sigaction.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org>
  4. *
  5. * SPDX-License-Identifier: BSD-2-Clause
  6. */
  7. #include <Kernel/Arch/InterruptDisabler.h>
  8. #include <Kernel/Arch/SmapDisabler.h>
  9. #include <Kernel/Process.h>
  10. namespace Kernel {
  11. ErrorOr<FlatPtr> Process::sys$sigprocmask(int how, Userspace<sigset_t const*> set, Userspace<sigset_t*> old_set)
  12. {
  13. VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this)
  14. TRY(require_promise(Pledge::sigaction));
  15. auto* current_thread = Thread::current();
  16. u32 previous_signal_mask;
  17. if (set) {
  18. auto set_value = TRY(copy_typed_from_user(set));
  19. switch (how) {
  20. case SIG_BLOCK:
  21. previous_signal_mask = current_thread->signal_mask_block(set_value, true);
  22. break;
  23. case SIG_UNBLOCK:
  24. previous_signal_mask = current_thread->signal_mask_block(set_value, false);
  25. break;
  26. case SIG_SETMASK:
  27. previous_signal_mask = current_thread->update_signal_mask(set_value);
  28. break;
  29. default:
  30. return EINVAL;
  31. }
  32. } else {
  33. previous_signal_mask = current_thread->signal_mask();
  34. }
  35. if (old_set) {
  36. TRY(copy_to_user(old_set, &previous_signal_mask));
  37. }
  38. return 0;
  39. }
  40. ErrorOr<FlatPtr> Process::sys$sigpending(Userspace<sigset_t*> set)
  41. {
  42. VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this)
  43. TRY(require_promise(Pledge::stdio));
  44. auto pending_signals = Thread::current()->pending_signals();
  45. TRY(copy_to_user(set, &pending_signals));
  46. return 0;
  47. }
  48. ErrorOr<FlatPtr> Process::sys$sigaction(int signum, Userspace<sigaction const*> user_act, Userspace<sigaction*> user_old_act)
  49. {
  50. VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this)
  51. TRY(require_promise(Pledge::sigaction));
  52. if (signum < 1 || signum >= NSIG || signum == SIGKILL || signum == SIGSTOP)
  53. return EINVAL;
  54. InterruptDisabler disabler; // FIXME: This should use a narrower lock. Maybe a way to ignore signals temporarily?
  55. auto& action = m_signal_action_data[signum];
  56. if (user_old_act) {
  57. sigaction old_act {};
  58. old_act.sa_flags = action.flags;
  59. old_act.sa_sigaction = reinterpret_cast<decltype(old_act.sa_sigaction)>(action.handler_or_sigaction.as_ptr());
  60. old_act.sa_mask = action.mask;
  61. TRY(copy_to_user(user_old_act, &old_act));
  62. }
  63. if (user_act) {
  64. auto act = TRY(copy_typed_from_user(user_act));
  65. action.mask = act.sa_mask;
  66. action.flags = act.sa_flags;
  67. action.handler_or_sigaction = VirtualAddress { reinterpret_cast<void*>(act.sa_sigaction) };
  68. }
  69. return 0;
  70. }
  71. ErrorOr<FlatPtr> Process::sys$sigreturn([[maybe_unused]] RegisterState& registers)
  72. {
  73. VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this)
  74. TRY(require_promise(Pledge::stdio));
  75. SmapDisabler disabler;
  76. // Here, we restore the state pushed by dispatch signal and asm_signal_trampoline.
  77. auto stack_ptr = registers.userspace_sp();
  78. // Stack state (created by the signal trampoline):
  79. // saved_ax, ucontext, signal_info, fpu_state?.
  80. #if ARCH(I386) || ARCH(X86_64)
  81. // The FPU state is at the top here, pop it off and restore it.
  82. // FIXME: The stack alignment is off by 8 bytes here, figure this out and remove this excessively aligned object.
  83. alignas(alignof(FPUState) * 2) FPUState data {};
  84. TRY(copy_from_user(&data, bit_cast<FPUState const*>(stack_ptr)));
  85. Thread::current()->fpu_state() = data;
  86. stack_ptr += sizeof(FPUState);
  87. #endif
  88. stack_ptr += sizeof(siginfo); // We don't need this here.
  89. auto ucontext = TRY(copy_typed_from_user<__ucontext>(stack_ptr));
  90. stack_ptr += sizeof(__ucontext);
  91. auto saved_ax = TRY(copy_typed_from_user<FlatPtr>(stack_ptr));
  92. Thread::current()->m_signal_mask = ucontext.uc_sigmask;
  93. Thread::current()->m_currently_handled_signal = 0;
  94. #if ARCH(X86_64)
  95. auto sp = registers.rsp;
  96. #elif ARCH(I386)
  97. auto sp = registers.esp;
  98. #endif
  99. copy_ptrace_registers_into_kernel_registers(registers, static_cast<PtraceRegisters const&>(ucontext.uc_mcontext));
  100. #if ARCH(X86_64)
  101. registers.set_userspace_sp(registers.rsp);
  102. registers.rsp = sp;
  103. #elif ARCH(I386)
  104. registers.set_userspace_sp(registers.esp);
  105. registers.esp = sp;
  106. #endif
  107. return saved_ax;
  108. }
  109. ErrorOr<void> Process::remap_range_as_stack(FlatPtr address, size_t size)
  110. {
  111. // FIXME: This duplicates a lot of logic from sys$mprotect, this should be abstracted out somehow
  112. auto range_to_remap = TRY(Memory::expand_range_to_page_boundaries(address, size));
  113. if (!range_to_remap.size())
  114. return EINVAL;
  115. if (!is_user_range(range_to_remap))
  116. return EFAULT;
  117. if (auto* whole_region = address_space().find_region_from_range(range_to_remap)) {
  118. if (!whole_region->is_mmap())
  119. return EPERM;
  120. if (!whole_region->vmobject().is_anonymous() || whole_region->is_shared())
  121. return EINVAL;
  122. whole_region->unsafe_clear_access();
  123. whole_region->set_readable(true);
  124. whole_region->set_writable(true);
  125. whole_region->set_stack(true);
  126. whole_region->set_syscall_region(false);
  127. whole_region->clear_to_zero();
  128. whole_region->remap();
  129. return {};
  130. }
  131. if (auto* old_region = address_space().find_region_containing(range_to_remap)) {
  132. if (!old_region->is_mmap())
  133. return EPERM;
  134. if (!old_region->vmobject().is_anonymous() || old_region->is_shared())
  135. return EINVAL;
  136. // Remove the old region from our regions tree, since were going to add another region
  137. // with the exact same start address.
  138. auto region = address_space().take_region(*old_region);
  139. region->unmap();
  140. // This vector is the region(s) adjacent to our range.
  141. // We need to allocate a new region for the range we wanted to change permission bits on.
  142. auto adjacent_regions = TRY(address_space().try_split_region_around_range(*region, range_to_remap));
  143. size_t new_range_offset_in_vmobject = region->offset_in_vmobject() + (range_to_remap.base().get() - region->range().base().get());
  144. auto* new_region = TRY(address_space().try_allocate_split_region(*region, range_to_remap, new_range_offset_in_vmobject));
  145. new_region->unsafe_clear_access();
  146. new_region->set_readable(true);
  147. new_region->set_writable(true);
  148. new_region->set_stack(true);
  149. new_region->set_syscall_region(false);
  150. new_region->clear_to_zero();
  151. // Map the new regions using our page directory (they were just allocated and don't have one).
  152. for (auto* adjacent_region : adjacent_regions) {
  153. TRY(adjacent_region->map(address_space().page_directory()));
  154. }
  155. TRY(new_region->map(address_space().page_directory()));
  156. return {};
  157. }
  158. if (auto const& regions = TRY(address_space().find_regions_intersecting(range_to_remap)); regions.size()) {
  159. size_t full_size_found = 0;
  160. // Check that all intersecting regions are compatible.
  161. for (auto const* region : regions) {
  162. if (!region->is_mmap())
  163. return EPERM;
  164. if (!region->vmobject().is_anonymous() || region->is_shared())
  165. return EINVAL;
  166. full_size_found += region->range().intersect(range_to_remap).size();
  167. }
  168. if (full_size_found != range_to_remap.size())
  169. return ENOMEM;
  170. // Finally, iterate over each region, either updating its access flags if the range covers it wholly,
  171. // or carving out a new subregion with the appropriate access flags set.
  172. for (auto* old_region : regions) {
  173. auto const intersection_to_remap = range_to_remap.intersect(old_region->range());
  174. // If the region is completely covered by range, simply update the access flags
  175. if (intersection_to_remap == old_region->range()) {
  176. old_region->unsafe_clear_access();
  177. old_region->set_readable(true);
  178. old_region->set_writable(true);
  179. old_region->set_stack(true);
  180. old_region->set_syscall_region(false);
  181. old_region->clear_to_zero();
  182. old_region->remap();
  183. continue;
  184. }
  185. // Remove the old region from our regions tree, since were going to add another region
  186. // with the exact same start address.
  187. auto region = address_space().take_region(*old_region);
  188. region->unmap();
  189. // This vector is the region(s) adjacent to our range.
  190. // We need to allocate a new region for the range we wanted to change permission bits on.
  191. auto adjacent_regions = TRY(address_space().try_split_region_around_range(*old_region, intersection_to_remap));
  192. // Since the range is not contained in a single region, it can only partially cover its starting and ending region,
  193. // therefore carving out a chunk from the region will always produce a single extra region, and not two.
  194. VERIFY(adjacent_regions.size() == 1);
  195. size_t new_range_offset_in_vmobject = old_region->offset_in_vmobject() + (intersection_to_remap.base().get() - old_region->range().base().get());
  196. auto* new_region = TRY(address_space().try_allocate_split_region(*region, intersection_to_remap, new_range_offset_in_vmobject));
  197. new_region->unsafe_clear_access();
  198. new_region->set_readable(true);
  199. new_region->set_writable(true);
  200. new_region->set_stack(true);
  201. new_region->set_syscall_region(false);
  202. new_region->clear_to_zero();
  203. // Map the new region using our page directory (they were just allocated and don't have one) if any.
  204. TRY(adjacent_regions[0]->map(address_space().page_directory()));
  205. TRY(new_region->map(address_space().page_directory()));
  206. }
  207. return {};
  208. }
  209. return EINVAL;
  210. }
  211. ErrorOr<FlatPtr> Process::sys$sigaltstack(Userspace<stack_t const*> user_ss, Userspace<stack_t*> user_old_ss)
  212. {
  213. VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this)
  214. TRY(require_promise(Pledge::sigaction));
  215. if (user_old_ss) {
  216. stack_t old_ss_value {};
  217. old_ss_value.ss_sp = (void*)Thread::current()->m_alternative_signal_stack;
  218. old_ss_value.ss_size = Thread::current()->m_alternative_signal_stack_size;
  219. old_ss_value.ss_flags = 0;
  220. if (!Thread::current()->has_alternative_signal_stack())
  221. old_ss_value.ss_flags = SS_DISABLE;
  222. else if (Thread::current()->is_in_alternative_signal_stack())
  223. old_ss_value.ss_flags = SS_ONSTACK;
  224. TRY(copy_to_user(user_old_ss, &old_ss_value));
  225. }
  226. if (user_ss) {
  227. auto ss = TRY(copy_typed_from_user(user_ss));
  228. if (Thread::current()->is_in_alternative_signal_stack())
  229. return EPERM;
  230. if (ss.ss_flags == SS_DISABLE) {
  231. Thread::current()->m_alternative_signal_stack_size = 0;
  232. Thread::current()->m_alternative_signal_stack = 0;
  233. } else if (ss.ss_flags == 0) {
  234. if (ss.ss_size <= MINSIGSTKSZ)
  235. return ENOMEM;
  236. if (Checked<FlatPtr>::addition_would_overflow((FlatPtr)ss.ss_sp, ss.ss_size))
  237. return ENOMEM;
  238. // In order to preserve compatibility with our MAP_STACK, W^X and syscall region
  239. // protections, sigaltstack ranges are carved out of their regions, zeroed, and
  240. // turned into read/writable MAP_STACK-enabled regions.
  241. // This is inspired by OpenBSD's solution: https://man.openbsd.org/sigaltstack.2
  242. TRY(remap_range_as_stack((FlatPtr)ss.ss_sp, ss.ss_size));
  243. Thread::current()->m_alternative_signal_stack = (FlatPtr)ss.ss_sp;
  244. Thread::current()->m_alternative_signal_stack_size = ss.ss_size;
  245. } else {
  246. return EINVAL;
  247. }
  248. }
  249. return 0;
  250. }
  251. // https://pubs.opengroup.org/onlinepubs/9699919799/functions/sigtimedwait.html
  252. ErrorOr<FlatPtr> Process::sys$sigtimedwait(Userspace<sigset_t const*> set, Userspace<siginfo_t*> info, Userspace<timespec const*> timeout)
  253. {
  254. VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this)
  255. TRY(require_promise(Pledge::sigaction));
  256. sigset_t set_value;
  257. TRY(copy_from_user(&set_value, set));
  258. Thread::BlockTimeout block_timeout = {};
  259. if (timeout) {
  260. auto timeout_time = TRY(copy_time_from_user(timeout));
  261. block_timeout = Thread::BlockTimeout(false, &timeout_time);
  262. }
  263. siginfo_t info_value = {};
  264. auto block_result = Thread::current()->block<Thread::SignalBlocker>(block_timeout, set_value, info_value);
  265. if (block_result.was_interrupted())
  266. return EINTR;
  267. // We check for an unset signal instead of directly checking for a timeout interruption
  268. // in order to allow polling the pending signals by setting the timeout to 0.
  269. if (info_value.si_signo == SIGINVAL) {
  270. VERIFY(block_result == Thread::BlockResult::InterruptedByTimeout);
  271. return EAGAIN;
  272. }
  273. if (info)
  274. TRY(copy_to_user(info, &info_value));
  275. return info_value.si_signo;
  276. }
  277. // https://pubs.opengroup.org/onlinepubs/9699919799/functions/sigsuspend.html
  278. ErrorOr<FlatPtr> Process::sys$sigsuspend(Userspace<sigset_t const*> mask)
  279. {
  280. VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this)
  281. auto sigmask = TRY(copy_typed_from_user(mask));
  282. auto* current_thread = Thread::current();
  283. u32 previous_signal_mask = current_thread->update_signal_mask(sigmask);
  284. ScopeGuard rollback_signal_mask([&]() {
  285. current_thread->update_signal_mask(previous_signal_mask);
  286. });
  287. // TODO: Ensure that/check if we never return if the action is to terminate the process.
  288. // TODO: Ensure that/check if we only return after an eventual signal-catching function returns.
  289. Thread::BlockTimeout timeout = {};
  290. siginfo_t siginfo = {};
  291. if (current_thread->block<Thread::SignalBlocker>(timeout, ~sigmask, siginfo).was_interrupted())
  292. return EINTR;
  293. return 0;
  294. }
  295. }