MemoryManager.cpp 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771
  1. #include "CMOS.h"
  2. #include "Process.h"
  3. #include "StdLib.h"
  4. #include <AK/Assertions.h>
  5. #include <AK/kstdio.h>
  6. #include <Kernel/Arch/i386/CPU.h>
  7. #include <Kernel/FileSystem/Inode.h>
  8. #include <Kernel/Multiboot.h>
  9. #include <Kernel/VM/AnonymousVMObject.h>
  10. #include <Kernel/VM/InodeVMObject.h>
  11. #include <Kernel/VM/MemoryManager.h>
  12. #include <Kernel/VM/PurgeableVMObject.h>
  13. //#define MM_DEBUG
  14. //#define PAGE_FAULT_DEBUG
  15. static MemoryManager* s_the;
  16. MemoryManager& MM
  17. {
  18. return *s_the;
  19. }
  20. MemoryManager::MemoryManager()
  21. {
  22. m_kernel_page_directory = PageDirectory::create_kernel_page_directory();
  23. initialize_paging();
  24. kprintf("MM initialized.\n");
  25. }
  26. MemoryManager::~MemoryManager()
  27. {
  28. }
  29. void MemoryManager::initialize_paging()
  30. {
  31. if (!g_cpu_supports_pae) {
  32. kprintf("x86: Cannot boot on machines without PAE support.\n");
  33. hang();
  34. }
  35. #ifdef MM_DEBUG
  36. dbgprintf("MM: Kernel page directory @ %p\n", kernel_page_directory().cr3());
  37. #endif
  38. // Disable execution from 0MB through 2MB (BIOS data, legacy things, ...)
  39. if (g_cpu_supports_nx)
  40. quickmap_pd(kernel_page_directory(), 0)[0].set_execute_disabled(true);
  41. #if 0
  42. // Disable writing to the kernel text and rodata segments.
  43. extern u32 start_of_kernel_text;
  44. extern u32 start_of_kernel_data;
  45. for (size_t i = (u32)&start_of_kernel_text; i < (u32)&start_of_kernel_data; i += PAGE_SIZE) {
  46. auto& pte = ensure_pte(kernel_page_directory(), VirtualAddress(i));
  47. pte.set_writable(false);
  48. }
  49. if (g_cpu_supports_nx) {
  50. // Disable execution of the kernel data and bss segments.
  51. extern u32 end_of_kernel_bss;
  52. for (size_t i = (u32)&start_of_kernel_data; i < (u32)&end_of_kernel_bss; i += PAGE_SIZE) {
  53. auto& pte = ensure_pte(kernel_page_directory(), VirtualAddress(i));
  54. pte.set_execute_disabled(true);
  55. }
  56. }
  57. #endif
  58. // Basic virtual memory map:
  59. // 0 -> 4 KB Null page (so nullptr dereferences crash!)
  60. // 4 KB -> 8 MB Identity mapped.
  61. // 8 MB -> 3 GB Available to userspace.
  62. // 3GB -> 4 GB Kernel-only virtual address space (>0xc0000000)
  63. m_quickmap_addr = VirtualAddress(0xffe00000);
  64. #ifdef MM_DEBUG
  65. dbgprintf("MM: Quickmap will use %p\n", m_quickmap_addr.get());
  66. #endif
  67. RefPtr<PhysicalRegion> region;
  68. bool region_is_super = false;
  69. auto* mmap = (multiboot_memory_map_t*)(0xc0000000 + multiboot_info_ptr->mmap_addr);
  70. for (; (unsigned long)mmap < (0xc0000000 + multiboot_info_ptr->mmap_addr) + (multiboot_info_ptr->mmap_length); mmap = (multiboot_memory_map_t*)((unsigned long)mmap + mmap->size + sizeof(mmap->size))) {
  71. kprintf("MM: Multiboot mmap: base_addr = 0x%x%08x, length = 0x%x%08x, type = 0x%x\n",
  72. (u32)(mmap->addr >> 32),
  73. (u32)(mmap->addr & 0xffffffff),
  74. (u32)(mmap->len >> 32),
  75. (u32)(mmap->len & 0xffffffff),
  76. (u32)mmap->type);
  77. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  78. continue;
  79. // FIXME: Maybe make use of stuff below the 1MB mark?
  80. if (mmap->addr < (1 * MB))
  81. continue;
  82. if ((mmap->addr + mmap->len) > 0xffffffff)
  83. continue;
  84. auto diff = (u32)mmap->addr % PAGE_SIZE;
  85. if (diff != 0) {
  86. kprintf("MM: got an unaligned region base from the bootloader; correcting %p by %d bytes\n", mmap->addr, diff);
  87. diff = PAGE_SIZE - diff;
  88. mmap->addr += diff;
  89. mmap->len -= diff;
  90. }
  91. if ((mmap->len % PAGE_SIZE) != 0) {
  92. kprintf("MM: got an unaligned region length from the bootloader; correcting %d by %d bytes\n", mmap->len, mmap->len % PAGE_SIZE);
  93. mmap->len -= mmap->len % PAGE_SIZE;
  94. }
  95. if (mmap->len < PAGE_SIZE) {
  96. kprintf("MM: memory region from bootloader is too small; we want >= %d bytes, but got %d bytes\n", PAGE_SIZE, mmap->len);
  97. continue;
  98. }
  99. #ifdef MM_DEBUG
  100. kprintf("MM: considering memory at %p - %p\n",
  101. (u32)mmap->addr, (u32)(mmap->addr + mmap->len));
  102. #endif
  103. for (size_t page_base = mmap->addr; page_base < (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
  104. auto addr = PhysicalAddress(page_base);
  105. if (page_base < 7 * MB) {
  106. // nothing
  107. } else if (page_base >= 7 * MB && page_base < 8 * MB) {
  108. if (region.is_null() || !region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  109. m_super_physical_regions.append(PhysicalRegion::create(addr, addr));
  110. region = m_super_physical_regions.last();
  111. region_is_super = true;
  112. } else {
  113. region->expand(region->lower(), addr);
  114. }
  115. } else {
  116. if (region.is_null() || region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  117. m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
  118. region = m_user_physical_regions.last();
  119. region_is_super = false;
  120. } else {
  121. region->expand(region->lower(), addr);
  122. }
  123. }
  124. }
  125. }
  126. for (auto& region : m_super_physical_regions)
  127. m_super_physical_pages += region.finalize_capacity();
  128. for (auto& region : m_user_physical_regions)
  129. m_user_physical_pages += region.finalize_capacity();
  130. #ifdef MM_DEBUG
  131. dbgprintf("MM: Installing page directory\n");
  132. #endif
  133. // Turn on CR4.PAE
  134. asm volatile(
  135. "mov %cr4, %eax\n"
  136. "orl $0x20, %eax\n"
  137. "mov %eax, %cr4\n");
  138. if (g_cpu_supports_pge) {
  139. // Turn on CR4.PGE so the CPU will respect the G bit in page tables.
  140. asm volatile(
  141. "mov %cr4, %eax\n"
  142. "orl $0x80, %eax\n"
  143. "mov %eax, %cr4\n");
  144. kprintf("x86: PGE support enabled\n");
  145. } else {
  146. kprintf("x86: PGE support not detected\n");
  147. }
  148. if (g_cpu_supports_smep) {
  149. // Turn on CR4.SMEP
  150. asm volatile(
  151. "mov %cr4, %eax\n"
  152. "orl $0x100000, %eax\n"
  153. "mov %eax, %cr4\n");
  154. kprintf("x86: SMEP support enabled\n");
  155. } else {
  156. kprintf("x86: SMEP support not detected\n");
  157. }
  158. if (g_cpu_supports_smap) {
  159. // Turn on CR4.SMAP
  160. kprintf("x86: Enabling SMAP\n");
  161. asm volatile(
  162. "mov %cr4, %eax\n"
  163. "orl $0x200000, %eax\n"
  164. "mov %eax, %cr4\n");
  165. kprintf("x86: SMAP support enabled\n");
  166. } else {
  167. kprintf("x86: SMAP support not detected\n");
  168. }
  169. if (g_cpu_supports_nx) {
  170. // Turn on IA32_EFER.NXE
  171. asm volatile(
  172. "movl $0xc0000080, %ecx\n"
  173. "rdmsr\n"
  174. "orl $0x800, %eax\n"
  175. "wrmsr\n");
  176. kprintf("x86: NX support enabled\n");
  177. } else {
  178. kprintf("x86: NX support not detected\n");
  179. }
  180. asm volatile("movl %%eax, %%cr3" ::"a"(kernel_page_directory().cr3()));
  181. asm volatile(
  182. "movl %%cr0, %%eax\n"
  183. "orl $0x80010001, %%eax\n"
  184. "movl %%eax, %%cr0\n" ::
  185. : "%eax", "memory");
  186. #ifdef MM_DEBUG
  187. dbgprintf("MM: Paging initialized.\n");
  188. #endif
  189. }
  190. PageTableEntry& MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  191. {
  192. ASSERT_INTERRUPTS_DISABLED();
  193. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  194. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  195. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  196. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  197. PageDirectoryEntry& pde = pd[page_directory_index];
  198. if (!pde.is_present()) {
  199. #ifdef MM_DEBUG
  200. dbgprintf("MM: PDE %u not present (requested for V%p), allocating\n", page_directory_index, vaddr.get());
  201. #endif
  202. if (page_directory_table_index == 3 && page_directory_index < 4) {
  203. ASSERT_NOT_REACHED();
  204. } else {
  205. auto page_table = allocate_supervisor_physical_page();
  206. #ifdef MM_DEBUG
  207. dbgprintf("MM: PD K%p (%s) at P%p allocated page table #%u (for V%p) at P%p\n",
  208. &page_directory,
  209. &page_directory == m_kernel_page_directory ? "Kernel" : "User",
  210. page_directory.cr3(),
  211. page_directory_index,
  212. vaddr.get(),
  213. page_table->paddr().get());
  214. #endif
  215. pde.set_page_table_base(page_table->paddr().get());
  216. pde.set_user_allowed(true);
  217. pde.set_present(true);
  218. pde.set_writable(true);
  219. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  220. page_directory.m_physical_pages.set(page_directory_index, move(page_table));
  221. }
  222. }
  223. //if (&page_directory != &kernel_page_directory() && page_directory_table_index != 3) {
  224. return quickmap_pt(PhysicalAddress((u32)pde.page_table_base()))[page_table_index];
  225. //}
  226. auto* phys_ptr = &pde.page_table_base()[page_table_index];
  227. return *(PageTableEntry*)((u8*)phys_ptr + 0xc0000000);
  228. }
  229. void MemoryManager::map_protected(VirtualAddress vaddr, size_t length)
  230. {
  231. InterruptDisabler disabler;
  232. ASSERT(vaddr.is_page_aligned());
  233. for (u32 offset = 0; offset < length; offset += PAGE_SIZE) {
  234. auto pte_address = vaddr.offset(offset);
  235. auto& pte = ensure_pte(kernel_page_directory(), pte_address);
  236. pte.set_physical_page_base(pte_address.get());
  237. pte.set_user_allowed(false);
  238. pte.set_present(false);
  239. pte.set_writable(false);
  240. flush_tlb(pte_address);
  241. }
  242. }
  243. void MemoryManager::create_identity_mapping(PageDirectory& page_directory, VirtualAddress vaddr, size_t size)
  244. {
  245. InterruptDisabler disabler;
  246. ASSERT((vaddr.get() & ~PAGE_MASK) == 0);
  247. for (u32 offset = 0; offset < size; offset += PAGE_SIZE) {
  248. auto pte_address = vaddr.offset(offset);
  249. auto& pte = ensure_pte(page_directory, pte_address);
  250. pte.set_physical_page_base(pte_address.get());
  251. pte.set_user_allowed(false);
  252. pte.set_present(true);
  253. pte.set_writable(true);
  254. flush_tlb(pte_address);
  255. }
  256. }
  257. void MemoryManager::initialize()
  258. {
  259. s_the = new MemoryManager;
  260. }
  261. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  262. {
  263. if (vaddr.get() < 0xc0000000)
  264. return nullptr;
  265. for (auto& region : MM.m_kernel_regions) {
  266. if (region.contains(vaddr))
  267. return &region;
  268. }
  269. return nullptr;
  270. }
  271. Region* MemoryManager::user_region_from_vaddr(Process& process, VirtualAddress vaddr)
  272. {
  273. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  274. for (auto& region : process.m_regions) {
  275. if (region.contains(vaddr))
  276. return &region;
  277. }
  278. dbg() << process << " Couldn't find user region for " << vaddr;
  279. if (auto* kreg = kernel_region_from_vaddr(vaddr)) {
  280. dbg() << process << " OTOH, there is a kernel region: " << kreg->range() << ": " << kreg->name();
  281. } else {
  282. dbg() << process << " AND no kernel region either";
  283. }
  284. process.dump_regions();
  285. kprintf("Kernel regions:\n");
  286. kprintf("BEGIN END SIZE ACCESS NAME\n");
  287. for (auto& region : MM.m_kernel_regions) {
  288. kprintf("%08x -- %08x %08x %c%c%c%c%c%c %s\n",
  289. region.vaddr().get(),
  290. region.vaddr().offset(region.size() - 1).get(),
  291. region.size(),
  292. region.is_readable() ? 'R' : ' ',
  293. region.is_writable() ? 'W' : ' ',
  294. region.is_executable() ? 'X' : ' ',
  295. region.is_shared() ? 'S' : ' ',
  296. region.is_stack() ? 'T' : ' ',
  297. region.vmobject().is_purgeable() ? 'P' : ' ',
  298. region.name().characters());
  299. }
  300. return nullptr;
  301. }
  302. Region* MemoryManager::region_from_vaddr(Process& process, VirtualAddress vaddr)
  303. {
  304. if (auto* region = kernel_region_from_vaddr(vaddr))
  305. return region;
  306. return user_region_from_vaddr(process, vaddr);
  307. }
  308. const Region* MemoryManager::region_from_vaddr(const Process& process, VirtualAddress vaddr)
  309. {
  310. if (auto* region = kernel_region_from_vaddr(vaddr))
  311. return region;
  312. return user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  313. }
  314. Region* MemoryManager::region_from_vaddr(VirtualAddress vaddr)
  315. {
  316. if (auto* region = kernel_region_from_vaddr(vaddr))
  317. return region;
  318. auto page_directory = PageDirectory::find_by_cr3(cpu_cr3());
  319. if (!page_directory)
  320. return nullptr;
  321. ASSERT(page_directory->process());
  322. return user_region_from_vaddr(*page_directory->process(), vaddr);
  323. }
  324. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  325. {
  326. ASSERT_INTERRUPTS_DISABLED();
  327. ASSERT(current);
  328. #ifdef PAGE_FAULT_DEBUG
  329. dbgprintf("MM: handle_page_fault(%w) at V%p\n", fault.code(), fault.vaddr().get());
  330. #endif
  331. ASSERT(fault.vaddr() != m_quickmap_addr);
  332. auto* region = region_from_vaddr(fault.vaddr());
  333. if (!region) {
  334. kprintf("NP(error) fault at invalid address V%p\n", fault.vaddr().get());
  335. return PageFaultResponse::ShouldCrash;
  336. }
  337. return region->handle_fault(fault);
  338. }
  339. OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, bool should_commit, bool cacheable)
  340. {
  341. InterruptDisabler disabler;
  342. ASSERT(!(size % PAGE_SIZE));
  343. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  344. ASSERT(range.is_valid());
  345. OwnPtr<Region> region;
  346. if (user_accessible)
  347. region = Region::create_user_accessible(range, name, access, cacheable);
  348. else
  349. region = Region::create_kernel_only(range, name, access, cacheable);
  350. region->set_page_directory(kernel_page_directory());
  351. // FIXME: It would be cool if these could zero-fill on demand instead.
  352. if (should_commit)
  353. region->commit();
  354. return region;
  355. }
  356. OwnPtr<Region> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  357. {
  358. InterruptDisabler disabler;
  359. ASSERT(!(size % PAGE_SIZE));
  360. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  361. ASSERT(range.is_valid());
  362. OwnPtr<Region> region;
  363. if (user_accessible)
  364. region = Region::create_user_accessible(range, AnonymousVMObject::create_for_physical_range(paddr, size), 0, name, access, cacheable);
  365. else
  366. region = Region::create_kernel_only(range, AnonymousVMObject::create_for_physical_range(paddr, size), 0, name, access, cacheable);
  367. region->map(kernel_page_directory());
  368. return region;
  369. }
  370. OwnPtr<Region> MemoryManager::allocate_user_accessible_kernel_region(size_t size, const StringView& name, u8 access, bool cacheable)
  371. {
  372. return allocate_kernel_region(size, name, access, true, true, cacheable);
  373. }
  374. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  375. {
  376. InterruptDisabler disabler;
  377. ASSERT(!(size % PAGE_SIZE));
  378. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  379. ASSERT(range.is_valid());
  380. OwnPtr<Region> region;
  381. if (user_accessible)
  382. region = Region::create_user_accessible(range, vmobject, 0, name, access, cacheable);
  383. else
  384. region = Region::create_kernel_only(range, vmobject, 0, name, access, cacheable);
  385. region->map(kernel_page_directory());
  386. return region;
  387. }
  388. void MemoryManager::deallocate_user_physical_page(PhysicalPage&& page)
  389. {
  390. for (auto& region : m_user_physical_regions) {
  391. if (!region.contains(page)) {
  392. kprintf(
  393. "MM: deallocate_user_physical_page: %p not in %p -> %p\n",
  394. page.paddr().get(), region.lower().get(), region.upper().get());
  395. continue;
  396. }
  397. region.return_page(move(page));
  398. --m_user_physical_pages_used;
  399. return;
  400. }
  401. kprintf("MM: deallocate_user_physical_page couldn't figure out region for user page @ %p\n", page.paddr().get());
  402. ASSERT_NOT_REACHED();
  403. }
  404. RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page()
  405. {
  406. RefPtr<PhysicalPage> page;
  407. for (auto& region : m_user_physical_regions) {
  408. page = region.take_free_page(false);
  409. if (!page.is_null())
  410. break;
  411. }
  412. return page;
  413. }
  414. RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill)
  415. {
  416. InterruptDisabler disabler;
  417. RefPtr<PhysicalPage> page = find_free_user_physical_page();
  418. if (!page) {
  419. if (m_user_physical_regions.is_empty()) {
  420. kprintf("MM: no user physical regions available (?)\n");
  421. }
  422. for_each_vmobject([&](auto& vmobject) {
  423. if (vmobject.is_purgeable()) {
  424. auto& purgeable_vmobject = static_cast<PurgeableVMObject&>(vmobject);
  425. int purged_page_count = purgeable_vmobject.purge_with_interrupts_disabled({});
  426. if (purged_page_count) {
  427. kprintf("MM: Purge saved the day! Purged %d pages from PurgeableVMObject{%p}\n", purged_page_count, &purgeable_vmobject);
  428. page = find_free_user_physical_page();
  429. ASSERT(page);
  430. return IterationDecision::Break;
  431. }
  432. }
  433. return IterationDecision::Continue;
  434. });
  435. if (!page) {
  436. kprintf("MM: no user physical pages available\n");
  437. ASSERT_NOT_REACHED();
  438. return {};
  439. }
  440. }
  441. #ifdef MM_DEBUG
  442. dbgprintf("MM: allocate_user_physical_page vending P%p\n", page->paddr().get());
  443. #endif
  444. if (should_zero_fill == ShouldZeroFill::Yes) {
  445. auto* ptr = (u32*)quickmap_page(*page);
  446. memset(ptr, 0, PAGE_SIZE);
  447. unquickmap_page();
  448. }
  449. ++m_user_physical_pages_used;
  450. return page;
  451. }
  452. void MemoryManager::deallocate_supervisor_physical_page(PhysicalPage&& page)
  453. {
  454. for (auto& region : m_super_physical_regions) {
  455. if (!region.contains(page)) {
  456. kprintf(
  457. "MM: deallocate_supervisor_physical_page: %p not in %p -> %p\n",
  458. page.paddr().get(), region.lower().get(), region.upper().get());
  459. continue;
  460. }
  461. region.return_page(move(page));
  462. --m_super_physical_pages_used;
  463. return;
  464. }
  465. kprintf("MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ %p\n", page.paddr().get());
  466. ASSERT_NOT_REACHED();
  467. }
  468. RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  469. {
  470. InterruptDisabler disabler;
  471. RefPtr<PhysicalPage> page;
  472. for (auto& region : m_super_physical_regions) {
  473. page = region.take_free_page(true);
  474. if (page.is_null())
  475. continue;
  476. }
  477. if (!page) {
  478. if (m_super_physical_regions.is_empty()) {
  479. kprintf("MM: no super physical regions available (?)\n");
  480. }
  481. kprintf("MM: no super physical pages available\n");
  482. ASSERT_NOT_REACHED();
  483. return {};
  484. }
  485. #ifdef MM_DEBUG
  486. dbgprintf("MM: allocate_supervisor_physical_page vending P%p\n", page->paddr().get());
  487. #endif
  488. fast_u32_fill((u32*)page->paddr().offset(0xc0000000).as_ptr(), 0, PAGE_SIZE / sizeof(u32));
  489. ++m_super_physical_pages_used;
  490. return page;
  491. }
  492. void MemoryManager::enter_process_paging_scope(Process& process)
  493. {
  494. ASSERT(current);
  495. InterruptDisabler disabler;
  496. current->tss().cr3 = process.page_directory().cr3();
  497. asm volatile("movl %%eax, %%cr3" ::"a"(process.page_directory().cr3())
  498. : "memory");
  499. }
  500. void MemoryManager::flush_entire_tlb()
  501. {
  502. asm volatile(
  503. "mov %%cr3, %%eax\n"
  504. "mov %%eax, %%cr3\n" ::
  505. : "%eax", "memory");
  506. }
  507. void MemoryManager::flush_tlb(VirtualAddress vaddr)
  508. {
  509. #ifdef MM_DEBUG
  510. dbgprintf("MM: Flush page V%p\n", vaddr.get());
  511. #endif
  512. asm volatile("invlpg %0"
  513. :
  514. : "m"(*(char*)vaddr.get())
  515. : "memory");
  516. }
  517. extern "C" PageTableEntry boot_pd3_pde1023_pt[1024];
  518. PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
  519. {
  520. auto& pte = boot_pd3_pde1023_pt[4];
  521. auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
  522. if (pte.physical_page_base() != pd_paddr.as_ptr()) {
  523. //dbgprintf("quickmap_pd: Mapping P%p at 0xffe04000 in pte @ %p\n", directory.m_directory_pages[pdpt_index]->paddr().as_ptr(), &pte);
  524. pte.set_physical_page_base(pd_paddr.get());
  525. pte.set_present(true);
  526. pte.set_writable(true);
  527. pte.set_user_allowed(false);
  528. flush_tlb(VirtualAddress(0xffe04000));
  529. }
  530. return (PageDirectoryEntry*)0xffe04000;
  531. }
  532. PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
  533. {
  534. auto& pte = boot_pd3_pde1023_pt[8];
  535. if (pte.physical_page_base() != pt_paddr.as_ptr()) {
  536. //dbgprintf("quickmap_pt: Mapping P%p at 0xffe08000 in pte @ %p\n", pt_paddr.as_ptr(), &pte);
  537. pte.set_physical_page_base(pt_paddr.get());
  538. pte.set_present(true);
  539. pte.set_writable(true);
  540. pte.set_user_allowed(false);
  541. flush_tlb(VirtualAddress(0xffe08000));
  542. }
  543. return (PageTableEntry*)0xffe08000;
  544. }
  545. void MemoryManager::map_for_kernel(VirtualAddress vaddr, PhysicalAddress paddr, bool cache_disabled)
  546. {
  547. auto& pte = ensure_pte(kernel_page_directory(), vaddr);
  548. pte.set_physical_page_base(paddr.get());
  549. pte.set_present(true);
  550. pte.set_writable(true);
  551. pte.set_user_allowed(false);
  552. pte.set_cache_disabled(cache_disabled);
  553. flush_tlb(vaddr);
  554. }
  555. u8* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  556. {
  557. ASSERT_INTERRUPTS_DISABLED();
  558. ASSERT(!m_quickmap_in_use);
  559. m_quickmap_in_use = true;
  560. auto page_vaddr = m_quickmap_addr;
  561. auto& pte = ensure_pte(kernel_page_directory(), page_vaddr);
  562. pte.set_physical_page_base(physical_page.paddr().get());
  563. pte.set_present(true);
  564. pte.set_writable(true);
  565. pte.set_user_allowed(false);
  566. flush_tlb(page_vaddr);
  567. ASSERT((u32)pte.physical_page_base() == physical_page.paddr().get());
  568. #ifdef MM_DEBUG
  569. dbg() << "MM: >> quickmap_page " << page_vaddr << " => " << physical_page.paddr() << " @ PTE=" << (void*)pte.raw() << " {" << &pte << "}";
  570. #endif
  571. return page_vaddr.as_ptr();
  572. }
  573. void MemoryManager::unquickmap_page()
  574. {
  575. ASSERT_INTERRUPTS_DISABLED();
  576. ASSERT(m_quickmap_in_use);
  577. auto page_vaddr = m_quickmap_addr;
  578. auto& pte = ensure_pte(kernel_page_directory(), page_vaddr);
  579. #ifdef MM_DEBUG
  580. auto old_physical_address = pte.physical_page_base();
  581. #endif
  582. pte.set_physical_page_base(0);
  583. pte.set_present(false);
  584. pte.set_writable(false);
  585. flush_tlb(page_vaddr);
  586. #ifdef MM_DEBUG
  587. dbg() << "MM: >> unquickmap_page " << page_vaddr << " =/> " << old_physical_address;
  588. #endif
  589. m_quickmap_in_use = false;
  590. }
  591. template<MemoryManager::AccessSpace space, MemoryManager::AccessType access_type>
  592. bool MemoryManager::validate_range(const Process& process, VirtualAddress base_vaddr, size_t size) const
  593. {
  594. ASSERT(size);
  595. VirtualAddress vaddr = base_vaddr.page_base();
  596. VirtualAddress end_vaddr = base_vaddr.offset(size - 1).page_base();
  597. if (end_vaddr < vaddr) {
  598. dbg() << *current << " Shenanigans! Asked to validate " << base_vaddr << " size=" << size;
  599. return false;
  600. }
  601. const Region* region = nullptr;
  602. while (vaddr <= end_vaddr) {
  603. if (!region || !region->contains(vaddr)) {
  604. if (space == AccessSpace::Kernel)
  605. region = kernel_region_from_vaddr(vaddr);
  606. if (!region || !region->contains(vaddr))
  607. region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  608. if (!region
  609. || (space == AccessSpace::User && !region->is_user_accessible())
  610. || (access_type == AccessType::Read && !region->is_readable())
  611. || (access_type == AccessType::Write && !region->is_writable())) {
  612. return false;
  613. }
  614. }
  615. vaddr = vaddr.offset(PAGE_SIZE);
  616. }
  617. return true;
  618. }
  619. bool MemoryManager::validate_user_stack(const Process& process, VirtualAddress vaddr) const
  620. {
  621. if (!is_user_address(vaddr))
  622. return false;
  623. auto* region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  624. return region && region->is_user_accessible() && region->is_stack();
  625. }
  626. bool MemoryManager::validate_kernel_read(const Process& process, VirtualAddress vaddr, size_t size) const
  627. {
  628. return validate_range<AccessSpace::Kernel, AccessType::Read>(process, vaddr, size);
  629. }
  630. bool MemoryManager::validate_user_read(const Process& process, VirtualAddress vaddr, size_t size) const
  631. {
  632. if (!is_user_address(vaddr))
  633. return false;
  634. return validate_range<AccessSpace::User, AccessType::Read>(process, vaddr, size);
  635. }
  636. bool MemoryManager::validate_user_write(const Process& process, VirtualAddress vaddr, size_t size) const
  637. {
  638. if (!is_user_address(vaddr))
  639. return false;
  640. return validate_range<AccessSpace::User, AccessType::Write>(process, vaddr, size);
  641. }
  642. void MemoryManager::register_vmobject(VMObject& vmobject)
  643. {
  644. InterruptDisabler disabler;
  645. m_vmobjects.append(&vmobject);
  646. }
  647. void MemoryManager::unregister_vmobject(VMObject& vmobject)
  648. {
  649. InterruptDisabler disabler;
  650. m_vmobjects.remove(&vmobject);
  651. }
  652. void MemoryManager::register_region(Region& region)
  653. {
  654. InterruptDisabler disabler;
  655. if (region.vaddr().get() >= 0xc0000000)
  656. m_kernel_regions.append(&region);
  657. else
  658. m_user_regions.append(&region);
  659. }
  660. void MemoryManager::unregister_region(Region& region)
  661. {
  662. InterruptDisabler disabler;
  663. if (region.vaddr().get() >= 0xc0000000)
  664. m_kernel_regions.remove(&region);
  665. else
  666. m_user_regions.remove(&region);
  667. }
  668. ProcessPagingScope::ProcessPagingScope(Process& process)
  669. {
  670. ASSERT(current);
  671. MM.enter_process_paging_scope(process);
  672. }
  673. ProcessPagingScope::~ProcessPagingScope()
  674. {
  675. MM.enter_process_paging_scope(current->process());
  676. }