Region.cpp 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Memory.h>
  7. #include <AK/StringView.h>
  8. #include <Kernel/Arch/PageDirectory.h>
  9. #include <Kernel/Arch/PageFault.h>
  10. #include <Kernel/Debug.h>
  11. #include <Kernel/FileSystem/Inode.h>
  12. #include <Kernel/Memory/AnonymousVMObject.h>
  13. #include <Kernel/Memory/MemoryManager.h>
  14. #include <Kernel/Memory/PageDirectory.h>
  15. #include <Kernel/Memory/Region.h>
  16. #include <Kernel/Memory/SharedInodeVMObject.h>
  17. #include <Kernel/Panic.h>
  18. #include <Kernel/Process.h>
  19. #include <Kernel/Scheduler.h>
  20. #include <Kernel/Thread.h>
  21. namespace Kernel::Memory {
  22. Region::Region()
  23. : m_range(VirtualRange({}, 0))
  24. {
  25. }
  26. Region::Region(NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  27. : m_range(VirtualRange({}, 0))
  28. , m_offset_in_vmobject(offset_in_vmobject)
  29. , m_vmobject(move(vmobject))
  30. , m_name(move(name))
  31. , m_access(access | ((access & 0x7) << 4))
  32. , m_shared(shared)
  33. , m_cacheable(cacheable == Cacheable::Yes)
  34. {
  35. m_vmobject->add_region(*this);
  36. }
  37. Region::Region(VirtualRange const& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  38. : m_range(range)
  39. , m_offset_in_vmobject(offset_in_vmobject)
  40. , m_vmobject(move(vmobject))
  41. , m_name(move(name))
  42. , m_access(access | ((access & 0x7) << 4))
  43. , m_shared(shared)
  44. , m_cacheable(cacheable == Cacheable::Yes)
  45. {
  46. VERIFY(m_range.base().is_page_aligned());
  47. VERIFY(m_range.size());
  48. VERIFY((m_range.size() % PAGE_SIZE) == 0);
  49. m_vmobject->add_region(*this);
  50. }
  51. Region::~Region()
  52. {
  53. if (is_writable() && vmobject().is_shared_inode()) {
  54. // FIXME: This is very aggressive. Find a way to do less work!
  55. (void)static_cast<SharedInodeVMObject&>(vmobject()).sync();
  56. }
  57. m_vmobject->remove_region(*this);
  58. if (m_page_directory) {
  59. SpinlockLocker pd_locker(m_page_directory->get_lock());
  60. if (!is_readable() && !is_writable() && !is_executable()) {
  61. // If the region is "PROT_NONE", we didn't map it in the first place.
  62. } else {
  63. SpinlockLocker mm_locker(s_mm_lock);
  64. unmap_with_locks_held(ShouldFlushTLB::Yes, pd_locker, mm_locker);
  65. VERIFY(!m_page_directory);
  66. }
  67. }
  68. if (is_kernel())
  69. MM.unregister_kernel_region(*this);
  70. }
  71. ErrorOr<NonnullOwnPtr<Region>> Region::create_unbacked()
  72. {
  73. return adopt_nonnull_own_or_enomem(new (nothrow) Region);
  74. }
  75. ErrorOr<NonnullOwnPtr<Region>> Region::create_unplaced(NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  76. {
  77. return adopt_nonnull_own_or_enomem(new (nothrow) Region(move(vmobject), offset_in_vmobject, move(name), access, cacheable, shared));
  78. }
  79. ErrorOr<NonnullOwnPtr<Region>> Region::try_clone()
  80. {
  81. VERIFY(Process::has_current());
  82. if (m_shared) {
  83. VERIFY(!m_stack);
  84. if (vmobject().is_inode())
  85. VERIFY(vmobject().is_shared_inode());
  86. // Create a new region backed by the same VMObject.
  87. OwnPtr<KString> region_name;
  88. if (m_name)
  89. region_name = TRY(m_name->try_clone());
  90. auto region = TRY(Region::try_create_user_accessible(
  91. m_range, vmobject(), m_offset_in_vmobject, move(region_name), access(), m_cacheable ? Cacheable::Yes : Cacheable::No, m_shared));
  92. region->set_mmap(m_mmap);
  93. region->set_shared(m_shared);
  94. region->set_syscall_region(is_syscall_region());
  95. return region;
  96. }
  97. if (vmobject().is_inode())
  98. VERIFY(vmobject().is_private_inode());
  99. auto vmobject_clone = TRY(vmobject().try_clone());
  100. // Set up a COW region. The parent (this) region becomes COW as well!
  101. if (is_writable())
  102. remap();
  103. OwnPtr<KString> clone_region_name;
  104. if (m_name)
  105. clone_region_name = TRY(m_name->try_clone());
  106. auto clone_region = TRY(Region::try_create_user_accessible(
  107. m_range, move(vmobject_clone), m_offset_in_vmobject, move(clone_region_name), access(), m_cacheable ? Cacheable::Yes : Cacheable::No, m_shared));
  108. if (m_stack) {
  109. VERIFY(vmobject().is_anonymous());
  110. clone_region->set_stack(true);
  111. }
  112. clone_region->set_syscall_region(is_syscall_region());
  113. clone_region->set_mmap(m_mmap);
  114. return clone_region;
  115. }
  116. void Region::set_vmobject(NonnullRefPtr<VMObject>&& obj)
  117. {
  118. if (m_vmobject.ptr() == obj.ptr())
  119. return;
  120. m_vmobject->remove_region(*this);
  121. m_vmobject = move(obj);
  122. m_vmobject->add_region(*this);
  123. }
  124. size_t Region::cow_pages() const
  125. {
  126. if (!vmobject().is_anonymous())
  127. return 0;
  128. return static_cast<AnonymousVMObject const&>(vmobject()).cow_pages();
  129. }
  130. size_t Region::amount_dirty() const
  131. {
  132. if (!vmobject().is_inode())
  133. return amount_resident();
  134. return static_cast<InodeVMObject const&>(vmobject()).amount_dirty();
  135. }
  136. size_t Region::amount_resident() const
  137. {
  138. size_t bytes = 0;
  139. for (size_t i = 0; i < page_count(); ++i) {
  140. auto const* page = physical_page(i);
  141. if (page && !page->is_shared_zero_page() && !page->is_lazy_committed_page())
  142. bytes += PAGE_SIZE;
  143. }
  144. return bytes;
  145. }
  146. size_t Region::amount_shared() const
  147. {
  148. size_t bytes = 0;
  149. for (size_t i = 0; i < page_count(); ++i) {
  150. auto const* page = physical_page(i);
  151. if (page && page->ref_count() > 1 && !page->is_shared_zero_page() && !page->is_lazy_committed_page())
  152. bytes += PAGE_SIZE;
  153. }
  154. return bytes;
  155. }
  156. ErrorOr<NonnullOwnPtr<Region>> Region::try_create_user_accessible(VirtualRange const& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  157. {
  158. return adopt_nonnull_own_or_enomem(new (nothrow) Region(range, move(vmobject), offset_in_vmobject, move(name), access, cacheable, shared));
  159. }
  160. bool Region::should_cow(size_t page_index) const
  161. {
  162. if (!vmobject().is_anonymous())
  163. return false;
  164. return static_cast<AnonymousVMObject const&>(vmobject()).should_cow(first_page_index() + page_index, m_shared);
  165. }
  166. ErrorOr<void> Region::set_should_cow(size_t page_index, bool cow)
  167. {
  168. VERIFY(!m_shared);
  169. if (vmobject().is_anonymous())
  170. TRY(static_cast<AnonymousVMObject&>(vmobject()).set_should_cow(first_page_index() + page_index, cow));
  171. return {};
  172. }
  173. bool Region::map_individual_page_impl(size_t page_index)
  174. {
  175. VERIFY(m_page_directory->get_lock().is_locked_by_current_processor());
  176. VERIFY(s_mm_lock.is_locked_by_current_processor());
  177. auto page_vaddr = vaddr_from_page_index(page_index);
  178. bool user_allowed = page_vaddr.get() >= USER_RANGE_BASE && is_user_address(page_vaddr);
  179. if (is_mmap() && !user_allowed) {
  180. PANIC("About to map mmap'ed page at a kernel address");
  181. }
  182. auto* pte = MM.ensure_pte(*m_page_directory, page_vaddr);
  183. if (!pte)
  184. return false;
  185. auto* page = physical_page(page_index);
  186. if (!page || (!is_readable() && !is_writable())) {
  187. pte->clear();
  188. } else {
  189. pte->set_cache_disabled(!m_cacheable);
  190. pte->set_physical_page_base(page->paddr().get());
  191. pte->set_present(true);
  192. if (page->is_shared_zero_page() || page->is_lazy_committed_page() || should_cow(page_index))
  193. pte->set_writable(false);
  194. else
  195. pte->set_writable(is_writable());
  196. if (Processor::current().has_nx())
  197. pte->set_execute_disabled(!is_executable());
  198. if (Processor::current().has_pat())
  199. pte->set_pat(is_write_combine());
  200. pte->set_user_allowed(user_allowed);
  201. }
  202. return true;
  203. }
  204. bool Region::do_remap_vmobject_page(size_t page_index, bool with_flush)
  205. {
  206. if (!m_page_directory)
  207. return true; // not an error, region may have not yet mapped it
  208. if (!translate_vmobject_page(page_index))
  209. return true; // not an error, region doesn't map this page
  210. SpinlockLocker page_lock(m_page_directory->get_lock());
  211. SpinlockLocker lock(s_mm_lock);
  212. VERIFY(physical_page(page_index));
  213. bool success = map_individual_page_impl(page_index);
  214. if (with_flush)
  215. MemoryManager::flush_tlb(m_page_directory, vaddr_from_page_index(page_index));
  216. return success;
  217. }
  218. bool Region::remap_vmobject_page(size_t page_index, bool with_flush)
  219. {
  220. auto& vmobject = this->vmobject();
  221. bool success = true;
  222. SpinlockLocker lock(vmobject.m_lock);
  223. vmobject.for_each_region([&](auto& region) {
  224. if (!region.do_remap_vmobject_page(page_index, with_flush))
  225. success = false;
  226. });
  227. return success;
  228. }
  229. void Region::unmap(ShouldFlushTLB should_flush_tlb)
  230. {
  231. if (!m_page_directory)
  232. return;
  233. SpinlockLocker pd_locker(m_page_directory->get_lock());
  234. SpinlockLocker mm_locker(s_mm_lock);
  235. unmap_with_locks_held(should_flush_tlb, pd_locker, mm_locker);
  236. }
  237. void Region::unmap_with_locks_held(ShouldFlushTLB should_flush_tlb, SpinlockLocker<RecursiveSpinlock>&, SpinlockLocker<RecursiveSpinlock>&)
  238. {
  239. if (!m_page_directory)
  240. return;
  241. size_t count = page_count();
  242. for (size_t i = 0; i < count; ++i) {
  243. auto vaddr = vaddr_from_page_index(i);
  244. MM.release_pte(*m_page_directory, vaddr, i == count - 1 ? MemoryManager::IsLastPTERelease::Yes : MemoryManager::IsLastPTERelease::No);
  245. }
  246. if (should_flush_tlb == ShouldFlushTLB::Yes)
  247. MemoryManager::flush_tlb(m_page_directory, vaddr(), page_count());
  248. m_page_directory = nullptr;
  249. }
  250. void Region::set_page_directory(PageDirectory& page_directory)
  251. {
  252. VERIFY(!m_page_directory || m_page_directory == &page_directory);
  253. VERIFY(s_mm_lock.is_locked_by_current_processor());
  254. m_page_directory = page_directory;
  255. }
  256. ErrorOr<void> Region::map(PageDirectory& page_directory, ShouldFlushTLB should_flush_tlb)
  257. {
  258. SpinlockLocker page_lock(page_directory.get_lock());
  259. SpinlockLocker lock(s_mm_lock);
  260. // FIXME: Find a better place for this sanity check(?)
  261. if (is_user() && !is_shared()) {
  262. VERIFY(!vmobject().is_shared_inode());
  263. }
  264. set_page_directory(page_directory);
  265. size_t page_index = 0;
  266. while (page_index < page_count()) {
  267. if (!map_individual_page_impl(page_index))
  268. break;
  269. ++page_index;
  270. }
  271. if (page_index > 0) {
  272. if (should_flush_tlb == ShouldFlushTLB::Yes)
  273. MemoryManager::flush_tlb(m_page_directory, vaddr(), page_index);
  274. if (page_index == page_count())
  275. return {};
  276. }
  277. return ENOMEM;
  278. }
  279. void Region::remap()
  280. {
  281. VERIFY(m_page_directory);
  282. auto result = map(*m_page_directory);
  283. if (result.is_error())
  284. TODO();
  285. }
  286. ErrorOr<void> Region::set_write_combine(bool enable)
  287. {
  288. if (enable && !Processor::current().has_pat()) {
  289. dbgln("PAT is not supported, implement MTRR fallback if available");
  290. return Error::from_errno(ENOTSUP);
  291. }
  292. m_write_combine = enable;
  293. remap();
  294. return {};
  295. }
  296. void Region::clear_to_zero()
  297. {
  298. VERIFY(vmobject().is_anonymous());
  299. SpinlockLocker locker(vmobject().m_lock);
  300. for (auto i = 0u; i < page_count(); ++i) {
  301. auto& page = physical_page_slot(i);
  302. VERIFY(page);
  303. if (page->is_shared_zero_page())
  304. continue;
  305. page = MM.shared_zero_page();
  306. }
  307. }
  308. PageFaultResponse Region::handle_fault(PageFault const& fault)
  309. {
  310. auto page_index_in_region = page_index_from_address(fault.vaddr());
  311. if (fault.type() == PageFault::Type::PageNotPresent) {
  312. if (fault.is_read() && !is_readable()) {
  313. dbgln("NP(non-readable) fault in Region({})[{}]", this, page_index_in_region);
  314. return PageFaultResponse::ShouldCrash;
  315. }
  316. if (fault.is_write() && !is_writable()) {
  317. dbgln("NP(non-writable) write fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  318. return PageFaultResponse::ShouldCrash;
  319. }
  320. if (vmobject().is_inode()) {
  321. dbgln_if(PAGE_FAULT_DEBUG, "NP(inode) fault in Region({})[{}]", this, page_index_in_region);
  322. return handle_inode_fault(page_index_in_region);
  323. }
  324. auto& page_slot = physical_page_slot(page_index_in_region);
  325. if (page_slot->is_lazy_committed_page()) {
  326. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  327. VERIFY(m_vmobject->is_anonymous());
  328. page_slot = static_cast<AnonymousVMObject&>(*m_vmobject).allocate_committed_page({});
  329. if (!remap_vmobject_page(page_index_in_vmobject))
  330. return PageFaultResponse::OutOfMemory;
  331. return PageFaultResponse::Continue;
  332. }
  333. dbgln("BUG! Unexpected NP fault at {}", fault.vaddr());
  334. dbgln(" - Physical page slot pointer: {:p}", page_slot.ptr());
  335. if (page_slot) {
  336. dbgln(" - Physical page: {}", page_slot->paddr());
  337. dbgln(" - Lazy committed: {}", page_slot->is_lazy_committed_page());
  338. dbgln(" - Shared zero: {}", page_slot->is_shared_zero_page());
  339. }
  340. return PageFaultResponse::ShouldCrash;
  341. }
  342. VERIFY(fault.type() == PageFault::Type::ProtectionViolation);
  343. if (fault.access() == PageFault::Access::Write && is_writable() && should_cow(page_index_in_region)) {
  344. dbgln_if(PAGE_FAULT_DEBUG, "PV(cow) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  345. auto* phys_page = physical_page(page_index_in_region);
  346. if (phys_page->is_shared_zero_page() || phys_page->is_lazy_committed_page()) {
  347. dbgln_if(PAGE_FAULT_DEBUG, "NP(zero) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  348. return handle_zero_fault(page_index_in_region);
  349. }
  350. return handle_cow_fault(page_index_in_region);
  351. }
  352. dbgln("PV(error) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  353. return PageFaultResponse::ShouldCrash;
  354. }
  355. PageFaultResponse Region::handle_zero_fault(size_t page_index_in_region)
  356. {
  357. VERIFY_INTERRUPTS_DISABLED();
  358. VERIFY(vmobject().is_anonymous());
  359. auto& page_slot = physical_page_slot(page_index_in_region);
  360. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  361. SpinlockLocker locker(vmobject().m_lock);
  362. if (!page_slot.is_null() && !page_slot->is_shared_zero_page() && !page_slot->is_lazy_committed_page()) {
  363. dbgln_if(PAGE_FAULT_DEBUG, "MM: zero_page() but page already present. Fine with me!");
  364. if (!remap_vmobject_page(page_index_in_vmobject))
  365. return PageFaultResponse::OutOfMemory;
  366. return PageFaultResponse::Continue;
  367. }
  368. auto current_thread = Thread::current();
  369. if (current_thread != nullptr)
  370. current_thread->did_zero_fault();
  371. if (page_slot->is_lazy_committed_page()) {
  372. VERIFY(m_vmobject->is_anonymous());
  373. page_slot = static_cast<AnonymousVMObject&>(*m_vmobject).allocate_committed_page({});
  374. dbgln_if(PAGE_FAULT_DEBUG, " >> ALLOCATED COMMITTED {}", page_slot->paddr());
  375. } else {
  376. auto page_or_error = MM.allocate_physical_page(MemoryManager::ShouldZeroFill::Yes);
  377. if (page_or_error.is_error()) {
  378. dmesgln("MM: handle_zero_fault was unable to allocate a physical page");
  379. return PageFaultResponse::OutOfMemory;
  380. }
  381. page_slot = page_or_error.release_value();
  382. dbgln_if(PAGE_FAULT_DEBUG, " >> ALLOCATED {}", page_slot->paddr());
  383. }
  384. if (!remap_vmobject_page(page_index_in_vmobject)) {
  385. dmesgln("MM: handle_zero_fault was unable to allocate a page table to map {}", page_slot);
  386. return PageFaultResponse::OutOfMemory;
  387. }
  388. return PageFaultResponse::Continue;
  389. }
  390. PageFaultResponse Region::handle_cow_fault(size_t page_index_in_region)
  391. {
  392. VERIFY_INTERRUPTS_DISABLED();
  393. auto current_thread = Thread::current();
  394. if (current_thread)
  395. current_thread->did_cow_fault();
  396. if (!vmobject().is_anonymous())
  397. return PageFaultResponse::ShouldCrash;
  398. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  399. auto response = reinterpret_cast<AnonymousVMObject&>(vmobject()).handle_cow_fault(page_index_in_vmobject, vaddr().offset(page_index_in_region * PAGE_SIZE));
  400. if (!remap_vmobject_page(page_index_in_vmobject))
  401. return PageFaultResponse::OutOfMemory;
  402. return response;
  403. }
  404. PageFaultResponse Region::handle_inode_fault(size_t page_index_in_region)
  405. {
  406. VERIFY_INTERRUPTS_DISABLED();
  407. VERIFY(vmobject().is_inode());
  408. VERIFY(!s_mm_lock.is_locked_by_current_processor());
  409. VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
  410. auto& inode_vmobject = static_cast<InodeVMObject&>(vmobject());
  411. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  412. auto& vmobject_physical_page_entry = inode_vmobject.physical_pages()[page_index_in_vmobject];
  413. {
  414. SpinlockLocker locker(inode_vmobject.m_lock);
  415. if (!vmobject_physical_page_entry.is_null()) {
  416. dbgln_if(PAGE_FAULT_DEBUG, "handle_inode_fault: Page faulted in by someone else before reading, remapping.");
  417. if (!remap_vmobject_page(page_index_in_vmobject))
  418. return PageFaultResponse::OutOfMemory;
  419. return PageFaultResponse::Continue;
  420. }
  421. }
  422. dbgln_if(PAGE_FAULT_DEBUG, "Inode fault in {} page index: {}", name(), page_index_in_region);
  423. auto current_thread = Thread::current();
  424. if (current_thread)
  425. current_thread->did_inode_fault();
  426. u8 page_buffer[PAGE_SIZE];
  427. auto& inode = inode_vmobject.inode();
  428. auto buffer = UserOrKernelBuffer::for_kernel_buffer(page_buffer);
  429. auto result = inode.read_bytes(page_index_in_vmobject * PAGE_SIZE, PAGE_SIZE, buffer, nullptr);
  430. if (result.is_error()) {
  431. dmesgln("handle_inode_fault: Error ({}) while reading from inode", result.error());
  432. return PageFaultResponse::ShouldCrash;
  433. }
  434. auto nread = result.value();
  435. if (nread < PAGE_SIZE) {
  436. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  437. memset(page_buffer + nread, 0, PAGE_SIZE - nread);
  438. }
  439. SpinlockLocker locker(inode_vmobject.m_lock);
  440. if (!vmobject_physical_page_entry.is_null()) {
  441. // Someone else faulted in this page while we were reading from the inode.
  442. // No harm done (other than some duplicate work), remap the page here and return.
  443. dbgln_if(PAGE_FAULT_DEBUG, "handle_inode_fault: Page faulted in by someone else, remapping.");
  444. if (!remap_vmobject_page(page_index_in_vmobject))
  445. return PageFaultResponse::OutOfMemory;
  446. return PageFaultResponse::Continue;
  447. }
  448. auto vmobject_physical_page_or_error = MM.allocate_physical_page(MemoryManager::ShouldZeroFill::No);
  449. if (vmobject_physical_page_or_error.is_error()) {
  450. dmesgln("MM: handle_inode_fault was unable to allocate a physical page");
  451. return PageFaultResponse::OutOfMemory;
  452. }
  453. vmobject_physical_page_entry = vmobject_physical_page_or_error.release_value();
  454. {
  455. SpinlockLocker mm_locker(s_mm_lock);
  456. u8* dest_ptr = MM.quickmap_page(*vmobject_physical_page_entry);
  457. memcpy(dest_ptr, page_buffer, PAGE_SIZE);
  458. MM.unquickmap_page();
  459. }
  460. if (!remap_vmobject_page(page_index_in_vmobject))
  461. return PageFaultResponse::OutOfMemory;
  462. return PageFaultResponse::Continue;
  463. }
  464. }