MemoryManager.cpp 49 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194
  1. /*
  2. * Copyright (c) 2018-2022, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Assertions.h>
  7. #include <AK/Memory.h>
  8. #include <AK/StringView.h>
  9. #include <Kernel/Arch/CPU.h>
  10. #include <Kernel/Arch/PageDirectory.h>
  11. #include <Kernel/Arch/PageFault.h>
  12. #include <Kernel/Arch/RegisterState.h>
  13. #include <Kernel/BootInfo.h>
  14. #include <Kernel/CMOS.h>
  15. #include <Kernel/FileSystem/Inode.h>
  16. #include <Kernel/Heap/kmalloc.h>
  17. #include <Kernel/KSyms.h>
  18. #include <Kernel/Memory/AnonymousVMObject.h>
  19. #include <Kernel/Memory/MemoryManager.h>
  20. #include <Kernel/Memory/PageDirectory.h>
  21. #include <Kernel/Memory/PhysicalRegion.h>
  22. #include <Kernel/Memory/SharedInodeVMObject.h>
  23. #include <Kernel/Multiboot.h>
  24. #include <Kernel/Panic.h>
  25. #include <Kernel/Prekernel/Prekernel.h>
  26. #include <Kernel/Process.h>
  27. #include <Kernel/Sections.h>
  28. #include <Kernel/StdLib.h>
  29. extern u8 start_of_kernel_image[];
  30. extern u8 end_of_kernel_image[];
  31. extern u8 start_of_kernel_text[];
  32. extern u8 start_of_kernel_data[];
  33. extern u8 end_of_kernel_bss[];
  34. extern u8 start_of_ro_after_init[];
  35. extern u8 end_of_ro_after_init[];
  36. extern u8 start_of_unmap_after_init[];
  37. extern u8 end_of_unmap_after_init[];
  38. extern u8 start_of_kernel_ksyms[];
  39. extern u8 end_of_kernel_ksyms[];
  40. extern multiboot_module_entry_t multiboot_copy_boot_modules_array[16];
  41. extern size_t multiboot_copy_boot_modules_count;
  42. namespace Kernel::Memory {
  43. ErrorOr<FlatPtr> page_round_up(FlatPtr x)
  44. {
  45. if (x > (explode_byte(0xFF) & ~0xFFF)) {
  46. return Error::from_errno(EINVAL);
  47. }
  48. return (((FlatPtr)(x)) + PAGE_SIZE - 1) & (~(PAGE_SIZE - 1));
  49. }
  50. // NOTE: We can NOT use Singleton for this class, because
  51. // MemoryManager::initialize is called *before* global constructors are
  52. // run. If we do, then Singleton would get re-initialized, causing
  53. // the memory manager to be initialized twice!
  54. static MemoryManager* s_the;
  55. RecursiveSpinlock s_mm_lock { LockRank::MemoryManager };
  56. MemoryManager& MemoryManager::the()
  57. {
  58. return *s_the;
  59. }
  60. bool MemoryManager::is_initialized()
  61. {
  62. return s_the != nullptr;
  63. }
  64. static UNMAP_AFTER_INIT VirtualRange kernel_virtual_range()
  65. {
  66. size_t kernel_range_start = kernel_mapping_base + 2 * MiB; // The first 2 MiB are used for mapping the pre-kernel
  67. return VirtualRange { VirtualAddress(kernel_range_start), KERNEL_PD_END - kernel_range_start };
  68. }
  69. UNMAP_AFTER_INIT MemoryManager::MemoryManager()
  70. : m_region_tree(kernel_virtual_range())
  71. {
  72. s_the = this;
  73. SpinlockLocker lock(s_mm_lock);
  74. parse_memory_map();
  75. activate_kernel_page_directory(kernel_page_directory());
  76. protect_kernel_image();
  77. // We're temporarily "committing" to two pages that we need to allocate below
  78. auto committed_pages = commit_physical_pages(2).release_value();
  79. m_shared_zero_page = committed_pages.take_one();
  80. // We're wasting a page here, we just need a special tag (physical
  81. // address) so that we know when we need to lazily allocate a page
  82. // that we should be drawing this page from the committed pool rather
  83. // than potentially failing if no pages are available anymore.
  84. // By using a tag we don't have to query the VMObject for every page
  85. // whether it was committed or not
  86. m_lazy_committed_page = committed_pages.take_one();
  87. }
  88. UNMAP_AFTER_INIT MemoryManager::~MemoryManager() = default;
  89. UNMAP_AFTER_INIT void MemoryManager::protect_kernel_image()
  90. {
  91. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  92. // Disable writing to the kernel text and rodata segments.
  93. for (auto const* i = start_of_kernel_text; i < start_of_kernel_data; i += PAGE_SIZE) {
  94. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  95. pte.set_writable(false);
  96. }
  97. if (Processor::current().has_nx()) {
  98. // Disable execution of the kernel data, bss and heap segments.
  99. for (auto const* i = start_of_kernel_data; i < end_of_kernel_image; i += PAGE_SIZE) {
  100. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  101. pte.set_execute_disabled(true);
  102. }
  103. }
  104. }
  105. UNMAP_AFTER_INIT void MemoryManager::unmap_prekernel()
  106. {
  107. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  108. SpinlockLocker mm_lock(s_mm_lock);
  109. auto start = start_of_prekernel_image.page_base().get();
  110. auto end = end_of_prekernel_image.page_base().get();
  111. for (auto i = start; i <= end; i += PAGE_SIZE)
  112. release_pte(kernel_page_directory(), VirtualAddress(i), i == end ? IsLastPTERelease::Yes : IsLastPTERelease::No);
  113. flush_tlb(&kernel_page_directory(), VirtualAddress(start), (end - start) / PAGE_SIZE);
  114. }
  115. UNMAP_AFTER_INIT void MemoryManager::protect_readonly_after_init_memory()
  116. {
  117. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  118. SpinlockLocker mm_lock(s_mm_lock);
  119. // Disable writing to the .ro_after_init section
  120. for (auto i = (FlatPtr)&start_of_ro_after_init; i < (FlatPtr)&end_of_ro_after_init; i += PAGE_SIZE) {
  121. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  122. pte.set_writable(false);
  123. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  124. }
  125. }
  126. void MemoryManager::unmap_text_after_init()
  127. {
  128. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  129. SpinlockLocker mm_lock(s_mm_lock);
  130. auto start = page_round_down((FlatPtr)&start_of_unmap_after_init);
  131. auto end = page_round_up((FlatPtr)&end_of_unmap_after_init).release_value_but_fixme_should_propagate_errors();
  132. // Unmap the entire .unmap_after_init section
  133. for (auto i = start; i < end; i += PAGE_SIZE) {
  134. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  135. pte.clear();
  136. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  137. }
  138. dmesgln("Unmapped {} KiB of kernel text after init! :^)", (end - start) / KiB);
  139. }
  140. UNMAP_AFTER_INIT void MemoryManager::protect_ksyms_after_init()
  141. {
  142. SpinlockLocker mm_lock(s_mm_lock);
  143. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  144. auto start = page_round_down((FlatPtr)start_of_kernel_ksyms);
  145. auto end = page_round_up((FlatPtr)end_of_kernel_ksyms).release_value_but_fixme_should_propagate_errors();
  146. for (auto i = start; i < end; i += PAGE_SIZE) {
  147. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  148. pte.set_writable(false);
  149. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  150. }
  151. dmesgln("Write-protected kernel symbols after init.");
  152. }
  153. IterationDecision MemoryManager::for_each_physical_memory_range(Function<IterationDecision(PhysicalMemoryRange const&)> callback)
  154. {
  155. VERIFY(!m_physical_memory_ranges.is_empty());
  156. for (auto& current_range : m_physical_memory_ranges) {
  157. IterationDecision decision = callback(current_range);
  158. if (decision != IterationDecision::Continue)
  159. return decision;
  160. }
  161. return IterationDecision::Continue;
  162. }
  163. UNMAP_AFTER_INIT void MemoryManager::register_reserved_ranges()
  164. {
  165. VERIFY(!m_physical_memory_ranges.is_empty());
  166. ContiguousReservedMemoryRange range;
  167. for (auto& current_range : m_physical_memory_ranges) {
  168. if (current_range.type != PhysicalMemoryRangeType::Reserved) {
  169. if (range.start.is_null())
  170. continue;
  171. m_reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, current_range.start.get() - range.start.get() });
  172. range.start.set((FlatPtr) nullptr);
  173. continue;
  174. }
  175. if (!range.start.is_null()) {
  176. continue;
  177. }
  178. range.start = current_range.start;
  179. }
  180. if (m_physical_memory_ranges.last().type != PhysicalMemoryRangeType::Reserved)
  181. return;
  182. if (range.start.is_null())
  183. return;
  184. m_reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, m_physical_memory_ranges.last().start.get() + m_physical_memory_ranges.last().length - range.start.get() });
  185. }
  186. bool MemoryManager::is_allowed_to_read_physical_memory_for_userspace(PhysicalAddress start_address, size_t read_length) const
  187. {
  188. // Note: Guard against overflow in case someone tries to mmap on the edge of
  189. // the RAM
  190. if (start_address.offset_addition_would_overflow(read_length))
  191. return false;
  192. auto end_address = start_address.offset(read_length);
  193. for (auto const& current_range : m_reserved_memory_ranges) {
  194. if (current_range.start > start_address)
  195. continue;
  196. if (current_range.start.offset(current_range.length) < end_address)
  197. continue;
  198. return true;
  199. }
  200. return false;
  201. }
  202. UNMAP_AFTER_INIT void MemoryManager::parse_memory_map()
  203. {
  204. // Register used memory regions that we know of.
  205. m_used_memory_ranges.ensure_capacity(4);
  206. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::LowMemory, PhysicalAddress(0x00000000), PhysicalAddress(1 * MiB) });
  207. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::Kernel, PhysicalAddress(virtual_to_low_physical((FlatPtr)start_of_kernel_image)), PhysicalAddress(page_round_up(virtual_to_low_physical((FlatPtr)end_of_kernel_image)).release_value_but_fixme_should_propagate_errors()) });
  208. if (multiboot_flags & 0x4) {
  209. auto* bootmods_start = multiboot_copy_boot_modules_array;
  210. auto* bootmods_end = bootmods_start + multiboot_copy_boot_modules_count;
  211. for (auto* bootmod = bootmods_start; bootmod < bootmods_end; bootmod++) {
  212. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::BootModule, PhysicalAddress(bootmod->start), PhysicalAddress(bootmod->end) });
  213. }
  214. }
  215. auto* mmap_begin = multiboot_memory_map;
  216. auto* mmap_end = multiboot_memory_map + multiboot_memory_map_count;
  217. struct ContiguousPhysicalVirtualRange {
  218. PhysicalAddress lower;
  219. PhysicalAddress upper;
  220. };
  221. Vector<ContiguousPhysicalVirtualRange> contiguous_physical_ranges;
  222. for (auto* mmap = mmap_begin; mmap < mmap_end; mmap++) {
  223. // We have to copy these onto the stack, because we take a reference to these when printing them out,
  224. // and doing so on a packed struct field is UB.
  225. auto address = mmap->addr;
  226. auto length = mmap->len;
  227. ArmedScopeGuard write_back_guard = [&]() {
  228. mmap->addr = address;
  229. mmap->len = length;
  230. };
  231. dmesgln("MM: Multiboot mmap: address={:p}, length={}, type={}", address, length, mmap->type);
  232. auto start_address = PhysicalAddress(address);
  233. switch (mmap->type) {
  234. case (MULTIBOOT_MEMORY_AVAILABLE):
  235. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Usable, start_address, length });
  236. break;
  237. case (MULTIBOOT_MEMORY_RESERVED):
  238. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Reserved, start_address, length });
  239. break;
  240. case (MULTIBOOT_MEMORY_ACPI_RECLAIMABLE):
  241. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_Reclaimable, start_address, length });
  242. break;
  243. case (MULTIBOOT_MEMORY_NVS):
  244. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_NVS, start_address, length });
  245. break;
  246. case (MULTIBOOT_MEMORY_BADRAM):
  247. dmesgln("MM: Warning, detected bad memory range!");
  248. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::BadMemory, start_address, length });
  249. break;
  250. default:
  251. dbgln("MM: Unknown range!");
  252. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Unknown, start_address, length });
  253. break;
  254. }
  255. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  256. continue;
  257. // Fix up unaligned memory regions.
  258. auto diff = (FlatPtr)address % PAGE_SIZE;
  259. if (diff != 0) {
  260. dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting {:p} by {} bytes", address, diff);
  261. diff = PAGE_SIZE - diff;
  262. address += diff;
  263. length -= diff;
  264. }
  265. if ((length % PAGE_SIZE) != 0) {
  266. dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting length {} by {} bytes", length, length % PAGE_SIZE);
  267. length -= length % PAGE_SIZE;
  268. }
  269. if (length < PAGE_SIZE) {
  270. dmesgln("MM: Memory physical_region from bootloader is too small; we want >= {} bytes, but got {} bytes", PAGE_SIZE, length);
  271. continue;
  272. }
  273. for (PhysicalSize page_base = address; page_base <= (address + length); page_base += PAGE_SIZE) {
  274. auto addr = PhysicalAddress(page_base);
  275. // Skip used memory ranges.
  276. bool should_skip = false;
  277. for (auto& used_range : m_used_memory_ranges) {
  278. if (addr.get() >= used_range.start.get() && addr.get() <= used_range.end.get()) {
  279. should_skip = true;
  280. break;
  281. }
  282. }
  283. if (should_skip)
  284. continue;
  285. if (contiguous_physical_ranges.is_empty() || contiguous_physical_ranges.last().upper.offset(PAGE_SIZE) != addr) {
  286. contiguous_physical_ranges.append(ContiguousPhysicalVirtualRange {
  287. .lower = addr,
  288. .upper = addr,
  289. });
  290. } else {
  291. contiguous_physical_ranges.last().upper = addr;
  292. }
  293. }
  294. }
  295. for (auto& range : contiguous_physical_ranges) {
  296. m_physical_regions.append(PhysicalRegion::try_create(range.lower, range.upper).release_nonnull());
  297. }
  298. for (auto& region : m_physical_regions)
  299. m_system_memory_info.physical_pages += region.size();
  300. register_reserved_ranges();
  301. for (auto& range : m_reserved_memory_ranges) {
  302. dmesgln("MM: Contiguous reserved range from {}, length is {}", range.start, range.length);
  303. }
  304. initialize_physical_pages();
  305. VERIFY(m_system_memory_info.physical_pages > 0);
  306. // We start out with no committed pages
  307. m_system_memory_info.physical_pages_uncommitted = m_system_memory_info.physical_pages;
  308. for (auto& used_range : m_used_memory_ranges) {
  309. dmesgln("MM: {} range @ {} - {} (size {:#x})", UserMemoryRangeTypeNames[to_underlying(used_range.type)], used_range.start, used_range.end.offset(-1), used_range.end.as_ptr() - used_range.start.as_ptr());
  310. }
  311. for (auto& region : m_physical_regions) {
  312. dmesgln("MM: User physical region: {} - {} (size {:#x})", region.lower(), region.upper().offset(-1), PAGE_SIZE * region.size());
  313. region.initialize_zones();
  314. }
  315. }
  316. UNMAP_AFTER_INIT void MemoryManager::initialize_physical_pages()
  317. {
  318. // We assume that the physical page range is contiguous and doesn't contain huge gaps!
  319. PhysicalAddress highest_physical_address;
  320. for (auto& range : m_used_memory_ranges) {
  321. if (range.end.get() > highest_physical_address.get())
  322. highest_physical_address = range.end;
  323. }
  324. for (auto& region : m_physical_memory_ranges) {
  325. auto range_end = PhysicalAddress(region.start).offset(region.length);
  326. if (range_end.get() > highest_physical_address.get())
  327. highest_physical_address = range_end;
  328. }
  329. // Calculate how many total physical pages the array will have
  330. m_physical_page_entries_count = PhysicalAddress::physical_page_index(highest_physical_address.get()) + 1;
  331. VERIFY(m_physical_page_entries_count != 0);
  332. VERIFY(!Checked<decltype(m_physical_page_entries_count)>::multiplication_would_overflow(m_physical_page_entries_count, sizeof(PhysicalPageEntry)));
  333. // Calculate how many bytes the array will consume
  334. auto physical_page_array_size = m_physical_page_entries_count * sizeof(PhysicalPageEntry);
  335. auto physical_page_array_pages = page_round_up(physical_page_array_size).release_value_but_fixme_should_propagate_errors() / PAGE_SIZE;
  336. VERIFY(physical_page_array_pages * PAGE_SIZE >= physical_page_array_size);
  337. // Calculate how many page tables we will need to be able to map them all
  338. auto needed_page_table_count = (physical_page_array_pages + 512 - 1) / 512;
  339. auto physical_page_array_pages_and_page_tables_count = physical_page_array_pages + needed_page_table_count;
  340. // Now that we know how much memory we need for a contiguous array of PhysicalPage instances, find a memory region that can fit it
  341. PhysicalRegion* found_region { nullptr };
  342. Optional<size_t> found_region_index;
  343. for (size_t i = 0; i < m_physical_regions.size(); ++i) {
  344. auto& region = m_physical_regions[i];
  345. if (region.size() >= physical_page_array_pages_and_page_tables_count) {
  346. found_region = &region;
  347. found_region_index = i;
  348. break;
  349. }
  350. }
  351. if (!found_region) {
  352. dmesgln("MM: Need {} bytes for physical page management, but no memory region is large enough!", physical_page_array_pages_and_page_tables_count);
  353. VERIFY_NOT_REACHED();
  354. }
  355. VERIFY(m_system_memory_info.physical_pages >= physical_page_array_pages_and_page_tables_count);
  356. m_system_memory_info.physical_pages -= physical_page_array_pages_and_page_tables_count;
  357. if (found_region->size() == physical_page_array_pages_and_page_tables_count) {
  358. // We're stealing the entire region
  359. m_physical_pages_region = m_physical_regions.take(*found_region_index);
  360. } else {
  361. m_physical_pages_region = found_region->try_take_pages_from_beginning(physical_page_array_pages_and_page_tables_count);
  362. }
  363. m_used_memory_ranges.append({ UsedMemoryRangeType::PhysicalPages, m_physical_pages_region->lower(), m_physical_pages_region->upper() });
  364. // Create the bare page directory. This is not a fully constructed page directory and merely contains the allocators!
  365. m_kernel_page_directory = PageDirectory::must_create_kernel_page_directory();
  366. {
  367. // Carve out the whole page directory covering the kernel image to make MemoryManager::initialize_physical_pages() happy
  368. FlatPtr start_of_range = ((FlatPtr)start_of_kernel_image & ~(FlatPtr)0x1fffff);
  369. FlatPtr end_of_range = ((FlatPtr)end_of_kernel_image & ~(FlatPtr)0x1fffff) + 0x200000;
  370. MUST(m_region_tree.place_specifically(*MUST(Region::create_unbacked()).leak_ptr(), VirtualRange { VirtualAddress(start_of_range), end_of_range - start_of_range }));
  371. }
  372. // Allocate a virtual address range for our array
  373. // This looks awkward, but it basically creates a dummy region to occupy the address range permanently.
  374. auto& region = *MUST(Region::create_unbacked()).leak_ptr();
  375. MUST(m_region_tree.place_anywhere(region, RandomizeVirtualAddress::No, physical_page_array_pages * PAGE_SIZE));
  376. auto range = region.range();
  377. // Now that we have our special m_physical_pages_region region with enough pages to hold the entire array
  378. // try to map the entire region into kernel space so we always have it
  379. // We can't use ensure_pte here because it would try to allocate a PhysicalPage and we don't have the array
  380. // mapped yet so we can't create them
  381. SpinlockLocker lock(s_mm_lock);
  382. // Create page tables at the beginning of m_physical_pages_region, followed by the PhysicalPageEntry array
  383. auto page_tables_base = m_physical_pages_region->lower();
  384. auto physical_page_array_base = page_tables_base.offset(needed_page_table_count * PAGE_SIZE);
  385. auto physical_page_array_current_page = physical_page_array_base.get();
  386. auto virtual_page_array_base = range.base().get();
  387. auto virtual_page_array_current_page = virtual_page_array_base;
  388. for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) {
  389. auto virtual_page_base_for_this_pt = virtual_page_array_current_page;
  390. auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE);
  391. auto* pt = reinterpret_cast<PageTableEntry*>(quickmap_page(pt_paddr));
  392. __builtin_memset(pt, 0, PAGE_SIZE);
  393. for (size_t pte_index = 0; pte_index < PAGE_SIZE / sizeof(PageTableEntry); pte_index++) {
  394. auto& pte = pt[pte_index];
  395. pte.set_physical_page_base(physical_page_array_current_page);
  396. pte.set_user_allowed(false);
  397. pte.set_writable(true);
  398. if (Processor::current().has_nx())
  399. pte.set_execute_disabled(false);
  400. pte.set_global(true);
  401. pte.set_present(true);
  402. physical_page_array_current_page += PAGE_SIZE;
  403. virtual_page_array_current_page += PAGE_SIZE;
  404. }
  405. unquickmap_page();
  406. // Hook the page table into the kernel page directory
  407. u32 page_directory_index = (virtual_page_base_for_this_pt >> 21) & 0x1ff;
  408. auto* pd = reinterpret_cast<PageDirectoryEntry*>(quickmap_page(boot_pd_kernel));
  409. PageDirectoryEntry& pde = pd[page_directory_index];
  410. VERIFY(!pde.is_present()); // Nothing should be using this PD yet
  411. // We can't use ensure_pte quite yet!
  412. pde.set_page_table_base(pt_paddr.get());
  413. pde.set_user_allowed(false);
  414. pde.set_present(true);
  415. pde.set_writable(true);
  416. pde.set_global(true);
  417. unquickmap_page();
  418. flush_tlb_local(VirtualAddress(virtual_page_base_for_this_pt));
  419. }
  420. // We now have the entire PhysicalPageEntry array mapped!
  421. m_physical_page_entries = (PhysicalPageEntry*)range.base().get();
  422. for (size_t i = 0; i < m_physical_page_entries_count; i++)
  423. new (&m_physical_page_entries[i]) PageTableEntry();
  424. // Now we should be able to allocate PhysicalPage instances,
  425. // so finish setting up the kernel page directory
  426. m_kernel_page_directory->allocate_kernel_directory();
  427. // Now create legit PhysicalPage objects for the page tables we created.
  428. virtual_page_array_current_page = virtual_page_array_base;
  429. for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) {
  430. VERIFY(virtual_page_array_current_page <= range.end().get());
  431. auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE);
  432. auto physical_page_index = PhysicalAddress::physical_page_index(pt_paddr.get());
  433. auto& physical_page_entry = m_physical_page_entries[physical_page_index];
  434. auto physical_page = adopt_ref(*new (&physical_page_entry.allocated.physical_page) PhysicalPage(MayReturnToFreeList::No));
  435. // NOTE: This leaked ref is matched by the unref in MemoryManager::release_pte()
  436. (void)physical_page.leak_ref();
  437. virtual_page_array_current_page += (PAGE_SIZE / sizeof(PageTableEntry)) * PAGE_SIZE;
  438. }
  439. dmesgln("MM: Physical page entries: {}", range);
  440. }
  441. PhysicalPageEntry& MemoryManager::get_physical_page_entry(PhysicalAddress physical_address)
  442. {
  443. VERIFY(m_physical_page_entries);
  444. auto physical_page_entry_index = PhysicalAddress::physical_page_index(physical_address.get());
  445. VERIFY(physical_page_entry_index < m_physical_page_entries_count);
  446. return m_physical_page_entries[physical_page_entry_index];
  447. }
  448. PhysicalAddress MemoryManager::get_physical_address(PhysicalPage const& physical_page)
  449. {
  450. PhysicalPageEntry const& physical_page_entry = *reinterpret_cast<PhysicalPageEntry const*>((u8 const*)&physical_page - __builtin_offsetof(PhysicalPageEntry, allocated.physical_page));
  451. VERIFY(m_physical_page_entries);
  452. size_t physical_page_entry_index = &physical_page_entry - m_physical_page_entries;
  453. VERIFY(physical_page_entry_index < m_physical_page_entries_count);
  454. return PhysicalAddress((PhysicalPtr)physical_page_entry_index * PAGE_SIZE);
  455. }
  456. PageTableEntry* MemoryManager::pte(PageDirectory& page_directory, VirtualAddress vaddr)
  457. {
  458. VERIFY_INTERRUPTS_DISABLED();
  459. VERIFY(s_mm_lock.is_locked_by_current_processor());
  460. VERIFY(page_directory.get_lock().is_locked_by_current_processor());
  461. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
  462. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  463. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  464. auto* pd = quickmap_pd(const_cast<PageDirectory&>(page_directory), page_directory_table_index);
  465. PageDirectoryEntry const& pde = pd[page_directory_index];
  466. if (!pde.is_present())
  467. return nullptr;
  468. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  469. }
  470. PageTableEntry* MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  471. {
  472. VERIFY_INTERRUPTS_DISABLED();
  473. VERIFY(s_mm_lock.is_locked_by_current_processor());
  474. VERIFY(page_directory.get_lock().is_locked_by_current_processor());
  475. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
  476. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  477. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  478. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  479. auto& pde = pd[page_directory_index];
  480. if (pde.is_present())
  481. return &quickmap_pt(PhysicalAddress(pde.page_table_base()))[page_table_index];
  482. bool did_purge = false;
  483. auto page_table_or_error = allocate_physical_page(ShouldZeroFill::Yes, &did_purge);
  484. if (page_table_or_error.is_error()) {
  485. dbgln("MM: Unable to allocate page table to map {}", vaddr);
  486. return nullptr;
  487. }
  488. auto page_table = page_table_or_error.release_value();
  489. if (did_purge) {
  490. // If any memory had to be purged, ensure_pte may have been called as part
  491. // of the purging process. So we need to re-map the pd in this case to ensure
  492. // we're writing to the correct underlying physical page
  493. pd = quickmap_pd(page_directory, page_directory_table_index);
  494. VERIFY(&pde == &pd[page_directory_index]); // Sanity check
  495. VERIFY(!pde.is_present()); // Should have not changed
  496. }
  497. pde.set_page_table_base(page_table->paddr().get());
  498. pde.set_user_allowed(true);
  499. pde.set_present(true);
  500. pde.set_writable(true);
  501. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  502. // NOTE: This leaked ref is matched by the unref in MemoryManager::release_pte()
  503. (void)page_table.leak_ref();
  504. return &quickmap_pt(PhysicalAddress(pde.page_table_base()))[page_table_index];
  505. }
  506. void MemoryManager::release_pte(PageDirectory& page_directory, VirtualAddress vaddr, IsLastPTERelease is_last_pte_release)
  507. {
  508. VERIFY_INTERRUPTS_DISABLED();
  509. VERIFY(s_mm_lock.is_locked_by_current_processor());
  510. VERIFY(page_directory.get_lock().is_locked_by_current_processor());
  511. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
  512. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  513. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  514. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  515. PageDirectoryEntry& pde = pd[page_directory_index];
  516. if (pde.is_present()) {
  517. auto* page_table = quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()));
  518. auto& pte = page_table[page_table_index];
  519. pte.clear();
  520. if (is_last_pte_release == IsLastPTERelease::Yes || page_table_index == 0x1ff) {
  521. // If this is the last PTE in a region or the last PTE in a page table then
  522. // check if we can also release the page table
  523. bool all_clear = true;
  524. for (u32 i = 0; i <= 0x1ff; i++) {
  525. if (!page_table[i].is_null()) {
  526. all_clear = false;
  527. break;
  528. }
  529. }
  530. if (all_clear) {
  531. get_physical_page_entry(PhysicalAddress { pde.page_table_base() }).allocated.physical_page.unref();
  532. pde.clear();
  533. }
  534. }
  535. }
  536. }
  537. UNMAP_AFTER_INIT void MemoryManager::initialize(u32 cpu)
  538. {
  539. ProcessorSpecific<MemoryManagerData>::initialize();
  540. if (cpu == 0) {
  541. new MemoryManager;
  542. kmalloc_enable_expand();
  543. }
  544. }
  545. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress address)
  546. {
  547. if (is_user_address(address))
  548. return nullptr;
  549. return MM.m_region_tree.find_region_containing(address);
  550. }
  551. Region* MemoryManager::find_user_region_from_vaddr_no_lock(AddressSpace& space, VirtualAddress vaddr)
  552. {
  553. VERIFY(space.get_lock().is_locked_by_current_processor());
  554. return space.find_region_containing({ vaddr, 1 });
  555. }
  556. Region* MemoryManager::find_user_region_from_vaddr(AddressSpace& space, VirtualAddress vaddr)
  557. {
  558. SpinlockLocker lock(space.get_lock());
  559. return find_user_region_from_vaddr_no_lock(space, vaddr);
  560. }
  561. void MemoryManager::validate_syscall_preconditions(AddressSpace& space, RegisterState const& regs)
  562. {
  563. // We take the space lock once here and then use the no_lock variants
  564. // to avoid excessive spinlock recursion in this extremely common path.
  565. SpinlockLocker lock(space.get_lock());
  566. auto unlock_and_handle_crash = [&lock, &regs](char const* description, int signal) {
  567. lock.unlock();
  568. handle_crash(regs, description, signal);
  569. };
  570. {
  571. VirtualAddress userspace_sp = VirtualAddress { regs.userspace_sp() };
  572. if (!MM.validate_user_stack_no_lock(space, userspace_sp)) {
  573. dbgln("Invalid stack pointer: {}", userspace_sp);
  574. return unlock_and_handle_crash("Bad stack on syscall entry", SIGSEGV);
  575. }
  576. }
  577. {
  578. VirtualAddress ip = VirtualAddress { regs.ip() };
  579. auto* calling_region = MM.find_user_region_from_vaddr_no_lock(space, ip);
  580. if (!calling_region) {
  581. dbgln("Syscall from {:p} which has no associated region", ip);
  582. return unlock_and_handle_crash("Syscall from unknown region", SIGSEGV);
  583. }
  584. if (calling_region->is_writable()) {
  585. dbgln("Syscall from writable memory at {:p}", ip);
  586. return unlock_and_handle_crash("Syscall from writable memory", SIGSEGV);
  587. }
  588. if (space.enforces_syscall_regions() && !calling_region->is_syscall_region()) {
  589. dbgln("Syscall from non-syscall region");
  590. return unlock_and_handle_crash("Syscall from non-syscall region", SIGSEGV);
  591. }
  592. }
  593. }
  594. Region* MemoryManager::find_region_from_vaddr(VirtualAddress vaddr)
  595. {
  596. if (auto* region = kernel_region_from_vaddr(vaddr))
  597. return region;
  598. auto page_directory = PageDirectory::find_current();
  599. if (!page_directory)
  600. return nullptr;
  601. VERIFY(page_directory->address_space());
  602. return find_user_region_from_vaddr(*page_directory->address_space(), vaddr);
  603. }
  604. PageFaultResponse MemoryManager::handle_page_fault(PageFault const& fault)
  605. {
  606. VERIFY_INTERRUPTS_DISABLED();
  607. auto faulted_in_range = [&fault](auto const* start, auto const* end) {
  608. return fault.vaddr() >= VirtualAddress { start } && fault.vaddr() < VirtualAddress { end };
  609. };
  610. if (faulted_in_range(&start_of_ro_after_init, &end_of_ro_after_init))
  611. PANIC("Attempt to write into READONLY_AFTER_INIT section");
  612. if (faulted_in_range(&start_of_unmap_after_init, &end_of_unmap_after_init)) {
  613. auto const* kernel_symbol = symbolicate_kernel_address(fault.vaddr().get());
  614. PANIC("Attempt to access UNMAP_AFTER_INIT section ({:p}: {})", fault.vaddr(), kernel_symbol ? kernel_symbol->name : "(Unknown)");
  615. }
  616. if (faulted_in_range(&start_of_kernel_ksyms, &end_of_kernel_ksyms))
  617. PANIC("Attempt to access KSYMS section");
  618. if (Processor::current_in_irq()) {
  619. dbgln("CPU[{}] BUG! Page fault while handling IRQ! code={}, vaddr={}, irq level: {}",
  620. Processor::current_id(), fault.code(), fault.vaddr(), Processor::current_in_irq());
  621. dump_kernel_regions();
  622. return PageFaultResponse::ShouldCrash;
  623. }
  624. dbgln_if(PAGE_FAULT_DEBUG, "MM: CPU[{}] handle_page_fault({:#04x}) at {}", Processor::current_id(), fault.code(), fault.vaddr());
  625. auto* region = find_region_from_vaddr(fault.vaddr());
  626. if (!region) {
  627. return PageFaultResponse::ShouldCrash;
  628. }
  629. return region->handle_fault(fault);
  630. }
  631. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_contiguous_kernel_region(size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  632. {
  633. VERIFY(!(size % PAGE_SIZE));
  634. OwnPtr<KString> name_kstring;
  635. if (!name.is_null())
  636. name_kstring = TRY(KString::try_create(name));
  637. auto vmobject = TRY(AnonymousVMObject::try_create_physically_contiguous_with_size(size));
  638. auto region = TRY(Region::create_unplaced(move(vmobject), 0, move(name_kstring), access, cacheable));
  639. TRY(m_region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size));
  640. TRY(region->map(kernel_page_directory()));
  641. return region;
  642. }
  643. ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_page(StringView name, Memory::Region::Access access, RefPtr<Memory::PhysicalPage>& dma_buffer_page)
  644. {
  645. dma_buffer_page = TRY(allocate_physical_page());
  646. // Do not enable Cache for this region as physical memory transfers are performed (Most architectures have this behaviour by default)
  647. return allocate_kernel_region(dma_buffer_page->paddr(), PAGE_SIZE, name, access, Region::Cacheable::No);
  648. }
  649. ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_page(StringView name, Memory::Region::Access access)
  650. {
  651. RefPtr<Memory::PhysicalPage> dma_buffer_page;
  652. return allocate_dma_buffer_page(name, access, dma_buffer_page);
  653. }
  654. ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_pages(size_t size, StringView name, Memory::Region::Access access, NonnullRefPtrVector<Memory::PhysicalPage>& dma_buffer_pages)
  655. {
  656. VERIFY(!(size % PAGE_SIZE));
  657. dma_buffer_pages = TRY(allocate_contiguous_physical_pages(size));
  658. // Do not enable Cache for this region as physical memory transfers are performed (Most architectures have this behaviour by default)
  659. return allocate_kernel_region(dma_buffer_pages.first().paddr(), size, name, access, Region::Cacheable::No);
  660. }
  661. ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::allocate_dma_buffer_pages(size_t size, StringView name, Memory::Region::Access access)
  662. {
  663. VERIFY(!(size % PAGE_SIZE));
  664. NonnullRefPtrVector<Memory::PhysicalPage> dma_buffer_pages;
  665. return allocate_dma_buffer_pages(size, name, access, dma_buffer_pages);
  666. }
  667. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region(size_t size, StringView name, Region::Access access, AllocationStrategy strategy, Region::Cacheable cacheable)
  668. {
  669. VERIFY(!(size % PAGE_SIZE));
  670. OwnPtr<KString> name_kstring;
  671. if (!name.is_null())
  672. name_kstring = TRY(KString::try_create(name));
  673. auto vmobject = TRY(AnonymousVMObject::try_create_with_size(size, strategy));
  674. auto region = TRY(Region::create_unplaced(move(vmobject), 0, move(name_kstring), access, cacheable));
  675. TRY(m_region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size));
  676. TRY(region->map(kernel_page_directory()));
  677. return region;
  678. }
  679. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  680. {
  681. VERIFY(!(size % PAGE_SIZE));
  682. auto vmobject = TRY(AnonymousVMObject::try_create_for_physical_range(paddr, size));
  683. OwnPtr<KString> name_kstring;
  684. if (!name.is_null())
  685. name_kstring = TRY(KString::try_create(name));
  686. auto region = TRY(Region::create_unplaced(move(vmobject), 0, move(name_kstring), access, cacheable));
  687. TRY(m_region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size, PAGE_SIZE));
  688. TRY(region->map(kernel_page_directory()));
  689. return region;
  690. }
  691. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  692. {
  693. VERIFY(!(size % PAGE_SIZE));
  694. OwnPtr<KString> name_kstring;
  695. if (!name.is_null())
  696. name_kstring = TRY(KString::try_create(name));
  697. auto region = TRY(Region::create_unplaced(vmobject, 0, move(name_kstring), access, cacheable));
  698. TRY(m_region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size));
  699. TRY(region->map(kernel_page_directory()));
  700. return region;
  701. }
  702. ErrorOr<CommittedPhysicalPageSet> MemoryManager::commit_physical_pages(size_t page_count)
  703. {
  704. VERIFY(page_count > 0);
  705. SpinlockLocker lock(s_mm_lock);
  706. if (m_system_memory_info.physical_pages_uncommitted < page_count)
  707. return ENOMEM;
  708. m_system_memory_info.physical_pages_uncommitted -= page_count;
  709. m_system_memory_info.physical_pages_committed += page_count;
  710. return CommittedPhysicalPageSet { {}, page_count };
  711. }
  712. void MemoryManager::uncommit_physical_pages(Badge<CommittedPhysicalPageSet>, size_t page_count)
  713. {
  714. VERIFY(page_count > 0);
  715. SpinlockLocker lock(s_mm_lock);
  716. VERIFY(m_system_memory_info.physical_pages_committed >= page_count);
  717. m_system_memory_info.physical_pages_uncommitted += page_count;
  718. m_system_memory_info.physical_pages_committed -= page_count;
  719. }
  720. void MemoryManager::deallocate_physical_page(PhysicalAddress paddr)
  721. {
  722. SpinlockLocker lock(s_mm_lock);
  723. // Are we returning a user page?
  724. for (auto& region : m_physical_regions) {
  725. if (!region.contains(paddr))
  726. continue;
  727. region.return_page(paddr);
  728. --m_system_memory_info.physical_pages_used;
  729. // Always return pages to the uncommitted pool. Pages that were
  730. // committed and allocated are only freed upon request. Once
  731. // returned there is no guarantee being able to get them back.
  732. ++m_system_memory_info.physical_pages_uncommitted;
  733. return;
  734. }
  735. PANIC("MM: deallocate_physical_page couldn't figure out region for page @ {}", paddr);
  736. }
  737. RefPtr<PhysicalPage> MemoryManager::find_free_physical_page(bool committed)
  738. {
  739. VERIFY(s_mm_lock.is_locked());
  740. RefPtr<PhysicalPage> page;
  741. if (committed) {
  742. // Draw from the committed pages pool. We should always have these pages available
  743. VERIFY(m_system_memory_info.physical_pages_committed > 0);
  744. m_system_memory_info.physical_pages_committed--;
  745. } else {
  746. // We need to make sure we don't touch pages that we have committed to
  747. if (m_system_memory_info.physical_pages_uncommitted == 0)
  748. return {};
  749. m_system_memory_info.physical_pages_uncommitted--;
  750. }
  751. for (auto& region : m_physical_regions) {
  752. page = region.take_free_page();
  753. if (!page.is_null()) {
  754. ++m_system_memory_info.physical_pages_used;
  755. break;
  756. }
  757. }
  758. VERIFY(!page.is_null());
  759. return page;
  760. }
  761. NonnullRefPtr<PhysicalPage> MemoryManager::allocate_committed_physical_page(Badge<CommittedPhysicalPageSet>, ShouldZeroFill should_zero_fill)
  762. {
  763. SpinlockLocker lock(s_mm_lock);
  764. auto page = find_free_physical_page(true);
  765. if (should_zero_fill == ShouldZeroFill::Yes) {
  766. auto* ptr = quickmap_page(*page);
  767. memset(ptr, 0, PAGE_SIZE);
  768. unquickmap_page();
  769. }
  770. return page.release_nonnull();
  771. }
  772. ErrorOr<NonnullRefPtr<PhysicalPage>> MemoryManager::allocate_physical_page(ShouldZeroFill should_zero_fill, bool* did_purge)
  773. {
  774. SpinlockLocker lock(s_mm_lock);
  775. auto page = find_free_physical_page(false);
  776. bool purged_pages = false;
  777. if (!page) {
  778. // We didn't have a single free physical page. Let's try to free something up!
  779. // First, we look for a purgeable VMObject in the volatile state.
  780. for_each_vmobject([&](auto& vmobject) {
  781. if (!vmobject.is_anonymous())
  782. return IterationDecision::Continue;
  783. auto& anonymous_vmobject = static_cast<AnonymousVMObject&>(vmobject);
  784. if (!anonymous_vmobject.is_purgeable() || !anonymous_vmobject.is_volatile())
  785. return IterationDecision::Continue;
  786. if (auto purged_page_count = anonymous_vmobject.purge()) {
  787. dbgln("MM: Purge saved the day! Purged {} pages from AnonymousVMObject", purged_page_count);
  788. page = find_free_physical_page(false);
  789. purged_pages = true;
  790. VERIFY(page);
  791. return IterationDecision::Break;
  792. }
  793. return IterationDecision::Continue;
  794. });
  795. if (!page) {
  796. dmesgln("MM: no user physical pages available");
  797. return ENOMEM;
  798. }
  799. }
  800. if (should_zero_fill == ShouldZeroFill::Yes) {
  801. auto* ptr = quickmap_page(*page);
  802. memset(ptr, 0, PAGE_SIZE);
  803. unquickmap_page();
  804. }
  805. if (did_purge)
  806. *did_purge = purged_pages;
  807. return page.release_nonnull();
  808. }
  809. ErrorOr<NonnullRefPtrVector<PhysicalPage>> MemoryManager::allocate_contiguous_physical_pages(size_t size)
  810. {
  811. VERIFY(!(size % PAGE_SIZE));
  812. SpinlockLocker lock(s_mm_lock);
  813. size_t page_count = ceil_div(size, static_cast<size_t>(PAGE_SIZE));
  814. // We need to make sure we don't touch pages that we have committed to
  815. if (m_system_memory_info.physical_pages_uncommitted < page_count)
  816. return ENOMEM;
  817. for (auto& physical_region : m_physical_regions) {
  818. auto physical_pages = physical_region.take_contiguous_free_pages(page_count);
  819. if (!physical_pages.is_empty()) {
  820. {
  821. auto cleanup_region = TRY(MM.allocate_kernel_region(physical_pages[0].paddr(), PAGE_SIZE * page_count, "MemoryManager Allocation Sanitization"sv, Region::Access::Read | Region::Access::Write));
  822. memset(cleanup_region->vaddr().as_ptr(), 0, PAGE_SIZE * page_count);
  823. }
  824. m_system_memory_info.physical_pages_uncommitted -= page_count;
  825. m_system_memory_info.physical_pages_used += page_count;
  826. return physical_pages;
  827. }
  828. }
  829. dmesgln("MM: no contiguous user physical pages available");
  830. return ENOMEM;
  831. }
  832. void MemoryManager::enter_process_address_space(Process& process)
  833. {
  834. enter_address_space(process.address_space());
  835. }
  836. void MemoryManager::enter_address_space(AddressSpace& space)
  837. {
  838. auto* current_thread = Thread::current();
  839. VERIFY(current_thread != nullptr);
  840. SpinlockLocker lock(s_mm_lock);
  841. current_thread->regs().cr3 = space.page_directory().cr3();
  842. activate_page_directory(space.page_directory(), current_thread);
  843. }
  844. void MemoryManager::flush_tlb_local(VirtualAddress vaddr, size_t page_count)
  845. {
  846. Processor::flush_tlb_local(vaddr, page_count);
  847. }
  848. void MemoryManager::flush_tlb(PageDirectory const* page_directory, VirtualAddress vaddr, size_t page_count)
  849. {
  850. Processor::flush_tlb(page_directory, vaddr, page_count);
  851. }
  852. PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
  853. {
  854. VERIFY(s_mm_lock.is_locked_by_current_processor());
  855. auto& mm_data = get_data();
  856. auto& pte = boot_pd_kernel_pt1023[(KERNEL_QUICKMAP_PD - KERNEL_PT1024_BASE) / PAGE_SIZE];
  857. auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
  858. if (pte.physical_page_base() != pd_paddr.get()) {
  859. pte.set_physical_page_base(pd_paddr.get());
  860. pte.set_present(true);
  861. pte.set_writable(true);
  862. pte.set_user_allowed(false);
  863. // Because we must continue to hold the MM lock while we use this
  864. // mapping, it is sufficient to only flush on the current CPU. Other
  865. // CPUs trying to use this API must wait on the MM lock anyway
  866. flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PD));
  867. } else {
  868. // Even though we don't allow this to be called concurrently, it's
  869. // possible that this PD was mapped on a different CPU and we don't
  870. // broadcast the flush. If so, we still need to flush the TLB.
  871. if (mm_data.m_last_quickmap_pd != pd_paddr)
  872. flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PD));
  873. }
  874. mm_data.m_last_quickmap_pd = pd_paddr;
  875. return (PageDirectoryEntry*)KERNEL_QUICKMAP_PD;
  876. }
  877. PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
  878. {
  879. VERIFY(s_mm_lock.is_locked_by_current_processor());
  880. auto& mm_data = get_data();
  881. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[(KERNEL_QUICKMAP_PT - KERNEL_PT1024_BASE) / PAGE_SIZE];
  882. if (pte.physical_page_base() != pt_paddr.get()) {
  883. pte.set_physical_page_base(pt_paddr.get());
  884. pte.set_present(true);
  885. pte.set_writable(true);
  886. pte.set_user_allowed(false);
  887. // Because we must continue to hold the MM lock while we use this
  888. // mapping, it is sufficient to only flush on the current CPU. Other
  889. // CPUs trying to use this API must wait on the MM lock anyway
  890. flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PT));
  891. } else {
  892. // Even though we don't allow this to be called concurrently, it's
  893. // possible that this PT was mapped on a different CPU and we don't
  894. // broadcast the flush. If so, we still need to flush the TLB.
  895. if (mm_data.m_last_quickmap_pt != pt_paddr)
  896. flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PT));
  897. }
  898. mm_data.m_last_quickmap_pt = pt_paddr;
  899. return (PageTableEntry*)KERNEL_QUICKMAP_PT;
  900. }
  901. u8* MemoryManager::quickmap_page(PhysicalAddress const& physical_address)
  902. {
  903. VERIFY_INTERRUPTS_DISABLED();
  904. VERIFY(s_mm_lock.is_locked_by_current_processor());
  905. auto& mm_data = get_data();
  906. mm_data.m_quickmap_prev_flags = mm_data.m_quickmap_in_use.lock();
  907. VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
  908. u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
  909. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx];
  910. if (pte.physical_page_base() != physical_address.get()) {
  911. pte.set_physical_page_base(physical_address.get());
  912. pte.set_present(true);
  913. pte.set_writable(true);
  914. pte.set_user_allowed(false);
  915. flush_tlb_local(vaddr);
  916. }
  917. return vaddr.as_ptr();
  918. }
  919. void MemoryManager::unquickmap_page()
  920. {
  921. VERIFY_INTERRUPTS_DISABLED();
  922. VERIFY(s_mm_lock.is_locked_by_current_processor());
  923. auto& mm_data = get_data();
  924. VERIFY(mm_data.m_quickmap_in_use.is_locked());
  925. VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
  926. u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
  927. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx];
  928. pte.clear();
  929. flush_tlb_local(vaddr);
  930. mm_data.m_quickmap_in_use.unlock(mm_data.m_quickmap_prev_flags);
  931. }
  932. bool MemoryManager::validate_user_stack_no_lock(AddressSpace& space, VirtualAddress vaddr) const
  933. {
  934. VERIFY(space.get_lock().is_locked_by_current_processor());
  935. if (!is_user_address(vaddr))
  936. return false;
  937. auto* region = find_user_region_from_vaddr_no_lock(space, vaddr);
  938. return region && region->is_user() && region->is_stack();
  939. }
  940. bool MemoryManager::validate_user_stack(AddressSpace& space, VirtualAddress vaddr) const
  941. {
  942. SpinlockLocker lock(space.get_lock());
  943. return validate_user_stack_no_lock(space, vaddr);
  944. }
  945. void MemoryManager::unregister_kernel_region(Region& region)
  946. {
  947. VERIFY(region.is_kernel());
  948. m_region_tree.remove(region);
  949. }
  950. void MemoryManager::dump_kernel_regions()
  951. {
  952. dbgln("Kernel regions:");
  953. #if ARCH(I386)
  954. char const* addr_padding = "";
  955. #else
  956. char const* addr_padding = " ";
  957. #endif
  958. dbgln("BEGIN{} END{} SIZE{} ACCESS NAME",
  959. addr_padding, addr_padding, addr_padding);
  960. SpinlockLocker lock(s_mm_lock);
  961. SpinlockLocker tree_locker(m_region_tree.get_lock());
  962. for (auto const& region : m_region_tree.regions()) {
  963. dbgln("{:p} -- {:p} {:p} {:c}{:c}{:c}{:c}{:c}{:c} {}",
  964. region.vaddr().get(),
  965. region.vaddr().offset(region.size() - 1).get(),
  966. region.size(),
  967. region.is_readable() ? 'R' : ' ',
  968. region.is_writable() ? 'W' : ' ',
  969. region.is_executable() ? 'X' : ' ',
  970. region.is_shared() ? 'S' : ' ',
  971. region.is_stack() ? 'T' : ' ',
  972. region.is_syscall_region() ? 'C' : ' ',
  973. region.name());
  974. }
  975. }
  976. void MemoryManager::set_page_writable_direct(VirtualAddress vaddr, bool writable)
  977. {
  978. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  979. SpinlockLocker lock(s_mm_lock);
  980. auto* pte = ensure_pte(kernel_page_directory(), vaddr);
  981. VERIFY(pte);
  982. if (pte->is_writable() == writable)
  983. return;
  984. pte->set_writable(writable);
  985. flush_tlb(&kernel_page_directory(), vaddr);
  986. }
  987. CommittedPhysicalPageSet::~CommittedPhysicalPageSet()
  988. {
  989. if (m_page_count)
  990. MM.uncommit_physical_pages({}, m_page_count);
  991. }
  992. NonnullRefPtr<PhysicalPage> CommittedPhysicalPageSet::take_one()
  993. {
  994. VERIFY(m_page_count > 0);
  995. --m_page_count;
  996. return MM.allocate_committed_physical_page({}, MemoryManager::ShouldZeroFill::Yes);
  997. }
  998. void CommittedPhysicalPageSet::uncommit_one()
  999. {
  1000. VERIFY(m_page_count > 0);
  1001. --m_page_count;
  1002. MM.uncommit_physical_pages({}, 1);
  1003. }
  1004. void MemoryManager::copy_physical_page(PhysicalPage& physical_page, u8 page_buffer[PAGE_SIZE])
  1005. {
  1006. SpinlockLocker locker(s_mm_lock);
  1007. auto* quickmapped_page = quickmap_page(physical_page);
  1008. memcpy(page_buffer, quickmapped_page, PAGE_SIZE);
  1009. unquickmap_page();
  1010. }
  1011. ErrorOr<NonnullOwnPtr<Memory::Region>> MemoryManager::create_identity_mapped_region(PhysicalAddress address, size_t size)
  1012. {
  1013. auto vmobject = TRY(Memory::AnonymousVMObject::try_create_for_physical_range(address, size));
  1014. auto region = TRY(Memory::Region::create_unplaced(move(vmobject), 0, {}, Memory::Region::Access::ReadWriteExecute));
  1015. Memory::VirtualRange range { VirtualAddress { (FlatPtr)address.get() }, size };
  1016. region->m_range = range;
  1017. TRY(region->map(MM.kernel_page_directory()));
  1018. return region;
  1019. }
  1020. ErrorOr<NonnullOwnPtr<Region>> MemoryManager::allocate_unbacked_region_anywhere(size_t size, size_t alignment)
  1021. {
  1022. auto region = TRY(Region::create_unbacked());
  1023. TRY(m_region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size, alignment));
  1024. return region;
  1025. }
  1026. }