123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356 |
- /*
- * Copyright (c) 2020, Itamar S. <itamar8910@gmail.com>
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- *
- * 1. Redistributions of source code must retain the above copyright notice, this
- * list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
- #include "UnsignedBigInteger.h"
- #include <AK/StringBuilder.h>
- namespace Crypto {
- UnsignedBigInteger UnsignedBigInteger::from_base10(const String& str)
- {
- UnsignedBigInteger result;
- UnsignedBigInteger ten { 10 };
- for (auto& c : str) {
- result = result.multiply(ten).add(c - '0');
- }
- return result;
- }
- String UnsignedBigInteger::to_base10() const
- {
- StringBuilder builder;
- UnsignedBigInteger temp(*this);
- while (temp != UnsignedBigInteger { 0 }) {
- auto div_result = temp.divide({ 10 });
- ASSERT(div_result.remainder.words()[0] < 10);
- builder.append(static_cast<char>(div_result.remainder.words()[0] + '0'));
- temp = div_result.quotient;
- }
- auto reversed_string = builder.to_string();
- builder.clear();
- for (int i = reversed_string.length() - 1; i >= 0; --i) {
- builder.append(reversed_string[i]);
- }
- return builder.to_string();
- }
- bool UnsignedBigInteger::operator!=(const UnsignedBigInteger& other) const
- {
- return !(*this == other);
- }
- /**
- * Complexity: O(N) where N is the number of words in the larger number
- */
- UnsignedBigInteger UnsignedBigInteger::add(const UnsignedBigInteger& other) const
- {
- const UnsignedBigInteger* const longer = (length() > other.length()) ? this : &other;
- const UnsignedBigInteger* const shorter = (longer == &other) ? this : &other;
- UnsignedBigInteger result;
- u8 carry = 0;
- result.m_words.ensure_capacity(longer->length() + 1);
- for (size_t i = 0; i < shorter->length(); ++i) {
- u32 word_addition_result = shorter->m_words[i] + longer->m_words[i];
- u8 carry_out = 0;
- // if there was a carry, the result will be smaller than any of the operands
- if (word_addition_result + carry < shorter->m_words[i]) {
- carry_out = 1;
- }
- if (carry) {
- word_addition_result++;
- }
- carry = carry_out;
- result.m_words.append(word_addition_result);
- }
- for (size_t i = shorter->length(); i < longer->length(); ++i) {
- u32 word_addition_result = longer->m_words[i] + carry;
- carry = 0;
- if (word_addition_result < longer->m_words[i]) {
- carry = 1;
- }
- result.m_words.append(word_addition_result);
- }
- if (carry) {
- result.m_words.append(carry);
- }
- return result;
- }
- /**
- * Complexity: O(N) where N is the number of words in the larger number
- */
- UnsignedBigInteger UnsignedBigInteger::sub(const UnsignedBigInteger& other) const
- {
- UnsignedBigInteger result;
- if (*this < other) {
- return UnsignedBigInteger::create_invalid();
- }
- u8 borrow = 0;
- auto own_length = length(), other_length = other.length();
- result.m_words.ensure_capacity(own_length);
- for (size_t i = 0; i < own_length; ++i) {
- u32 other_word = (i < other_length) ? other.m_words[i] : 0;
- i64 temp = static_cast<i64>(m_words[i]) - static_cast<i64>(other_word) - static_cast<i64>(borrow);
- // If temp < 0, we had an underflow
- borrow = (temp >= 0) ? 0 : 1;
- if (temp < 0) {
- temp += (UINT32_MAX + 1);
- }
- result.m_words.append(temp);
- }
- // This assertion should not fail, because we verified that *this>=other at the beginning of the function
- ASSERT(borrow == 0);
- return result;
- }
- /**
- * Complexity: O(N^2) where N is the number of words in the larger number
- * Multiplcation method:
- * An integer is equal to the sum of the powers of two
- * according to the indexes of its 'on' bits.
- * So to multiple x*y, we go over each '1' bit in x (say the i'th bit),
- * and add y<<i to the result.
- */
- UnsignedBigInteger UnsignedBigInteger::multiply(const UnsignedBigInteger& other) const
- {
- UnsignedBigInteger result;
- // iterate all bits
- for (size_t word_index = 0; word_index < length(); ++word_index) {
- for (size_t bit_index = 0; bit_index < UnsignedBigInteger::BITS_IN_WORD; ++bit_index) {
- // If the bit is off - skip over it
- if (!(m_words[word_index] & (1 << bit_index)))
- continue;
- const size_t shift_amount = word_index * UnsignedBigInteger::BITS_IN_WORD + bit_index;
- auto shift_result = other.shift_left(shift_amount);
- result = result.add(shift_result);
- }
- }
- return result;
- }
- /**
- * Complexity: O(N^2) where N is the number of words in the larger number
- * Division method:
- * We loop over the bits of the divisor, attempting to subtract divisor<<i from the dividend.
- * If the result is non-negative, it means that divisor*2^i "fits" in the dividend,
- * so we set the ith bit in the quotient and reduce divisor<<i from the dividend.
- * When we're done, what's left from the dividend is the remainder.
- */
- UnsignedDivisionResult UnsignedBigInteger::divide(const UnsignedBigInteger& divisor) const
- {
- UnsignedBigInteger leftover_dividend(*this);
- UnsignedBigInteger quotient;
- // iterate all bits
- for (int word_index = trimmed_length() - 1; word_index >= 0; --word_index) {
- for (int bit_index = UnsignedBigInteger::BITS_IN_WORD - 1; bit_index >= 0; --bit_index) {
- const size_t shift_amount = word_index * UnsignedBigInteger::BITS_IN_WORD + bit_index;
- UnsignedBigInteger divisor_shifted = divisor.shift_left(shift_amount);
- UnsignedBigInteger temp_subtraction_result = leftover_dividend.sub(divisor_shifted);
- if (!temp_subtraction_result.is_invalid()) {
- leftover_dividend = temp_subtraction_result;
- quotient.set_bit_inplace(shift_amount);
- }
- }
- }
- return UnsignedDivisionResult { quotient, leftover_dividend };
- }
- void UnsignedBigInteger::set_bit_inplace(size_t bit_index)
- {
- const size_t word_index = bit_index / UnsignedBigInteger::BITS_IN_WORD;
- const size_t inner_word_index = bit_index % UnsignedBigInteger::BITS_IN_WORD;
- m_words.ensure_capacity(word_index);
- for (size_t i = length(); i <= word_index; ++i) {
- m_words.append(0);
- }
- m_words[word_index] |= (1 << inner_word_index);
- }
- UnsignedBigInteger UnsignedBigInteger::shift_left(size_t num_bits) const
- {
- // We can only do shift operations on individual words
- // where the shift amount is <= size of word (32).
- // But we do know how to shift by a multiple of word size (e.g 64=32*2)
- // So we first shift the result by how many whole words fit in 'num_bits'
- UnsignedBigInteger temp_result = shift_left_by_n_words(num_bits / UnsignedBigInteger::BITS_IN_WORD);
- // And now we shift by the leftover amount of bits
- num_bits %= UnsignedBigInteger::BITS_IN_WORD;
- UnsignedBigInteger result(temp_result);
- for (size_t i = 0; i < temp_result.length(); ++i) {
- u32 current_word_of_temp_result = temp_result.shift_left_get_one_word(num_bits, i);
- result.m_words[i] = current_word_of_temp_result;
- }
- // Shifting the last word can produce a carry
- u32 carry_word = temp_result.shift_left_get_one_word(num_bits, temp_result.length());
- if (carry_word != 0) {
- result = result.add(UnsignedBigInteger(carry_word).shift_left_by_n_words(temp_result.length()));
- }
- return result;
- }
- UnsignedBigInteger UnsignedBigInteger::shift_left_by_n_words(const size_t number_of_words) const
- {
- // shifting left by N words means just inserting N zeroes to the beginning of the words vector
- UnsignedBigInteger result;
- for (size_t i = 0; i < number_of_words; ++i) {
- result.m_words.append(0);
- }
- for (size_t i = 0; i < length(); ++i) {
- result.m_words.append(m_words[i]);
- }
- return result;
- }
- /**
- * Returns the word at a requested index in the result of a shift operation
- */
- u32 UnsignedBigInteger::shift_left_get_one_word(const size_t num_bits, const size_t result_word_index) const
- {
- // "<= length()" (rather than length() - 1) is intentional,
- // The result inedx of length() is used when calculating the carry word
- ASSERT(result_word_index <= length());
- ASSERT(num_bits <= UnsignedBigInteger::BITS_IN_WORD);
- u32 result = 0;
- // we need to check for "num_bits != 0" since shifting right by 32 is apparently undefined behaviour!
- if (result_word_index > 0 && num_bits != 0) {
- result += m_words[result_word_index - 1] >> (UnsignedBigInteger::BITS_IN_WORD - num_bits);
- }
- if (result_word_index < length() && num_bits < 32) {
- result += m_words[result_word_index] << num_bits;
- }
- return result;
- }
- bool UnsignedBigInteger::operator==(const UnsignedBigInteger& other) const
- {
- auto length = trimmed_length();
- if (length != other.trimmed_length()) {
- return false;
- }
- if (is_invalid() != other.is_invalid()) {
- return false;
- }
- return !__builtin_memcmp(m_words.data(), other.words().data(), length);
- }
- bool UnsignedBigInteger::operator<(const UnsignedBigInteger& other) const
- {
- auto length = trimmed_length();
- auto other_length = other.trimmed_length();
- if (length < other_length) {
- return true;
- }
- if (length > other_length) {
- return false;
- }
- if (length == 0) {
- return false;
- }
- for (int i = length - 1; i >= 0; --i) {
- if (m_words[i] == other.m_words[i])
- continue;
- return m_words[i] < other.m_words[i];
- }
- return false;
- }
- size_t UnsignedBigInteger::trimmed_length() const
- {
- size_t num_leading_zeroes = 0;
- for (int i = length() - 1; i >= 0; --i, ++num_leading_zeroes) {
- if (m_words[i] != 0)
- break;
- }
- return length() - num_leading_zeroes;
- }
- UnsignedBigInteger UnsignedBigInteger::create_invalid()
- {
- UnsignedBigInteger invalid(0);
- invalid.invalidate();
- return invalid;
- }
- // FIXME: in great need of optimisation
- UnsignedBigInteger UnsignedBigInteger::import_data(const u8* ptr, size_t length)
- {
- UnsignedBigInteger integer { 0 };
- for (size_t i = 0; i < length; ++i) {
- auto part = UnsignedBigInteger { ptr[length - i - 1] }.shift_left(8 * i);
- integer = integer.add(part);
- }
- return integer;
- }
- size_t UnsignedBigInteger::export_data(AK::ByteBuffer& data)
- {
- UnsignedBigInteger copy { *this };
- size_t size = trimmed_length() * sizeof(u32);
- size_t i = 0;
- for (; i < size; ++i) {
- if (copy.length() == 0)
- break;
- data[size - i - 1] = copy.m_words[0] & 0xff;
- copy = copy.divide(256).quotient;
- }
- return i;
- }
- }
|