page directory. This is not a fully constructed page directory and merely contains the allocators!
  371. m_kernel_page_directory = PageDirectory::must_create_kernel_page_directory();
  372. // Allocate a virtual address range for our array
  373. auto range_or_error = m_kernel_page_directory->range_allocator().try_allocate_anywhere(physical_page_array_pages * PAGE_SIZE);
  374. if (range_or_error.is_error()) {
  375. dmesgln("MM: Could not allocate {} bytes to map physical page array!", physical_page_array_pages * PAGE_SIZE);
  376. VERIFY_NOT_REACHED();
  377. }
  378. auto range = range_or_error.release_value();
  379. // Now that we have our special m_physical_pages_region region with enough pages to hold the entire array
  380. // try to map the entire region into kernel space so we always have it
  381. // We can't use ensure_pte here because it would try to allocate a PhysicalPage and we don't have the array
  382. // mapped yet so we can't create them
  383. SpinlockLocker lock(s_mm_lock);
  384. // Create page tables at the beginning of m_physical_pages_region, followed by the PhysicalPageEntry array
  385. auto page_tables_base = m_physical_pages_region->lower();
  386. auto physical_page_array_base = page_tables_base.offset(needed_page_table_count * PAGE_SIZE);
  387. auto physical_page_array_current_page = physical_page_array_base.get();
  388. auto virtual_page_array_base = range.base().get();
  389. auto virtual_page_array_current_page = virtual_page_array_base;
  390. for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) {
  391. auto virtual_page_base_for_this_pt = virtual_page_array_current_page;
  392. auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE);
  393. auto* pt = reinterpret_cast<PageTableEntry*>(quickmap_page(pt_paddr));
  394. __builtin_memset(pt, 0, PAGE_SIZE);
  395. for (size_t pte_index = 0; pte_index < PAGE_SIZE / sizeof(PageTableEntry); pte_index++) {
  396. auto& pte = pt[pte_index];
  397. pte.set_physical_page_base(physical_page_array_current_page);
  398. pte.set_user_allowed(false);
  399. pte.set_writable(true);
  400. if (Processor::current().has_feature(CPUFeature::NX))
  401. pte.set_execute_disabled(false);
  402. pte.set_global(true);
  403. pte.set_present(true);
  404. physical_page_array_current_page += PAGE_SIZE;
  405. virtual_page_array_current_page += PAGE_SIZE;
  406. }
  407. unquickmap_page();
  408. // Hook the page table into the kernel page directory
  409. u32 page_directory_index = (virtual_page_base_for_this_pt >> 21) & 0x1ff;
  410. auto* pd = reinterpret_cast<PageDirectoryEntry*>(quickmap_page(boot_pd_kernel));
  411. PageDirectoryEntry& pde = pd[page_directory_index];
  412. VERIFY(!pde.is_present()); // Nothing should be using this PD yet
  413. // We can't use ensure_pte quite yet!
  414. pde.set_page_table_base(pt_paddr.get());
  415. pde.set_user_allowed(false);
  416. pde.set_present(true);
  417. pde.set_writable(true);
  418. pde.set_global(true);
  419. unquickmap_page();
  420. flush_tlb_local(VirtualAddress(virtual_page_base_for_this_pt));
  421. }
  422. // We now have the entire PhysicalPageEntry array mapped!
  423. m_physical_page_entries = (PhysicalPageEntry*)range.base().get();
  424. for (size_t i = 0; i < m_physical_page_entries_count; i++)
  425. new (&m_physical_page_entries[i]) PageTableEntry();
  426. // Now we should be able to allocate PhysicalPage instances,
  427. // so finish setting up the kernel page directory
  428. m_kernel_page_directory->allocate_kernel_directory();
  429. // Now create legit PhysicalPage objects for the page tables we created, so that
  430. // we can put them into kernel_page_directory().m_page_tables
  431. auto& kernel_page_tables = kernel_page_directory().m_page_tables;
  432. virtual_page_array_current_page = virtual_page_array_base;
  433. for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) {
  434. VERIFY(virtual_page_array_current_page <= range.end().get());
  435. auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE);
  436. auto physical_page_index = PhysicalAddress::physical_page_index(pt_paddr.get());
  437. auto& physical_page_entry = m_physical_page_entries[physical_page_index];
  438. auto physical_page = adopt_ref(*new (&physical_page_entry.allocated.physical_page) PhysicalPage(MayReturnToFreeList::No));
  439. auto result = kernel_page_tables.set(virtual_page_array_current_page & ~0x1fffff, move(physical_page));
  440. VERIFY(result == AK::HashSetResult::InsertedNewEntry);
  441. virtual_page_array_current_page += (PAGE_SIZE / sizeof(PageTableEntry)) * PAGE_SIZE;
  442. }
  443. dmesgln("MM: Physical page entries: {}", range);
  444. }
  445. PhysicalPageEntry& MemoryManager::get_physical_page_entry(PhysicalAddress physical_address)
  446. {
  447. VERIFY(m_physical_page_entries);
  448. auto physical_page_entry_index = PhysicalAddress::physical_page_index(physical_address.get());
  449. VERIFY(physical_page_entry_index < m_physical_page_entries_count);
  450. return m_physical_page_entries[physical_page_entry_index];
  451. }
  452. PhysicalAddress MemoryManager::get_physical_address(PhysicalPage const& physical_page)
  453. {
  454. PhysicalPageEntry const& physical_page_entry = *reinterpret_cast<PhysicalPageEntry const*>((u8 const*)&physical_page - __builtin_offsetof(PhysicalPageEntry, allocated.physical_page));
  455. VERIFY(m_physical_page_entries);
  456. size_t physical_page_entry_index = &physical_page_entry - m_physical_page_entries;
  457. VERIFY(physical_page_entry_index < m_physical_page_entries_count);
  458. return PhysicalAddress((PhysicalPtr)physical_page_entry_index * PAGE_SIZE);
  459. }
  460. PageTableEntry* MemoryManager::pte(PageDirectory& page_directory, VirtualAddress vaddr)
  461. {
  462. VERIFY_INTERRUPTS_DISABLED();
  463. VERIFY(s_mm_lock.is_locked_by_current_processor());
  464. VERIFY(page_directory.get_lock().is_locked_by_current_processor());
  465. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
  466. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  467. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  468. auto* pd = quickmap_pd(const_cast<PageDirectory&>(page_directory), page_directory_table_index);
  469. PageDirectoryEntry const& pde = pd[page_directory_index];
  470. if (!pde.is_present())
  471. return nullptr;
  472. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  473. }
  474. PageTableEntry* MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  475. {
  476. VERIFY_INTERRUPTS_DISABLED();
  477. VERIFY(s_mm_lock.is_locked_by_current_processor());
  478. VERIFY(page_directory.get_lock().is_locked_by_current_processor());
  479. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
  480. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  481. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  482. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  483. PageDirectoryEntry& pde = pd[page_directory_index];
  484. if (!pde.is_present()) {
  485. bool did_purge = false;
  486. auto page_table = allocate_user_physical_page(ShouldZeroFill::Yes, &did_purge);
  487. if (!page_table) {
  488. dbgln("MM: Unable to allocate page table to map {}", vaddr);
  489. return nullptr;
  490. }
  491. if (did_purge) {
  492. // If any memory had to be purged, ensure_pte may have been called as part
  493. // of the purging process. So we need to re-map the pd in this case to ensure
  494. // we're writing to the correct underlying physical page
  495. pd = quickmap_pd(page_directory, page_directory_table_index);
  496. VERIFY(&pde == &pd[page_directory_index]); // Sanity check
  497. VERIFY(!pde.is_present()); // Should have not changed
  498. }
  499. pde.set_page_table_base(page_table->paddr().get());
  500. pde.set_user_allowed(true);
  501. pde.set_present(true);
  502. pde.set_writable(true);
  503. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  504. // Use page_directory_table_index and page_directory_index as key
  505. // This allows us to release the page table entry when no longer needed
  506. auto result = page_directory.m_page_tables.set(vaddr.get() & ~(FlatPtr)0x1fffff, page_table.release_nonnull());
  507. // If you're hitting this VERIFY on x86_64 chances are a 64-bit pointer was truncated somewhere
  508. VERIFY(result == AK::HashSetResult::InsertedNewEntry);
  509. }
  510. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  511. }
  512. void MemoryManager::release_pte(PageDirectory& page_directory, VirtualAddress vaddr, IsLastPTERelease is_last_pte_release, UnsafeIgnoreMissingPageTable unsafe_ignore_missing_page_table)
  513. {
  514. VERIFY_INTERRUPTS_DISABLED();
  515. VERIFY(s_mm_lock.is_locked_by_current_processor());
  516. VERIFY(page_directory.get_lock().is_locked_by_current_processor());
  517. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
  518. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  519. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  520. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  521. PageDirectoryEntry& pde = pd[page_directory_index];
  522. if (pde.is_present()) {
  523. auto* page_table = quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()));
  524. auto& pte = page_table[page_table_index];
  525. pte.clear();
  526. if (is_last_pte_release == IsLastPTERelease::Yes || page_table_index == 0x1ff) {
  527. // If this is the last PTE in a region or the last PTE in a page table then
  528. // check if we can also release the page table
  529. bool all_clear = true;
  530. for (u32 i = 0; i <= 0x1ff; i++) {
  531. if (!page_table[i].is_null()) {
  532. all_clear = false;
  533. break;
  534. }
  535. }
  536. if (all_clear) {
  537. pde.clear();
  538. auto result = page_directory.m_page_tables.remove(vaddr.get() & ~0x1fffff);
  539. VERIFY(unsafe_ignore_missing_page_table == UnsafeIgnoreMissingPageTable::Yes || result);
  540. }
  541. }
  542. }
  543. }
  544. UNMAP_AFTER_INIT void MemoryManager::initialize(u32 cpu)
  545. {
  546. ProcessorSpecific<MemoryManagerData>::initialize();
  547. if (cpu == 0) {
  548. new MemoryManager;
  549. kmalloc_enable_expand();
  550. }
  551. }
  552. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  553. {
  554. SpinlockLocker lock(s_mm_lock);
  555. auto* region_ptr = MM.m_kernel_regions.find_largest_not_above(vaddr.get());
  556. if (!region_ptr)
  557. return nullptr;
  558. return (*region_ptr)->contains(vaddr) ? *region_ptr : nullptr;
  559. }
  560. Region* MemoryManager::find_user_region_from_vaddr_no_lock(AddressSpace& space, VirtualAddress vaddr)
  561. {
  562. VERIFY(space.get_lock().is_locked_by_current_processor());
  563. return space.find_region_containing({ vaddr, 1 });
  564. }
  565. Region* MemoryManager::find_user_region_from_vaddr(AddressSpace& space, VirtualAddress vaddr)
  566. {
  567. SpinlockLocker lock(space.get_lock());
  568. return find_user_region_from_vaddr_no_lock(space, vaddr);
  569. }
  570. void MemoryManager::validate_syscall_preconditions(AddressSpace& space, RegisterState const& regs)
  571. {
  572. // We take the space lock once here and then use the no_lock variants
  573. // to avoid excessive spinlock recursion in this extremely common path.
  574. SpinlockLocker lock(space.get_lock());
  575. auto unlock_and_handle_crash = [&lock, &regs](const char* description, int signal) {
  576. lock.unlock();
  577. handle_crash(regs, description, signal);
  578. };
  579. {
  580. VirtualAddress userspace_sp = VirtualAddress { regs.userspace_sp() };
  581. if (!MM.validate_user_stack_no_lock(space, userspace_sp)) {
  582. dbgln("Invalid stack pointer: {}", userspace_sp);
  583. return unlock_and_handle_crash("Bad stack on syscall entry", SIGSEGV);
  584. }
  585. }
  586. {
  587. VirtualAddress ip = VirtualAddress { regs.ip() };
  588. auto* calling_region = MM.find_user_region_from_vaddr_no_lock(space, ip);
  589. if (!calling_region) {
  590. dbgln("Syscall from {:p} which has no associated region", ip);
  591. return unlock_and_handle_crash("Syscall from unknown region", SIGSEGV);
  592. }
  593. if (calling_region->is_writable()) {
  594. dbgln("Syscall from writable memory at {:p}", ip);
  595. return unlock_and_handle_crash("Syscall from writable memory", SIGSEGV);
  596. }
  597. if (space.enforces_syscall_regions() && !calling_region->is_syscall_region()) {
  598. dbgln("Syscall from non-syscall region");
  599. return unlock_and_handle_crash("Syscall from non-syscall region", SIGSEGV);
  600. }
  601. }
  602. }
  603. Region* MemoryManager::find_region_from_vaddr(VirtualAddress vaddr)
  604. {
  605. if (auto* region = kernel_region_from_vaddr(vaddr))
  606. return region;
  607. auto page_directory = PageDirectory::find_by_cr3(read_cr3());
  608. if (!page_directory)
  609. return nullptr;
  610. VERIFY(page_directory->address_space());
  611. return find_user_region_from_vaddr(*page_directory->address_space(), vaddr);
  612. }
  613. PageFaultResponse MemoryManager::handle_page_fault(PageFault const& fault)
  614. {
  615. VERIFY_INTERRUPTS_DISABLED();
  616. if (Processor::current_in_irq()) {
  617. dbgln("CPU[{}] BUG! Page fault while handling IRQ! code={}, vaddr={}, irq level: {}",
  618. Processor::current_id(), fault.code(), fault.vaddr(), Processor::current_in_irq());
  619. dump_kernel_regions();
  620. return PageFaultResponse::ShouldCrash;
  621. }
  622. dbgln_if(PAGE_FAULT_DEBUG, "MM: CPU[{}] handle_page_fault({:#04x}) at {}", Processor::current_id(), fault.code(), fault.vaddr());
  623. auto* region = find_region_from_vaddr(fault.vaddr());
  624. if (!region) {
  625. return PageFaultResponse::ShouldCrash;
  626. }
  627. return region->handle_fault(fault);
  628. }
  629. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_contiguous_kernel_region(size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  630. {
  631. VERIFY(!(size % PAGE_SIZE));
  632. SpinlockLocker lock(kernel_page_directory().get_lock());
  633. auto vmobject = TRY(AnonymousVMObject::try_create_physically_contiguous_with_size(size));
  634. auto range = TRY(kernel_page_directory().range_allocator().try_allocate_anywhere(size));
  635. return allocate_kernel_region_with_vmobject(range, move(vmobject), name, access, cacheable);
  636. }
  637. ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_page(StringView name, Memory::Region::Access access, RefPtr<Memory::PhysicalPage>& dma_buffer_page)
  638. {
  639. dma_buffer_page = allocate_supervisor_physical_page();
  640. if (dma_buffer_page.is_null())
  641. return ENOMEM;
  642. // Do not enable Cache for this region as physical memory transfers are performed (Most architectures have this behaviour by default)
  643. auto region_or_error = allocate_kernel_region(dma_buffer_page->paddr(), PAGE_SIZE, name, access, Region::Cacheable::No);
  644. return region_or_error;
  645. }
  646. ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_pages(size_t size, StringView name, Memory::Region::Access access, NonnullRefPtrVector<Memory::PhysicalPage>& dma_buffer_pages)
  647. {
  648. VERIFY(!(size % PAGE_SIZE));
  649. dma_buffer_pages = allocate_contiguous_supervisor_physical_pages(size);
  650. if (dma_buffer_pages.is_empty())
  651. return ENOMEM;
  652. // Do not enable Cache for this region as physical memory transfers are performed (Most architectures have this behaviour by default)
  653. auto region_or_error = allocate_kernel_region(dma_buffer_pages.first().paddr(), size, name, access, Region::Cacheable::No);
  654. return region_or_error;
  655. }
  656. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region(size_t size, StringView name, Region::Access access, AllocationStrategy strategy, Region::Cacheable cacheable)
  657. {
  658. VERIFY(!(size % PAGE_SIZE));
  659. auto vmobject = TRY(AnonymousVMObject::try_create_with_size(size, strategy));
  660. SpinlockLocker lock(kernel_page_directory().get_lock());
  661. auto range = TRY(kernel_page_directory().range_allocator().try_allocate_anywhere(size));
  662. return allocate_kernel_region_with_vmobject(range, move(vmobject), name, access, cacheable);
  663. }
  664. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  665. {
  666. VERIFY(!(size % PAGE_SIZE));
  667. auto vmobject = TRY(AnonymousVMObject::try_create_for_physical_range(paddr, size));
  668. SpinlockLocker lock(kernel_page_directory().get_lock());
  669. auto range = TRY(kernel_page_directory().range_allocator().try_allocate_anywhere(size));
  670. return allocate_kernel_region_with_vmobject(range, move(vmobject), name, access, cacheable);
  671. }
  672. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region_with_vmobject(VirtualRange const& range, VMObject& vmobject, StringView name, Region::Access access, Region::Cacheable cacheable)
  673. {
  674. OwnPtr<KString> name_kstring;
  675. if (!name.is_null())
  676. name_kstring = TRY(KString::try_create(name));
  677. auto region = TRY(Region::try_create_kernel_only(range, vmobject, 0, move(name_kstring), access, cacheable));
  678. TRY(region->map(kernel_page_directory()));
  679. return region;
  680. }
  681. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  682. {
  683. VERIFY(!(size % PAGE_SIZE));
  684. SpinlockLocker lock(kernel_page_directory().get_lock());
  685. auto range = TRY(kernel_page_directory().range_allocator().try_allocate_anywhere(size));
  686. return allocate_kernel_region_with_vmobject(range, vmobject, name, access, cacheable);
  687. }
  688. ErrorOr<CommittedPhysicalPageSet> MemoryManager::commit_user_physical_pages(size_t page_count)
  689. {
  690. VERIFY(page_count > 0);
  691. SpinlockLocker lock(s_mm_lock);
  692. if (m_system_memory_info.user_physical_pages_uncommitted < page_count)
  693. return ENOMEM;
  694. m_system_memory_info.user_physical_pages_uncommitted -= page_count;
  695. m_system_memory_info.user_physical_pages_committed += page_count;
  696. return CommittedPhysicalPageSet { {}, page_count };
  697. }
  698. void MemoryManager::uncommit_user_physical_pages(Badge<CommittedPhysicalPageSet>, size_t page_count)
  699. {
  700. VERIFY(page_count > 0);
  701. SpinlockLocker lock(s_mm_lock);
  702. VERIFY(m_system_memory_info.user_physical_pages_committed >= page_count);
  703. m_system_memory_info.user_physical_pages_uncommitted += page_count;
  704. m_system_memory_info.user_physical_pages_committed -= page_count;
  705. }
  706. void MemoryManager::deallocate_physical_page(PhysicalAddress paddr)
  707. {
  708. SpinlockLocker lock(s_mm_lock);
  709. // Are we returning a user page?
  710. for (auto& region : m_user_physical_regions) {
  711. if (!region.contains(paddr))
  712. continue;
  713. region.return_page(paddr);
  714. --m_system_memory_info.user_physical_pages_used;
  715. // Always return pages to the uncommitted pool. Pages that were
  716. // committed and allocated are only freed upon request. Once
  717. // returned there is no guarantee being able to get them back.
  718. ++m_system_memory_info.user_physical_pages_uncommitted;
  719. return;
  720. }
  721. // If it's not a user page, it should be a supervisor page.
  722. if (!m_super_physical_region->contains(paddr))
  723. PANIC("MM: deallocate_user_physical_page couldn't figure out region for page @ {}", paddr);
  724. m_super_physical_region->return_page(paddr);
  725. --m_system_memory_info.super_physical_pages_used;
  726. }
  727. RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page(bool committed)
  728. {
  729. VERIFY(s_mm_lock.is_locked());
  730. RefPtr<PhysicalPage> page;
  731. if (committed) {
  732. // Draw from the committed pages pool. We should always have these pages available
  733. VERIFY(m_system_memory_info.user_physical_pages_committed > 0);
  734. m_system_memory_info.user_physical_pages_committed--;
  735. } else {
  736. // We need to make sure we don't touch pages that we have committed to
  737. if (m_system_memory_info.user_physical_pages_uncommitted == 0)
  738. return {};
  739. m_system_memory_info.user_physical_pages_uncommitted--;
  740. }
  741. for (auto& region : m_user_physical_regions) {
  742. page = region.take_free_page();
  743. if (!page.is_null()) {
  744. ++m_system_memory_info.user_physical_pages_used;
  745. break;
  746. }
  747. }
  748. VERIFY(!committed || !page.is_null());
  749. return page;
  750. }
  751. NonnullRefPtr<PhysicalPage> MemoryManager::allocate_committed_user_physical_page(Badge<CommittedPhysicalPageSet>, ShouldZeroFill should_zero_fill)
  752. {
  753. SpinlockLocker lock(s_mm_lock);
  754. auto page = find_free_user_physical_page(true);
  755. if (should_zero_fill == ShouldZeroFill::Yes) {
  756. auto* ptr = quickmap_page(*page);
  757. memset(ptr, 0, PAGE_SIZE);
  758. unquickmap_page();
  759. }
  760. return page.release_nonnull();
  761. }
  762. RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill, bool* did_purge)
  763. {
  764. SpinlockLocker lock(s_mm_lock);
  765. auto page = find_free_user_physical_page(false);
  766. bool purged_pages = false;
  767. if (!page) {
  768. // We didn't have a single free physical page. Let's try to free something up!
  769. // First, we look for a purgeable VMObject in the volatile state.
  770. for_each_vmobject([&](auto& vmobject) {
  771. if (!vmobject.is_anonymous())
  772. return IterationDecision::Continue;
  773. auto& anonymous_vmobject = static_cast<AnonymousVMObject&>(vmobject);
  774. if (!anonymous_vmobject.is_purgeable() || !anonymous_vmobject.is_volatile())
  775. return IterationDecision::Continue;
  776. if (auto purged_page_count = anonymous_vmobject.purge()) {
  777. dbgln("MM: Purge saved the day! Purged {} pages from AnonymousVMObject", purged_page_count);
  778. page = find_free_user_physical_page(false);
  779. purged_pages = true;
  780. VERIFY(page);
  781. return IterationDecision::Break;
  782. }
  783. return IterationDecision::Continue;
  784. });
  785. if (!page) {
  786. dmesgln("MM: no user physical pages available");
  787. return {};
  788. }
  789. }
  790. if (should_zero_fill == ShouldZeroFill::Yes) {
  791. auto* ptr = quickmap_page(*page);
  792. memset(ptr, 0, PAGE_SIZE);
  793. unquickmap_page();
  794. }
  795. if (did_purge)
  796. *did_purge = purged_pages;
  797. return page;
  798. }
  799. NonnullRefPtrVector<PhysicalPage> MemoryManager::allocate_contiguous_supervisor_physical_pages(size_t size)
  800. {
  801. VERIFY(!(size % PAGE_SIZE));
  802. SpinlockLocker lock(s_mm_lock);
  803. size_t count = ceil_div(size, static_cast<size_t>(PAGE_SIZE));
  804. auto physical_pages = m_super_physical_region->take_contiguous_free_pages(count);
  805. if (physical_pages.is_empty()) {
  806. dmesgln("MM: no super physical pages available");
  807. VERIFY_NOT_REACHED();
  808. return {};
  809. }
  810. {
  811. auto region_or_error = MM.allocate_kernel_region(physical_pages[0].paddr(), PAGE_SIZE * count, "MemoryManager Allocation Sanitization", Region::Access::Read | Region::Access::Write);
  812. if (region_or_error.is_error())
  813. TODO();
  814. auto cleanup_region = region_or_error.release_value();
  815. fast_u32_fill((u32*)cleanup_region->vaddr().as_ptr(), 0, (PAGE_SIZE * count) / sizeof(u32));
  816. }
  817. m_system_memory_info.super_physical_pages_used += count;
  818. return physical_pages;
  819. }
  820. RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  821. {
  822. SpinlockLocker lock(s_mm_lock);
  823. auto page = m_super_physical_region->take_free_page();
  824. if (!page) {
  825. dmesgln("MM: no super physical pages available");
  826. VERIFY_NOT_REACHED();
  827. return {};
  828. }
  829. fast_u32_fill((u32*)page->paddr().offset(physical_to_virtual_offset).as_ptr(), 0, PAGE_SIZE / sizeof(u32));
  830. ++m_system_memory_info.super_physical_pages_used;
  831. return page;
  832. }
  833. void MemoryManager::enter_process_address_space(Process& process)
  834. {
  835. enter_address_space(process.address_space());
  836. }
  837. void MemoryManager::enter_address_space(AddressSpace& space)
  838. {
  839. auto current_thread = Thread::current();
  840. VERIFY(current_thread != nullptr);
  841. SpinlockLocker lock(s_mm_lock);
  842. current_thread->regs().cr3 = space.page_directory().cr3();
  843. write_cr3(space.page_directory().cr3());
  844. }
  845. void MemoryManager::flush_tlb_local(VirtualAddress vaddr, size_t page_count)
  846. {
  847. Processor::flush_tlb_local(vaddr, page_count);
  848. }
  849. void MemoryManager::flush_tlb(PageDirectory const* page_directory, VirtualAddress vaddr, size_t page_count)
  850. {
  851. Processor::flush_tlb(page_directory, vaddr, page_count);
  852. }
  853. PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
  854. {
  855. VERIFY(s_mm_lock.is_locked_by_current_processor());
  856. auto& mm_data = get_data();
  857. auto& pte = boot_pd_kernel_pt1023[(KERNEL_QUICKMAP_PD - KERNEL_PT1024_BASE) / PAGE_SIZE];
  858. auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
  859. if (pte.physical_page_base() != pd_paddr.get()) {
  860. pte.set_physical_page_base(pd_paddr.get());
  861. pte.set_present(true);
  862. pte.set_writable(true);
  863. pte.set_user_allowed(false);
  864. // Because we must continue to hold the MM lock while we use this
  865. // mapping, it is sufficient to only flush on the current CPU. Other
  866. // CPUs trying to use this API must wait on the MM lock anyway
  867. flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PD));
  868. } else {
  869. // Even though we don't allow this to be called concurrently, it's
  870. // possible that this PD was mapped on a different CPU and we don't
  871. // broadcast the flush. If so, we still need to flush the TLB.
  872. if (mm_data.m_last_quickmap_pd != pd_paddr)
  873. flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PD));
  874. }
  875. mm_data.m_last_quickmap_pd = pd_paddr;
  876. return (PageDirectoryEntry*)KERNEL_QUICKMAP_PD;
  877. }
  878. PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
  879. {
  880. VERIFY(s_mm_lock.is_locked_by_current_processor());
  881. auto& mm_data = get_data();
  882. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[(KERNEL_QUICKMAP_PT - KERNEL_PT1024_BASE) / PAGE_SIZE];
  883. if (pte.physical_page_base() != pt_paddr.get()) {
  884. pte.set_physical_page_base(pt_paddr.get());
  885. pte.set_present(true);
  886. pte.set_writable(true);
  887. pte.set_user_allowed(false);
  888. // Because we must continue to hold the MM lock while we use this
  889. // mapping, it is sufficient to only flush on the current CPU. Other
  890. // CPUs trying to use this API must wait on the MM lock anyway
  891. flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PT));
  892. } else {
  893. // Even though we don't allow this to be called concurrently, it's
  894. // possible that this PT was mapped on a different CPU and we don't
  895. // broadcast the flush. If so, we still need to flush the TLB.
  896. if (mm_data.m_last_quickmap_pt != pt_paddr)
  897. flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PT));
  898. }
  899. mm_data.m_last_quickmap_pt = pt_paddr;
  900. return (PageTableEntry*)KERNEL_QUICKMAP_PT;
  901. }
  902. u8* MemoryManager::quickmap_page(PhysicalAddress const& physical_address)
  903. {
  904. VERIFY_INTERRUPTS_DISABLED();
  905. VERIFY(s_mm_lock.is_locked_by_current_processor());
  906. auto& mm_data = get_data();
  907. mm_data.m_quickmap_prev_flags = mm_data.m_quickmap_in_use.lock();
  908. VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
  909. u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
  910. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx];
  911. if (pte.physical_page_base() != physical_address.get()) {
  912. pte.set_physical_page_base(physical_address.get());
  913. pte.set_present(true);
  914. pte.set_writable(true);
  915. pte.set_user_allowed(false);
  916. flush_tlb_local(vaddr);
  917. }
  918. return vaddr.as_ptr();
  919. }
  920. void MemoryManager::unquickmap_page()
  921. {
  922. VERIFY_INTERRUPTS_DISABLED();
  923. VERIFY(s_mm_lock.is_locked_by_current_processor());
  924. auto& mm_data = get_data();
  925. VERIFY(mm_data.m_quickmap_in_use.is_locked());
  926. VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
  927. u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
  928. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx];
  929. pte.clear();
  930. flush_tlb_local(vaddr);
  931. mm_data.m_quickmap_in_use.unlock(mm_data.m_quickmap_prev_flags);
  932. }
  933. bool MemoryManager::validate_user_stack_no_lock(AddressSpace& space, VirtualAddress vaddr) const
  934. {
  935. VERIFY(space.get_lock().is_locked_by_current_processor());
  936. if (!is_user_address(vaddr))
  937. return false;
  938. auto* region = find_user_region_from_vaddr_no_lock(space, vaddr);
  939. return region && region->is_user() && region->is_stack();
  940. }
  941. bool MemoryManager::validate_user_stack(AddressSpace& space, VirtualAddress vaddr) const
  942. {
  943. SpinlockLocker lock(space.get_lock());
  944. return validate_user_stack_no_lock(space, vaddr);
  945. }
  946. void MemoryManager::register_region(Region& region)
  947. {
  948. SpinlockLocker lock(s_mm_lock);
  949. if (region.is_kernel())
  950. m_kernel_regions.insert(region.vaddr().get(), &region);
  951. }
  952. void MemoryManager::unregister_region(Region& region)
  953. {
  954. SpinlockLocker lock(s_mm_lock);
  955. if (region.is_kernel())
  956. m_kernel_regions.remove(region.vaddr().get());
  957. }
  958. void MemoryManager::dump_kernel_regions()
  959. {
  960. dbgln("Kernel regions:");
  961. #if ARCH(I386)
  962. auto addr_padding = "";
  963. #else
  964. auto addr_padding = " ";
  965. #endif
  966. dbgln("BEGIN{} END{} SIZE{} ACCESS NAME",
  967. addr_padding, addr_padding, addr_padding);
  968. SpinlockLocker lock(s_mm_lock);
  969. for (auto* region_ptr : m_kernel_regions) {
  970. auto& region = *region_ptr;
  971. dbgln("{:p} -- {:p} {:p} {:c}{:c}{:c}{:c}{:c}{:c} {}",
  972. region.vaddr().get(),
  973. region.vaddr().offset(region.size() - 1).get(),
  974. region.size(),
  975. region.is_readable() ? 'R' : ' ',
  976. region.is_writable() ? 'W' : ' ',
  977. region.is_executable() ? 'X' : ' ',
  978. region.is_shared() ? 'S' : ' ',
  979. region.is_stack() ? 'T' : ' ',
  980. region.is_syscall_region() ? 'C' : ' ',
  981. region.name());
  982. }
  983. }
  984. void MemoryManager::set_page_writable_direct(VirtualAddress vaddr, bool writable)
  985. {
  986. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  987. SpinlockLocker lock(s_mm_lock);
  988. auto* pte = ensure_pte(kernel_page_directory(), vaddr);
  989. VERIFY(pte);
  990. if (pte->is_writable() == writable)
  991. return;
  992. pte->set_writable(writable);
  993. flush_tlb(&kernel_page_directory(), vaddr);
  994. }
  995. CommittedPhysicalPageSet::~CommittedPhysicalPageSet()
  996. {
  997. if (m_page_count)
  998. MM.uncommit_user_physical_pages({}, m_page_count);
  999. }
  1000. NonnullRefPtr<PhysicalPage> CommittedPhysicalPageSet::take_one()
  1001. {
  1002. VERIFY(m_page_count > 0);
  1003. --m_page_count;
  1004. return MM.allocate_committed_user_physical_page({}, MemoryManager::ShouldZeroFill::Yes);
  1005. }
  1006. void CommittedPhysicalPageSet::uncommit_one()
  1007. {
  1008. VERIFY(m_page_count > 0);
  1009. --m_page_count;
  1010. MM.uncommit_user_physical_pages({}, 1);
  1011. }
  1012. void MemoryManager::copy_physical_page(PhysicalPage& physical_page, u8 page_buffer[PAGE_SIZE])
  1013. {
  1014. SpinlockLocker locker(s_mm_lock);
  1015. auto* quickmapped_page = quickmap_page(physical_page);
  1016. memcpy(page_buffer, quickmapped_page, PAGE_SIZE);
  1017. unquickmap_page();
  1018. }
  1019. }